AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Plant life form determines spatiotemporal variability and climate response of plant seed rain in subtropical forests

Yuyang XieaZehao Shena( )Xuejing WangaLiu YangaJie Zhanga
MOE Laboratory for Earth Surface Processes, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
Show Author Information

Abstract

Spatiotemporal variation of seed rain reflects the response of plants in terms of their reproductive strategy to environmental gradients. In this study, we collected seeds from four sites in the Dalaoling Nature Reserve, Hubei Province, China, between 2011 and 2014, measured seed output and seed mass as seed rain traits, and compared their interannual and elevational variation. Then, we ran phylogenetic generalized mixed linear models (PGLMMs) to explore the effects of temperature and precipitation as well as interspecific differences on seed rain, and fitted the best regression models for seed rain vs. weather of canopy and understory species. The results showed no correlation between values of seed output and seed mass. However, the variation of the two traits showed significantly positive correlation. Seed output of canopy species generally decreased with increasing elevation, and showed significant interannual difference; however, seed output of understory species and seed mass for both canopy and understory species did not show consistency tends along elevational or in interannual variation. Seed output was significantly affected by temperature and precipitation, while seed mass mainly varied due to interspecific differences. Weather explained more the variation of the seed output of canopy species than that of understory species, with R2 values of 43.0% and 29.9%, respectively. These results suggested that canopy plants contributed more to the reproductive dynamics of the whole communities, and the canopy's buffer effect on the underground weakened the response of understory plants to weather variation in terms of their reproductive strategy.

References

 

Abreu, V.S., Dias, H.M., Kunz, S.H., van den Berg, E., Garbin, M.L., 2021. The soil seed bank as an indicator of altitudinal gradient in a montane tropical forest. J. Trop. For. Sci. 33 (4), 473–481. https://doi.org/10.26525/jtfs2021.33.4.473.

 

Appanah, S., 1985. General flowering in the climax rain forests of South-east Asia. J. Trop. Ecol. 1 (3), 225–240. https://doi.org/10.1017/s0266467400000304.

 

Appanah, S., 1993. Mass flowering of dipterocarp forests in the aseasonal tropics. J. Biosci. 18 (4), 457–474. https://doi.org/10.1007/BF02703079.

 

Ashton, P.S., Givnish, T.J., Appanah, S., 1988. Staggered flowering in the Dipterocarpaceae: new insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. Am. Nat. 132 (1), 44–66. https://doi.org/10.1086/284837.

 

Baker, H.G., 1972. Seed weight in relation to environmental conditions in California. Ecology 53 (6), 997–1010. https://doi.org/10.2307/1935413.

 

Bogdziewicz, M., Kelly, D., Thomas, P.A., Lageard, J.G.A., Hacket-Pain, A., 2020. Climate warming disrupts mast seeding and its fitness benefits in European beech. Nat. Plants 6 (2), 88–94. https://doi.org/10.1038/s41477-020-0592-8.

 

Bona, K., Purificação, K.N., Vieira, T.B., Mews, H.A., 2020. Fine-scale effects of bamboo dominance on seed rain in a rainforest. For. Ecol. Manag. 460 (15), 117906. https://doi.org/10.1016/j.foreco.2020.117906.

 

Brearley, F.Q., Proctor, J., Nagy, L., Dalrymple, G., Voysey, B.C., 2007. Reproductive phenology over a 10-year period in a lowland evergreen rain forest of central Borneo. J. Ecol. 95 (4), 828–839. https://doi.org/10.1111/j.1365-2745.2007.01258.x.

 

Bu, H., Chen, X., Xu, X., Liu, K., Jia, P., Du, G., 2007. Seed mass and germination in an alpine meadow on the eastern Tsinghai–Tibet plateau. Plant Ecol. 191 (1), 127–149. https://doi.org/10.1007/s11258-006-9221-5.

 

Buechling, A., Martin, P.H., Canham, C.D., Shepperd, W.D., Battaglia, M.A., Rafferty, N., 2016. Climate drivers of seed production in Picea engelmannii and response to warming temperatures in the southern Rocky Mountains. J. Ecol. 104 (4), 1051–1062. https://doi.org/10.1111/1365-2745.12572.

 

Chen, S.-C., Poschlod, P., Antonelli, A., Liu, U., Dickie, J.B., 2020. Trade-off between seed dispersal in space and time. Ecol. Lett. 23 (11), 1635–1642. https://doi.org/10.1111/ele.13595.

 

de la Riva, E.G., Tosto, A., Pérez-Ramos, I.M., Navarro-Fernández, C.M., Olmo, M., Anten, N.P., Marañón, T., Villar, R., 2016. A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits? J. Veg. Sci. 27 (1), 187–199. https://doi.org/10.1111/jvs.12341.

 

De Lombaerde, E., Vangansbeke, P., Lenoir, J., Van Meerbeek, K., Lembrechts, J., Rodriguez-Sanchez, F., Luoto, M., Scheffers, B., Haesen, S., Aalto, J., Christiansen, D.M., De Pauw, K., Depauw, L., Govaert, S., Greiser, C., Hampe, A., Hylander, K., Klinges, D., Koelemeijer, I., Meeussen, C., Ogee, J., Sanczuk, P., Vanneste, T., Zellweger, F., Baeten, L., De Frenne, P., 2022. Maintaining forest cover to enhance temperature buffering under future climate change. Sci. Total Environ. 810 (1), 151338. https://doi.org/10.1016/j.scitotenv.2021.151338.

 

Demissie, A., Bjørnstad, Å., 1996. Phenotypic diversity of Ethiopian barleys in relation to geographical regions, altitudinal range, and agro-ecological zones: as an aid to germplasm collection and conservation strategy. Hereditas 124 (1), 17–29. https://doi.org/10.1111/j.1601-5223.1996.00017.x.

 

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., Garcia Marquez, J.R., Gruber, B., Lafourcade, B., Leitao, P.J., Muenkemueller, T., McClean, C., Osborne, P.E., Reineking, B., Schroeder, B., Skidmore, A.K., Zurell, D., Lautenbach, S., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36 (1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x.

 

Dylewski, L., Ortega, Y.K., Bogdziewicz, M., Pearson, D.E., 2020. Seed size predicts global effects of small mammal seed predation on plant recruitment. Ecol. Lett. 23 (6), 1024–1033. https://doi.org/10.1111/ele.13499.

 

Erasmy, M., Leuschner, C., Balkenhol, N., Dietz, M., 2021. Three-dimensional stratification pattern in an old-growth lowland forest: How does height in canopy and season influence temperate bat activity? Ecol. Evol. 11 (23), 17273–17288. https://doi.org/10.1002/ece3.8363.

 

Frenne, P.D., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B.R., Lenoir, J., 2019. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3 (5), 744–749. https://doi.org/10.1038/s41559-019-0842-1.

 

Froes, C.Q., da Costa, P.F., Lopes Fernandes, S.S., Vieira da Silva, A.P., de Jesus, R.M., Pereira, Z.V., 2020. The seed rain as an environmental indicator of areas in the ecological restoration process of Mato Grosso do Sul state. Ciência Florest. 30 (4), 1032–1047. https://doi.org/10.5902/1980509839087.

 

Gera, M., Gera, N., Ginwal, H.S., 2000. Seed trait variation in Dalbergia sissoo Roxb. Seed Sci. Technol. 28 (2), 467–475.

 

Guo, L.-J., Cao, H.-W., Xu, W.-H., Tian, Y.-Q., Xiao, Z.-P., 2017. Seed rain, soil seed bank and quantitative dynamics of seedlings of Emmenopterys henryi populations in different altitude regions. Bull. Bot. Res. 37 (3), 377–386. https://doi.org/10.7525/j.issn.1673-5102.2017.03.008.

 

Holm, S.O., 1994. Reproductive patterns of Betula pendula and B. pubescens coll. along a regional altitudinal gradient in northern Sweden. Ecography 17 (1), 60–72. https://doi.org/10.1111/j.1600-0587.1994.tb00077.x.

 

Ishihara, M.I., Kikuzawa, K., 2009. Annual and spatial variation in shoot demography associated with masting in Betula grossa: comparison between mature trees and saplings. Ann. Bot. 104 (6), 1195–1205. https://doi.org/10.1093/aob/mcp217.

 

Jin, Y., Qian, H., 2019. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42 (8), 1353–1359. https://doi.org/10.1111/ecog.04434.

 

Kawada, H., Maruyama, K., 1986. Effects of seed bearing of a natural beech (Fagus crenata Blume) forest on amount of litter fall and its nutrients. Jpn. J. Ecol. 36 (1), 3–10. https://doi.org/10.18960/seitai.36.1_3.

 

Kaya, Z., Temerit, A., 1994. Genetic structure of marginally located Pinus nigra var. pallasiana populations in Central Turkey. Silv. Genet. 43 (5–6), 272–277.

 
Keenan, T.F., Prentice, I.C., Wang, H., Wright, I.J., Maire, V., Dong, N., 2015. Predicting the Maximum Rate of Carboxylation Based on the Coordination Hypothesis of Leaf Resource Allocation. AGU Fall Meeting Abstracts, American Geophysical Union, San Francisco.
 

Klipel, J., Bergamin, R.S., Cianciaruso, M.V., da Silva, A.C., Jurinitz, C.F., Jarenkow, J.A., Bordin, K.M., Molz, M., Higuchi, P., Picolotto, R.C., Debastiani, V.J., Muller, S.C., 2023. How do distinct facets of tree diversity and community assembly respond to environmental variables in the subtropical Atlantic Forest? Ecol. Evol. 13 (7), e10321. https://doi.org/10.1002/ece3.10321.

 

Körner, C., Basler, D., 2010. Phenology under global warming. Science 327 (5972), 1461–1462. https://doi.org/10.1126/science.1186473.

 

Kubelka, V., Salek, M., Tomkovich, P., Vegvari, Z., Freckleton, R.P., Szekely, T., 2018. Global pattern of nest predation is disrupted by climate change in shorebirds. Science 362 (6415), 680–683. https://doi.org/10.1126/science.aat8695.

 

Leishman, M.R., Masters, G.J., Brown, I.P.C.K., 2000. Seed bank dynamics: the role of fungal pathogens and climate change. Funct. Ecol. 14 (3), 293–299. https://doi.org/10.1046/j.1365-2435.2000.00425.x.

 

Li, D., Dinnage, R., Nell, L.A., Helmus, M.R., Ives, A.R., 2020. phyr: an R package for phylogenetic species-distribution modelling in ecological communities. Methods Ecol. Evol. 11 (11), 1455–1463. https://doi.org/10.1111/2041-210x.13471.

 

Li, Y., Zeng, Z., Zhao, L., Piao, S., 2015a. Spatial patterns of climatological temperature lapse rate in mainland China: a multi-time scale investigation. J. Geophys. Res. Atmos. 120 (7), 2661–2675. https://doi.org/10.1002/2014jd022978.

 

Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., Li, S., 2015b. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6 (1), 6603. https://doi.org/10.1038/ncomms7603.

 

McEuen, A.B., Curran, L.M., 2004. Seed dispersal and recruitment limitation across spatial scales in temperate forest fragments. Ecology 85, 507–518. https://doi.org/10.1890/03-4006.

 

Moles, A.T., Westoby, M., 2006. Seed size and plant strategy across the whole life cycle. Oikos 113 (1), 91–105. https://doi.org/10.1111/j.0030-1299.2006.14194.x.

 

Muller-Landau, H.C., 2010. The tolerance-fecundity trade-off and the maintenance of diversity in seed size. Proc. Natl. Acad. Sci. USA 107 (9), 4242–4247. https://doi.org/10.1073/pnas.0911637107.

 

Nathan, R., Muller-Landau, H.C., 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 15 (7), 278–285. https://doi.org/10.1016/S0169-5347(00)01874-7.

 

Nunez, H.N., Chazdon, R.L., Russo, S.E., 2021. Seed-rain-successional feedbacks in wet tropical forests. Ecology 102 (7), e03362. https://doi.org/10.1002/ecy.3362.

 

Paradis, E., Claude, J., Strimmer, K., 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20 (2), 289–290. https://doi.org/10.1093/bioinformatics/btg412.

 

Plewa, R., Jaworski, T., Hilszczanski, J., Horak, J., 2017. Investigating the biodiversity of the forest strata: the importance of vertical stratification to the activity and development of saproxylic beetles in managed temperate deciduous forests. For. Ecol. Manag. 402, 186–193. https://doi.org/10.1016/j.foreco.2017.07.052.

 

Procknow, D., Moreira Rovedder, A.P., Piaia, B.B., Stefanello, M. d. M., Camargo, B., Felker, R.M., Croda, J.P., Gazzola, M.D., 2020. Seed rain as an ecological indicator of forest restoration in the Pampa biome. Rev. Bras. Ciência Avícola 15 (3), e7220. https://doi.org/10.5039/agraria.v15i3a7220.

 

Rapp, J.M., Mcintire, E.J.B., Crone, E.E., 2013. Sex allocation, pollen limitation and masting in whitebark pine. J. Ecol. 101 (5), 1345–1352. https://doi.org/10.1111/1365-2745.12115.

 

Rodrigues, G.G.R., 2002. Seed bank and seed rain in a seasonal semi-deciduous forest in south-eastern Brazil. J. Trop. Ecol. 18 (5), 759–774. https://doi.org/10.1017/S0266467402002493.

 

Rother, D.C., Rodrigues, R.R., Pizo, M.A., 2009. Effects of bamboo stands on seed rain and seed limitation in a rainforest. For. Ecol. Manag. 257 (3), 885–892. https://doi.org/10.1016/j.foreco.2008.10.022.

 

Ruiz, R.G., Price, K.R., Rose, M.E., Fenwick, G.R., 1997. Effect of seed size and testa colour on saponin content of Spanish lentil seed. Food Chem. 58 (3), 223–226. https://doi.org/10.1016/S0308-8146(96)00164-1.

 

Saatkamp, A., Cochrane, A., Commander, L., Guja, L.K., Jimenez-Alfaro, B., Larson, J., Nicotra, A., Poschlod, P., Silveira, F.A., Cross, A.T., Dalziell, E.L., Dickie, J., Erickson, T.E., Fidelis, A., Fuchs, A., Golos, P.J., Hope, M., Lewandrowski, W., Merritt, D.J., Miller, B.P., Miller, R.G., Offord, C.A., Ooi, M.K.J., Satyanti, A., Sommerville, K.D., Tangney, R., Tomlinson, S., Turner, S., Walck, J.L., 2019. A research agenda for seed-trait functional ecology. New Phytol. 221 (4), 1764–1775. https://doi.org/10.1111/nph.15502.

 

Schnurr, J.L., Ostfeld, R.S., Canham, C.D., 2010. Direct and indirect effects of masting on rodent populations and tree seed survival. Oikos 96 (3), 402–410. https://doi.org/10.1034/j.1600-0706.2002.960302.x.

 

Schupp, E.W., 1990. Annual variation in seedfall, postdispersal predation, and recruitment of a Neotropical tree. Ecology 71 (2), 504–515. https://doi.org/10.2307/1940304.

 

Shimada, T., Takahashi, A., Shibata, M., Yagihashi, T., 2015. Effects of within-plant variability in seed weight and tannin content on foraging behaviour of seed consumers. Funct. Ecol. 29 (12), 1513–1521. https://doi.org/10.1111/1365-2435.12464.

 

Singh, G., Rai, I.D., Rawat, G.S., 2010. The year 2010 was 'mast seed year' for the Kharsu oak (Quercus semecarpifolia Sm.) in the Western Himalaya. Curr. Sci. 100 (9), 1275.

 

Smaill, S.J., Clinton, P.W., Allen, R.B., Davis, M.R., 2011. Climate cues and resources interact to determine seed production by a masting species. J. Ecol. 99 (3), 870–877. https://doi.org/10.1111/j.1365-2745.2011.01803.x.

 

Temesgen, H., Martin, P.J., Maguire, D.A., Tappeiner, J.C., 2006. Quantifying effects of different levels of dispersed canopy tree retention on stocking and yield of the regeneration cohort. For. Ecol. Manag. 235 (1–3), 44–53. https://doi.org/10.1016/j.foreco.2006.07.025.

 

Turnbull, L.A., Rees, C.M., 2000. Are plant populations seed-limited? A review of seed sowing experiments. Oikos 88 (2), 225–238. https://doi.org/10.1034/j.1600-0706.2000.880201.x.

 

Urbanska, K.M., Fattorini, M., 2000. Seed rain in high-altitude restoration plots in Switzerland. Restor. Ecol. 8 (1), 74–79. https://doi.org/10.1046/j.1526-100x.2000.80010.x.

 

Valerio, M., Ibanez, R., Gazol, A., 2021. The role of canopy cover dynamics over a decade of changes in the understory of an Atlantic beech-oak forest. Forests 12 (7), 938. https://doi.org/10.3390/f12070938.

 

Wahid, N., Bounoua, L., 2013. The relationship between seed weight, germination and biochemical reserves of maritime pine (Pinus pinaster Ait.) in Morocco. New Fed. 44 (3), 385–397. https://doi.org/10.1007/s11056-012-9348-2.

 

Wang, B.C., Smith, T.B., 2002. Closing the seed dispersal loop. Trends Ecol. Evol. 17 (8), 379–386. https://doi.org/10.1016/S0169-5347(02)02541-7.

 

Wang, J., Hou, X., Zhang, B., Han, N., Feng, T., An, X., Chen, X., Zhao, J., Chang, G., 2022. Long-term effects of climate variability on seed rain dynamics of four Fagaceae sympatric species in Qinling Mountains, China. Biology 11 (4), 533. https://doi.org/10.3390/biology11040533.

 

Wang, X., Alvarez, M., Donohue, K., Ge, W., Cao, Y., Liu, K., Du, G., Bu, H., 2020a. Elevation filters seed traits and germination strategies in the eastern Tibetan Plateau. Ecography 44 (2), 242–254. https://doi.org/10.1111/ecog.04972.

 

Wang, Y., LaMontagne, J.M., Lin, F., Yuan, Z., Ye, J., Wang, X., Hao, Z., 2020b. Similarity between seed rain and neighbouring mature tree communities in an old-growth temperate forest. J. For. Res. 31 (6), 2435–2444. https://doi.org/10.1007/s11676-019-01027-3.

 

Wang, Y.F., Yue, Y.C., 2014. Effects of resource allocation and floral traits on the number and mass of Saussurea undulata seeds from different elevations in eastern Qinghai-Xizang Plateau. Chin. J. Plant Ecol. 38 (4), 366–374. https://doi.org/10.3724/SP.J.1258.2014.00033.

 

Westoby, M.M., 2004. Seedling survival and seed size: a synthesis of the literature. J. Ecol. 92 (3), 372–383. https://doi.org/10.1111/j.0022-0477.2004.00884.x (in Chinese).

 

Woodward, A., Silsbee, D.G., Schreiner, E.G., Means, J.E., 1994. Influence of climate on radial growth and cone production in sub-alpine fir (Abies lasiocarpa) and mountain hemlock (Tsuga mertensiana). Can. J. For. Res. 24 (6), 1133–1143. https://doi.org/10.1139/x94-150.

 

Xu, Y., Shen, Z.H., Nan, L., Tang, Y.Y., Dao-Xin, L.I., Wang, G.F., Tan, J.L., 2012. Ten years' observation of seed rain in a Fagus lucida community in Dalaoling Nature Reserve in the Three Gorges: seed rain density, species composition and their correlation with the community. Chin. J. Plant Ecol. 36 (8), 708–716. https://doi.org/10.3724/SP.J.1258.2012.00708.

 

Yang, L., Shen, Z., Wang, X., Wang, S., Xie, Y., Larjavaara, M., Zhang, J., Li, G., 2023. Climate drivers of seed rain phenology of subtropical forest communities along an elevational gradient. Int. J. Biometeorol. 67 (6), 1095–1104. https://doi.org/10.1007/s00484-023-02481-9.

Forest Ecosystems
Article number: 100181
Cite this article:
Xie Y, Shen Z, Wang X, et al. Plant life form determines spatiotemporal variability and climate response of plant seed rain in subtropical forests. Forest Ecosystems, 2024, 11(2): 100181. https://doi.org/10.1016/j.fecs.2024.100181

86

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 November 2023
Revised: 26 February 2024
Accepted: 26 February 2024
Published: 07 March 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return