AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Evaluating soil acidification risk and its effects on biodiversity–ecosystem multifunctionality relationships in the drylands of China

Lan Dua,b,cShengchuan Tiana,b,cNan Zhaoa,b,cBin Zhanga,b,cXiaohan Mua,b,cLisong Tanga,cXinjun Zhenga,c( )Yan Lia,c,d
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, 831505, Xinjiang, China
State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, 311300, Zhejiang, China
Show Author Information

Abstract

Background

Soil acidification caused by anthropogenic activities may affect soil biochemical cycling, biodiversity, productivity, and multiple ecosystem-related functions in drylands. However, to date, such information is lacking to support this hypothesis.

Methods

Based on a transect survey of 78 naturally assembled shrub communities, we calculated acid deposition flux in Northwest China and evaluated its likely ecological effects by testing three alternative hypotheses, namely: niche complementarity, mass ratio, and vegetation quantity hypotheses. Rao's quadratic entropy and community-weighted mean traits were employed to represent the complementary aspect of niche complementarity and mass ratio effects, respectively.

Results

We observed that in the past four decades, the concentrations of exchangeable base cations in soil in Northwest China have decreased significantly to the extent of having faced the risk of depletion, whereas changes in the calcium carbonate content and pH of soil were not significant. Acid deposition primarily increased the aboveground biomass and shrub density in shrublands but had no significant effect on shrub richness and ecosystem multifunctionality (EMF), indicating that acid deposition had positive but weak ecological effects on dryland ecosystems. Community weighted mean of functional traits (representing the mass ratio hypothesis) correlated negatively with EMF, whereas both Rao's quadratic entropy (representing the niche complementarity hypothesis) and aboveground biomass (representing the vegetation quantity hypothesis) correlated positively but insignificantly with EMF. These biodiversity–EMF relationships highlight the fragility and instability of drylands relative to forest ecosystems.

Conclusions

The findings from this study serve as important reference points to understand the risk of soil acidification in arid regions and its impacts on biodiversity–EMF relationships.

References

 

Allan, E., Manning, P., Alt, F., Binkenstein, J., Blaser, S., Bluethgen, N., 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18 (8), 834–843. https://doi.org/10.1111/ele.12469.

 

Aoyama, L., Shaw, E.A., White, C.T., Suding, K.N., Hallett, L.M., 2023. Functional diversity buffers biomass production across variable rainfall conditions through different processes above- versus below-ground. Funct. Ecol. 37, 2371–2385. https://doi.org/10.1111/1365-2435.14394.

 

Bao, S., 2000. Soil Agrochemical Analysis, third ed. China Agriculture Press, Beijing.

 

Bar Lamas, M.I., Carrera, A.L., Bertiller, M.B., 2021. Sheep grazing differentially affects the canopy attributes and functional diversity of shrubs and perennial grasses in arid rangelands. Plant Ecol. 222 (1), 13–27. https://doi.org/10.1007/s11258-020-01084-3.

 
Batjes, N.H., 2015. World soil property estimates for broad-scale modelling (WISE30sec). ISRIC Report No. 2015/01. ISRIC - world Soil Information. https://edepot.wur.nl/400244. (Accessed 10 November 2023).
 

Botta-Dukat, Z., 2005. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16 (5), 533–540. https://doi.org/10.1658/1100-9233(2005)16[533:Rqeaam]2.0.Co;2.

 

Bowman, W.D., Cleveland, C.C., Halada, L., Hresko, J., Baron, J.S., 2008. Negative impact of nitrogen deposition on soil buffering capacity. Nat. Geosci. 1 (11), 767–770. https://doi.org/10.1038/ngeo339.

 

Cai, J., Luo, W., Liu, H., Feng, X., Zhang, Y., Wang, R., 2017. Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland. Atmos. Environ. 170, 312–318. https://doi.org/10.1016/j.atmosenv.2017.09.054.

 

Chang, Z., Zhu, S., Han, F., Zhong, S., 2012. Differences in response of desert plants of different ecotypes to climate warming: a case study in Minqin, Northwest China. J. Arid Land 4 (2), 140–150. https://doi.org/10.3724/sp.J.1227.2012.00140.

 

Chen, C., Xiao, W., Chen, H.Y.H., 2023. Mapping global soil acidification under N deposition. Global Change Biol. 29 (16), 4652–4661. https://doi.org/10.1111/gcb.16813.

 

Correa Dias, A.T., Cornelissen, J.H.C., Berg, M.P., 2017. Litter for life: assessing the multifunctional legacy of plant traits. J. Ecol. 105 (5), 1163–1168. https://doi.org/10.1111/1365-2745.12763.

 

Cui, H., Wagg, C., Wang, X., Liu, Z., Liu, K., Chen, S., 2022. The loss of above- and belowground biodiversity in degraded grasslands drives the decline of ecosystem multifunctionality. Appl. Soil Ecol. 172, 104370. https://doi.org/10.1016/j.apsoil.2021.104370.

 

Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P.C., 2017. Potential role of biochars in decreasing soil acidification - a critical review. Sci. Total Environ. 581, 601–611. https://doi.org/10.1016/j.scitotenv2016.12.169.

 

Damptey, F.G., Birkhofer, K., Menor, I.O., de la Riva, E.G., 2022. The functional structure of tropical plant communities and soil properties enhance ecosystem functioning and multifunctionality in different ecosystems in Ghana. Forests 13 (2). https://doi.org/10.3390/f13020297.

 

Deng, H., Tang, Q., Yun, X., Tang, Y., Liu, X., Xu, X., 2022. Wetting trend in Northwest China reversed by warmer temperature and drier air. J. Hydrol. 613, 128435. https://doi.org/10.1016/j.jhydrol.2022.128435.

 

Devries, W., Breeuwsma, A., 1987. The relationship between soil acidification and element cycling. Water Air Soil Pollut. 35 (3–4), 293–310. https://doi.org/10.1007/bf00290937.

 

Ding, J., Delgado-Baquerizo, M., Wang, J.-T., Eldridge, D.J., 2021. Ecosystem functions are related to tree diversity in forests but soil biodiversity in open woodlands and shrublands. J. Ecol. 109 (12), 4158–4170. https://doi.org/10.1111/1365-745.13788.

 

Du, L., Tian, S., Sun, J., Zhang, B., Mu, X.-H., Tang, L., 2023. Ecosystem multifunctionality, maximum height, and biodiversity of shrub communities affected by precipitation fluctuations in Northwest China. Front. Plant Sci. 14, 1259858. https://doi.org/10.3389/fpls.2023.1259858.

 

Duan, L., Xie, S.D., Zhou, Z.P., Ye, X.M., Hao, J.M., 2001. Calculation and mapping of critical loads for S, N and acidity in China. Water Air Soil Pollut. 130 (1–4), 1199–1204. https://doi.org/10.1023/a:1013908629150.

 

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37 (12), 4302–4315. https://doi.org/10.1002/joc.5086.

 

Finegan, B., Pena-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M.S., Carreno-Rocabado, G., 2015. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103 (1), 191–201. https://doi.org/10.1111/1365-2745.12346.

 

Fujii, K., Funakawa, S., Hayakawa, C., Kosaki, T., 2008. Contribution of different proton sources to pedogenetic soil acidification in forested ecosystems in Japan. Geoderma 144 (3–4), 478–490. https://doi.org/10.1016/j.geoderma.2008.01.001.

 

Grime, J.P., 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86 (6), 902–910. https://doi.org/10.1046/j.1365-2745.1998.00306.x.

 

Gross, N., Le Bagousse-Pinguet, Y., Liancourt, P., Berdugo, M., Gotelli, N.J., Maestre, F.T., 2017. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1 (5), 0132. https://doi.org/10.1038/s41559-017-0132.

 

Guo, H., Zhou, X., Tao, Y., Yin, J., Zhang, L., Guo, X., 2023a. Precipitation preferences alter the relative importance of herbaceous plant diversity for multifunctionality in the drylands of China. Front. Ecol. Evol. 11, 1084949. https://doi.org/10.3389/fevo.2023.1084949.

 

Guo, Y., Zhou, M., Sheng, J., Yuan, Y., Yuan, G., Zhang, W.-H., 2023b. Aboveground net primary productivity was not limited by phosphorus in a temperate typical steppe in Inner Mongolia. J. Plant Ecol. 16 (4). https://doi.org/10.1093/jpe/rtac085 rtac085.

 

Hailil, Z., Zhao, T., Jiang, Q.O., 2021. Boundary scope and change of arid desert area in northwest China. Arid. Land Geogr. 44 (6), 1635–1643.

 

Hao, M., Messier, C., Geng, Y., Zhang, C., Zhao, X., von Gadow, K., 2020. Functional traits influence biomass and productivity through multiple mechanisms in a temperate secondary forest. Eur. J. For. Res. 139 (6), 959–968. https://doi.org/10.1007/s10342-020-01298-0.

 

Hong, P., Schmid, B., De Laender, F., Eisenhauer, N., Zhang, X., Chen, H., 2022. Biodiversity promotes ecosystem functioning despite environmental change. Ecol. Lett. 25 (2), 555–569. https://doi.org/10.1111/ele.13936.

 

Hou, G., Zhou, T., Sun, J., Zong, N., Shi, P., Yu, J., 2022. Functional identity of leaf dry matter content regulates community stability in the northern Tibetan grasslands. Sci. Total Environ. 838, 156150. https://doi.org/10.1016/j.scitotenv.2022.156150.

 

Hu, Y., Guo, A., Li, X., Yue, P., Zhao, S., Lv, P., 2022. Multi-trait functional diversity predicts ecosystem multifunctionality under nitrogen addition in a desert steppe. Plant Soil 491, 33–44. https://doi.org/10.1007/s11104-022-05731-8.

 

Jin, L., Li, X., Huang, Q., Yang, H., Huang, J., 2022. Allometry, biomass and productivity in Pinus massoniana forests of China: an updated review of published data. Pol. J. Ecol. 7 (1), 1–32. https://doi.org/10.3161/15052249pje2020.70.1.001.

 

Jing, X., He, J., 2021. Relationship between biodiversity, ecosystem multifunctionality and multiserviceability: literature overview and research advances. Chin. J. Plant Ecol. 45 (10), 1094–1111.

 

Kim, J.G., Dixon, J.B., Moon, H.S., 2002. Amendment of drilling fluid-affected soils with calcium salts. Soil Sci. Plant Nutr. 48 (3), 325–331. https://doi.org/10.1080/00380768.2002.10409208.

 

Lavorel, S., 2013. Plant functional effects on ecosystem services. J. Ecol. 101 (1), 4–8. https://doi.org/10.1111/1365-2745.12031.

 

Le Bagousse-Pinguet, Y., Soliveres, S., Gross, N., Torices, R., Berdugo, M., Maestre, F.T., 2019. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A. 116 (17), 8419–8424. https://doi.org/10.1073/pnas.1815727116.

 

Lefcheck, J.S., 2016. PIECEWISESEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7 (5), 573–579. https://doi.org/10.1111/2041-210x.12512.

 

Li, C., Wang, B., Fang, Z., Yu, H., Huang, J., 2022a. Plant species diversity is driven by soil base cations under acid deposition in desert coal-mining region in northwestern China. Ecol. Indicat. 145, 109682. https://doi.org/10.1016/j.ecolind.2022.109682.

 

Li, M., Petrie, M.D., Chen, H., Zeng, F., Ahmed, Z., Sun, X., 2023. Effects of groundwater and seasonal streamflow on the symbiotic nitrogen fixation of deep-rooted legumes in a dryland floodplain. Geoderma 434, 116490. https://doi.org/10.1016/j.geoderma.2023.116490.

 

Li, S.X., Wang, Z.H., Hu, T.T., Gao, Y.J., Stewart, B.A., 2009. Nitrogen in dryland soils of China and its management. Adv. Agron. 101, 123–181.

 

Li, X., Zulkar, H., Wang, D., Zhao, T., Xu, W., 2022b. Changes in vegetation coverage and migration characteristics of center of gravity in the arid desert region of Northwest China in 30 recent years. Land 11 (10), 1688. https://doi.org/10.3390/land11101688.

 

Liu, M., Shen, Y., Qi, Y., Wang, Y., Geng, X., 2019. Changes in precipitation and drought extremes over the past half century in China. Atmosphere 10 (4), 203. https://doi.org/10.3390/atmos10040203.

 

Lohbeck, M., Poorter, L., Martinez-Ramos, M., Bongers, F., 2015. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96 (5), 1242–1252. https://doi.org/10.1890/14-0472.1.

 

Lu, X., Mao, Q., Gilliam, F.S., Luo, Y., Mo, J., 2014. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biol. 20 (12), 3790–3801. https://doi.org/10.1111/gcb.12665.

 

Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335 (6065), 214–218. https://doi.org/10.1126/science.1215442.

 

Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F.T., Mace, G., 2018. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2 (3), 427–436. https://doi.org/10.1038/s41559-017-0461-7.

 

Meng, C., Tian, D., Zeng, H., Li, Z., Yi, C., Niu, S., 2019. Global soil acidification impacts on belowground processes. Environ. Res. Lett. 14 (7), 074003. https://doi.org/10.1088/1748-9326/ab239c.

 

Mensah, S., Salako, K.V., Assogbadjo, A., Kakai, R.G., Sinsin, B., Seifert, T., 2020. Functional trait diversity is a stronger predictor of multifunctionality than dominance: evidence from an Afromontane forest in South Africa. Ecol. Indicat. 115, 106415. https://doi.org/10.1016/j.ecolind.2020.106415.

 

Mi, N., Wang, S., Liu, J., Yu, G., Zhang, W., Jobbagy, E., 2008. Soil inorganic carbon storage pattern in China. Global Change Biol. 14 (10), 2380–2387. https://doi.org/10.1111/j.1365-2486.2008.01642.x.

 

Michaels, A.F., 2003. Ecological stoichiometry - the biology of elements from molecules to the biosphere. Science 300 (5621), 906–907. https://doi.org/10.1126/science.1083140.

 

Neff, J.C., Reynolds, R., Sanford Jr., R.L., Fernandez, D., Lamothe, P., 2006. Controls of bedrock geochemistry on soil and plant nutrients in southeastern Utah. Ecosystems 9 (6), 879–893. https://doi.org/10.1007/s10021-005-0092-8.

 

Niklas, K.J., Cobb, E.D., 2005. N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth. Am. J. Bot. 92 (8), 1256–1263. https://doi.org/10.3732/ajb.92.8.1256.

 

Oliver, T.H., Heard, M.S., Isaac, N.J.B., Roy, D.B., Procter, D., Eigenbrod, F., 2015. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30 (11), 673–684. https://doi.org/10.1016/j.tree.2015.08.009.

 

Pan, G., 1999. Study on carbon reservoir in soils of China. Bull. Sci. Technol. 15(5), 330–332.

 

Peng, S., Chen, Y., Cao, Y., 2016. Simulating water-use efficiency of Picea crassifolia forest under representative concentration pathway scenarios in the Qilian Mountains of Northwest China. Forests 7 (7), 140. https://doi.org/10.3390/f7070140.

 

Prado-Junior, J.A., Schiavini, I., Vale, V.S., Arantes, C.S., van der Sande, M.T., Lohbeck, M., 2016. Conservative species drive biomass productivity in tropical dry forests. J. Ecol. 104 (3), 817–827. https://doi.org/10.1111/1365-2745.12543.

 

Pu, W., Quan, W., Ma, Z., Shi, X., Zhao, X., Zhang, L., 2017. Long-term trend of chemical composition of atmospheric precipitation at a regional background station in Northern China. Sci. Total Environ. 580, 1340–1350. https://doi.org/10.1016/j.scitotenv.2016.12.097.

 

Rao, C.R., 1982. Diversity and dissmilarity coefficients - a unified approach. Theor. Popul. Biol. 21 (1), 24–43. https://doi.org/10.1016/0040-5809(82)90004-1.

 
Running, S., Zhao, M., 2021. MODIS/Terra net primary production gap-filled yearly L4 global 500m SIN grid V061. NASA EOSDIS land processes distributed active archive center. https://doi.org/10.5067/MODIS/MOD17A3HGF.061 (Accessed 10 November 2023).
 

Shetty, R., Vidya, C.S.-N., Prakash, N.B., Lux, A., Vaculik, M., 2021. Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: a review. Sci. Total Environ. 765, 142744. https://doi.org/10.1016/j.scitotenv.2020.142744.

 
Shi, J., Song, G., 2016. Soil type database of China: A nationwide soil dataset based on the second national soil survey. Science Data Bank. https://doi.org/10.11922/sciencedb.170.43.
 

Shipley, B., 2009. Confirmatory path analysis in a generalized multilevel context. Ecology 90 (2), 363–368. https://doi.org/10.1890/08-1034.1.

 

Sickman, J.O., James, A.E., Fenn, M.E., Bytnerowicz, A., Lucero, D.M., Homyak, P.M., 2019. Quantifying atmospheric N deposition in dryland ecosystems: a test of the Integrated Total Nitrogen Input (ITNI) method. Sci. Total Environ. 646, 1253–1264. https://doi.org/10.1016/j.scitotenv.2018.07.320.

 

Song, L., Ba, X., Liu, X., Zhang, F., 2012. Impact of nitrogen addition on plant community in a semi-arid temperate steppe in China. J. Arid Land 4 (1), 3–10. https://doi.org/10.3724/sp.J.1227.2012.00003.

 

Su, P., 2022. Review and prospect of the researches on C4 woody plants and soil inorganic carbon sequestration in deserts of China. J. Desert Res. 42 (1), 23–33.

 

Su, P., Wang, X., Xie, T., Wang, X., Wang, L., Zhou, Z., 2018. Inorganic carbon sequestration capacity and soil carbon assimilation pathway of deserts in arid region. Chin. Sci. Bull. 63 (8), 755–765.

 

Templer, P.H., Mack, M.C., Chapin III, F.S., Christenson, L.M., Compton, J.E., Crook, H.D., 2012. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of N-15 tracer field studies. Ecology 93 (8), 1816–1829. https://doi.org/10.1890/11-1146.1.

 

Tian, D., Niu, S., 2015. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 10 (2), 024019. https://doi.org/10.1088/1748-9326/10/2/024019.

 

Tilman, D., Lehman, C.L., Thomson, K.T., 1997. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl. Acad. Sci. U.S.A. 94 (5), 1857–1861. https://doi.org/10.1073/pnas.94.5.1857.

 

Verstraeten, A., Neirynck, J., Genouw, G., Cools, N., Roskams, P., Hens, M., 2012. Impact of declining atmospheric deposition on forest soil solution chemistry in Flanders, Belgium. Atmos. Environ. 62, 50–63. https://doi.org/10.1016/j.atmosenv.2012.08.017.

 

Vet, R., Artz, R.S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., 2014. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 93, 3–100. https://doi.org/10.1016/j.atmosenv.2013.10.060.

 

Vollstaedt, M.G.R., Ferger, S.W., Hemp, A., Howell, K.M., Toepfer, T., Boehning-Gaese, K., 2017. Direct and indirect effects of climate, human disturbance and plant traits on avian functional diversity. Global Ecol. Biogeogr. 26 (8), 963–972. https://doi.org/10.1111/geb.12606.

 

Vourlitis, G.L., Jaureguy, J., Marin, L., Rodriguez, C., 2021. Shoot and root biomass production in semi-arid shrublands exposed to long -term experimental N input. Sci. Total Environ. 754, 142204. https://doi.org/10.1016/j.scitotenv.2020.142204.

 

Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden, M.G.A., 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 4841. https://doi.org/10.1038/s41467-019-12798-y.

 

Wang, J., Wang, Y., Li, M., He, N., Li, J., 2021a. Divergent roles of environmental and spatial factors in shaping plant beta-diversity of different growth forms in drylands. Global Ecol. Conserv. 26, e01487. https://doi.org/10.1016/j.gecco.2021.e01487.

 

Wang, Y., Xu, W., Tang, Z., Xie, Z., 2021b. A biomass equation dataset for common shrub species in China. Earth Syst. Sci. Data Discuss. 2021, 1–18. https://doi.org/10.5194/essd-2021-44.

 

Wei, Y., Jing, X., Su, F., Li, Z., Wang, F., Guo, H., 2022. Does pH matter for ecosystem multifunctionality? An empirical test in a semi-arid grassland on the Loess Plateau. Funct. Ecol. 36 (7), 1739–1753. https://doi.org/10.1111/1365-2435.14057.

 

Xu, H., Liu, S., 2004. Effects of soil salinization on halophytic vegetation. Inner Mongolia Prataculture 16 (2), 1–2.

 

Yang, H., Wang, Z., Tan, H., Gao, Y., 2017. Allometric models for estimating shrub biomass in desert grassland in northern China. Arid Land Res. Manag. 31 (3), 283–300. https://doi.org/10.1080/15324982.2017.1301595.

 

Yang, Y., Huang, Y., Wei, W., 2021. Variations of leaf traits of typical shrub and herb species along a climate gradient in arid areas of Northwest China. Chin. J. Ecol. 40 (12), 3769–3777.

 

Yao, S., Akram, M.A., Hu, W., Sun, Y., Sun, Y., Deng, Y., 2021. Effects of water and energy on plant diversity along the aridity gradient across dryland in China. Plants 10 (4), 636. https://doi.org/10.3390/plants10040636.

 

Yu, G., Jia, Y., He, N., Zhu, J., Chen, Z., Wang, Q., 2019. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 12 (6), 424. https://doi.org/10.1038/s41561-019-0352-4.

 

Yu, H., He, N., Wang, Q., Zhu, J., Gao, Y., Zhang, Y., 2017. Development of atmospheric acid deposition in China from the 1990s to the 2010s. Environ. Pollut. 231, 182–190. https://doi.org/10.1016/j.envpol.2017.08.014.

 

Yuan, Z., Ali, A., Loreau, M., Ding, F., Liu, S., Sanaei, A., 2021. Divergent above- and below-ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality. Global Change Biol. 27 (12), 2883–2894. https://doi.org/10.1111/gcb.15606.

 

Yuan, Z., Ali, A., Ruiz-Benito, P., Jucker, T., Mori, A.S., Wang, S., 2020. Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient. J. Ecol. 108 (5), 2012–2024. https://doi.org/10.1111/1365-2745.13378.

 

Yue, Q., Hao, M., Geng, Y., Wang, X., von Gadow, K., Zhang, C., 2022. Evaluating alternative hypotheses behind biodiversity and multifunctionality relationships in the forests of Northeastern China. For. Ecosyst. 9, 100027. https://doi.org/10.1016/j.fecs.2022.100027.

 

Zhang, F., 2019. Spatial pattern and seasonal variation of alkaline precipitation observed in the Gansu Province, NW China. Environ. Earth Sci. 78 (14), 417. https://doi.org/10.1007/s12665-019-8442-6.

 

Zhang, Q., Wang, Q., Zhu, J., Xu, L., Chen, Z., Xiao, J., 2020. Spatiotemporal variability, source apportionment, and acid-neutralizing capacity of atmospheric wet base-cation deposition in China. Environ. Pollut. 262, 114335. https://doi.org/10.1016/j.envpol.2020.114335.

 

Zhang, Q., Wang, Q., Zhu, J., Xu, L., Li, M., Rengel, Z., 2021. Higher soil acidification risk in southeastern Tibetan Plateau. Sci. Total Environ. 755, 143372. https://doi.org/10.1016/j.scitotenv.2020.143372.

 

Zhang, Y., Zhang, S., Wang, R., Cai, J., Zhang, Y., Li, H., 2016. Impacts of fertilization practices on pH and the pH buffering capacity of calcareous soil. Soil Sci. Plant Nutr. 62 (5–6), 432–439. https://doi.org/10.1080/00380768.2016.1226685.

 

Zhu, H., Wu, L., Xin, C., Yu, S., Guo, Y., Wang, J., 2019. Impact of anthropogenic sulfate deposition via precipitation on carbonate weathering in a typical industrial city in a karst basin of southwest China: a case study in Liuzhou. Appl. Geochem. 110, 104417. https://doi.org/10.1016/j.apgeochem.2019.104417.

 

Zhu, Q., De Vries, W., Liu, X., Zeng, M., Hao, T., Du, E., 2016. The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980. Atmos. Environ. 146, 215–222. https://doi.org/10.1016/j.atmosenv.2016.04.023.

Forest Ecosystems
Article number: 100178
Cite this article:
Du L, Tian S, Zhao N, et al. Evaluating soil acidification risk and its effects on biodiversity–ecosystem multifunctionality relationships in the drylands of China. Forest Ecosystems, 2024, 11(2): 100178. https://doi.org/10.1016/j.fecs.2024.100178

85

Views

0

Downloads

1

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 13 November 2023
Revised: 14 February 2024
Accepted: 14 February 2024
Published: 22 February 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return