AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.3 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Potential reduction in carbon fixation capacity under climate change in a Pinus koraiensis forest

Department of Civil Engineering, Keimyung University, Daegu, 42601, Republic of Korea
Show Author Information

Abstract

There has been an increasing recognition of the crucial role of forests, responsible for sequestering atmospheric CO2, as a moral imperative for mitigating the pace of climate change. The complexity of evaluating climate change impacts on forest carbon and water dynamics lies in the diverse acclimations of forests to changing environments. In this study, we assessed two of the most common acclimation traits, namely leaf area index and the maximum rate of carboxylation (Vcmax), to explore the potential acclimation pathways of Pinus koraiensis under climate change. We used a mechanistic and process-based ecohydrological model applied to a P. koraiensis forest in Mt. Taehwa, South Korea. We conducted numerical investigations into the impacts of (ⅰ) Shared Socioeconomic Pathways 2–4.5 (SSP2-4.5) and 5–8.5 (SSP5-8.5), (ⅱ) elevated atmospheric CO2 and temperature, and (ⅲ) acclimations of leaf area index and Vcmax on the carbon and water dynamics of P. koraiensis. We found that there was a reduction in net primary productivity (NPP) under the SSP2-4.5 scenario, but not under SSP5-8.5, compared to the baseline, due to an imbalance between increases in atmospheric CO2 and temperature. A decrease in leaf area index and an increase in Vcmax of P. koraiensis were expected if acclimations were made to reduce its leaf temperature. Under such acclimation pathways, it would be expected that the well-known CO2 fertilizer effects on NPP would be attenuated.

References

 

Bagley, J., Rosenthal, D.M., Ruiz-Vera, U.M., Siebers, M.H., Kumar, P., Ort, D.R., Bernacchi, C.J., 2015. The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models. Global Biogeochem. Cycles 29, 194–206. https://doi.org/10.1002/2014GB004848.

 
Ball, J., Berry, J.A., 1982. The Ci/cs Ratio: a Basis for Predicting Stomatal Control of Photosynthesis. Carnegie Institute Washington, Washington, pp. 88–92.
 

Burgess, M.G., Becker, S.L., Langendorf, R.E., Fredston, A., Brooks, C.M., 2023. Climate change scenarios in fisheries and aquatic conservation research. ICES J. Mar. Sci. 80, 1163–1178. https://doi.org/10.1093/icesjms/fsad045.

 

Carsel, R.F., Parrish, R.S., 1988. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 24, 755–769. https://doi.org/10.1029/WR024i005p00755.

 

Cervarich, M., Shu, S., Jain, A.K., Arneth, A., Canadell, J., Friedlingstein, P., Houghton, R.A., Kato, E., Koven, C., Patra, P., 2016. The terrestrial carbon budget of South and Southeast Asia. Environ. Res. Lett. 11, 105006. https://doi.org/10.1088/1748-9326/11/10/105006.

 

Christensen, P., Gillingham, K., Nordhaus, W., 2018. Uncertainty in forecasts of long-run economic growth. PNAS 115, 5409–5414. https://doi.org/10.1073/pnas.1713628115.

 

Daigneault, A., Baker, J.S., Guo, J., Lauri, P., Favero, A., Forsell, N., Johnston, C., Ohrel, S.B., Sohngen, B., 2022. How the future of the global forest sink depends on timber demand, forest management, and carbon policies. Global Environ. Change 76, 102582. https://doi.org/10.1016/j.gloenvcha.2022.102582.

 

Davis, E.C., Sohngen, B., Lewis, D.J., 2022. The effect of carbon fertilization on naturally regenerated and planted US forests. Nat. Commun. 13, 5490. https://doi.org/10.1038/s41467-022-33196-x.

 

Didion-Gency, M., Gessler, A., Buchmann, N., Gisler, J., Schaub, M., Grossiord, C., 2022. Impact of warmer and drier conditions on tree photosynthetic properties and the role of species interactions. New Phytol. 236, 547–560. https://doi.org/10.1111/nph.18384.

 

Drewry, D.T., Kumar, P., Long, S., Bernacchi, C., Liang, X.Z., Sivapalan, M., 2010a. Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway. J. Geophys. Res. G: Biogeosciences 115, G04002. https://doi.org/10.1029/2010JG001340.

 

Drewry, D.T., Kumar, P., Long, S., Bernacchi, C., Liang, X.Z., Sivapalan, M., 2010b. Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2. J. Geophys. Res. G: Biogeosciences 115, G04023. https://doi.org/10.1029/2010JG001341.

 

Dubey, N., Ghosh, S., 2023. CO2 fertilization enhances vegetation productivity and reduces ecological drought in India. Environ. Res. Lett. 18, 064025. https://doi.org/10.1088/1748-9326/acd5e7.

 

Dusenge, M.E., Duarte, A.G., Way, D.A., 2019. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 221, 32–49. https://doi.org/10.1111/nph.15283.

 

Fatichi, S., Ivanov, V.Y., Caporali, E., 2010. Simulation of future climate scenarios with a weather generator. Adv. Water Resour. 34, 448–467. https://doi.org/10.1016/j.advwatres.2010.12.013.

 

Fawzy, S., Osman, A.I., Doran, J., Rooney, D.W., 2020. Strategies for mitigation of climate change: a review. Environ. Chem. Lett. 18, 2069–2094. https://doi.org/10.1007/s10311-020-01059-w.

 

Grassi, G., House, J., Dentener, F., Federici, S., den Elzen, M., Penman, J., 2017. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226. https://doi.org/10.1038/nclimate3227.

 

Haverd, V., Smith, B., Canadell, J.G., Cuntz, M., Mikaloff-Fletcher, S., Farquhar, G., Woodgate, W., Briggs, P.R., Trudinger, C.M., 2020. Higher than expected CO2 fertilization inferred from leaf to global observations. Global Change Biol. 26, 2390–2402. https://doi.org/10.1111/gcb.14950.

 
IPCC, 2021. Climate Change 2021: the Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896.
 

Kim, C., Kim, S.J., Jeong, J., Park, E., Oh, E., Park, Y.I., Lim, P.O., Choi, G., 2020. High ambient temperature accelerates leaf senescence via phytochrome-interacting factor 4 and 5 in Arabidopsis. Mol. Cells 43, 645–661. https://doi.org/10.14348/molcells.2020.0117.

 

Kovenock, M., Swann, A.L.S., 2018. Leaf trait acclimation amplifies simulated climate warming in response to elevated carbon dioxide. Global Biogeochem. Cycles 32, 1437–1448. https://doi.org/10.1029/2018GB005883.

 

Kullberg, A.T., Coombs, L., Ahuanari, R.D.S., Fortier, R.P., Feeley, K.J., 2023. Leaf thermal safety margins decline at hotter temperatures in a natural warming 'experiment' in the Amazon. New Phytol. 240, 1. https://doi.org/10.1111/nph.19413.

 

Kwak, D.A., Lee, W.K., Son, Y., Choi, S., Yoo, S., Chung, D.J., Lee, S.H., Kim, S.H., Choi, J.K., Lee, Y.J., Byun, W.H., 2012. Predicting distributional change of forest cover and volume in future climate of South Korea. For. Sci. Technol. 8, 105–115. https://doi.org/10.1080/21580103.2012.673751.

 

Le, P.V.V., Kumar, P., Drewry, D.T., 2011. Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the midwestern United States. PNAS 108, 15085–15090. https://doi.org/10.1073/pnas.1107177108.

 

Lee, E., Kumar, P., Barron-Gafford, G.A., Hendryx, S.M., Sanchez-Canete, E.P., Minor, R.L., Colella, T., Scott, R.L., 2018. Impact of hydraulic redistribution on multispecies vegetation water use in a semiarid savanna ecosystem: an experimental and modeling synthesis. Water Resour. Res. 54, 4009–4027. https://doi.org/10.1029/2017WR021006.

 

Lee, E., Kumar, P., Knowles, J.F., Minor, R.L., Tran, N., Barron-Gafford, G.A., Scott, R.L., 2021a. Convergent hydraulic redistribution and groundwater access supported facilitative dependency between trees and grasses in a semi-arid environment. Water Resour. Res. 57, e2020WR028103. https://doi.org/10.1029/2020WR028103.

 

Lee, H., Ju, H., Jeon, J., Lee, M., Suh, S., Kim, H.S., 2021b. Evaluation of carbon sequestration capacity of a 57-year-old Korean pine plantation in Mt. Taehwa based on carbon flux measurement using eddy-covariance and automated soil chamber system. J. Korean Soc. For. Sci. 110, 554–568. https://doi.org/10.14578/jkfs.2021.110.4.554.

 

Liu, W., Su, J., 2016. Ffects of light acclimation on shoot morphology, structure, and biomass allocation of two Taxus species in southwestern China. Sci. Rep. 6, 35384. https://doi.org/10.1038/srep35384.

 

Luo, H., Xu, H., Chu, C., He, F., Fang, S., 2020. High temperature can change root system architecture and intensify root interactions of plant seedlings. Front. Plant Sci. 11, 160. https://doi.org/10.3389/fpls.2020.00160.

 

Lutze, J.L., Gifford, R.M., 1998. Carbon accumulation, distribution and water use of Danthonia richardsonii swards in response to CO2 and nitrogen supply over four years of growth. Global Change Biol. 4, 851–861. https://doi.org/10.1046/j.1365-2486.1998.00200.x.

 

Mahowald, N., Lo, F., Zheng, Y., Harrison, L., Funk, C., Lombardozzi, D., Goodale, C., 2016. Projections of leaf area index in Earth system models. Earth Syst. Dynam. 7, 211–229. https://doi.org/10.5194/esd-7-211-2016.

 

Moncrieff, J.B., Fang, C., 1999. A model for soil CO2 production and transport 2: Application to a Florida Pinus Elliotte plantation. Agric. For. Meteorol. 95, 237–256. https://doi.org/10.1016/s0168-1923(99)00035-0.

 

Myneni, R., Knyazikhin, Y., Park, T., 2015. MCD15A2H MODIS/Terra+Aqua leaf area index/FPAR 8-day L4 global 500 m SIN grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD15A2H.006.

 

Nagy, Z., Tuba, Z., 2008. Effects of elevated air CO2 concentration on loess grassland vegetation as investigated in a mini FACE experiment. Community Ecol. 9, 153–160. https://doi.org/10.1556/ComEc.9.2008.S.20.

 

Nam, K., Lee, W.K., Kim, M., Kwak, D.A., Byun, W.H., Yu, H., Kwak, H., Kwon, T., Sung, J., Chung, D.J., Lee, S.H., 2015. Spatio-temporal change in forest cover and carbon storage considering actual and potential forest cover in South Korea. Sci. China Life Sci. 58, 713–723. https://doi.org/10.1007/s11427-014-4773-4.

 

Nandan, R., Woo, D.K., Kumar, P., Adinarayana, J., 2021. Impact of irrigation scheduling methods on corn yield under climate change. Agric. Water Manag. 255, 106990. https://doi.org/10.1016/j.agwat.2021.106990.

 

Njana, M., Mbiliny, B., Zahabu, E., 2021. The role of forests in the mitigation of global climate change: emprical evidence from Tanzania. Environ. Chall. 4, 100170. https://doi.org/10.1016/j.envc.2021.100170.

 

Pretzsch, H., 2022. Facilitation and competition reduction in tree species mixtures in Central Europe: consequences for growth modeling and forest management. Ecol. Model. 464, 109812. https://doi.org/10.1016/j.ecolmodel.2021.109812.

 

Quijano, C.J., Kumar, P., 2015. Numerical simulations of hydraulic redistribution across climates: the role of the root hydraulic conductivities. Water Resour. Res. 51, 3729–3746. https://doi.org/10.1002/2014WR016509.

 

Quijano, J.C., Kumar, P., Drewry, D.T., 2013. Passive regulation of soil biogeochemical cycling by root water transport. Water Resour. Res. 49, 227–288. https://doi.org/10.1002/wrcr.20310.

 

Quijano, J.C., Kumar, P., Drewry, D.T., Goldstein, A., Misson, L., 2012. Competitive and mutualistic dependencies in multispecies vegetation dynamics enabled by hydraulic redistribution. Water Resour. Res. 48, W05518. https://doi.org/10.1029/2011WR011416.

 

Reich, P.B., Sendall, K.M., Stefanski, A., Rich, R.L., Hobbie, S.E., Montgomery, R.A., 2018. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 562, 263–267. https://doi.org/10.1038/s41586-018-0582-4.

 

Roque-Malo, S., Woo, D.K., Kumar, P., 2020. Modeling the role of root exudation in critical zone nutrient dynamics. Water Resour. Res. 56, e2019WR026606. https://doi.org/10.1029/2019WR026606.

 
Roque-Malo, S., Yan, Q., Woo, D.K., Druhan, J.L., Kumar, P., 2022. Advances in Biogeochemical Modeling for Intensively Managed Landscapes. Springer, Cham. https://doi.org/10.1007/978-3-030-95921-0_6.
 

Schonbeck, L., Grossiord, C., Gessler, A., Gisler, J., Meusburger, K., D'Odorico, P., Rigling, A., Salmon, Y., Stocker, B.D., Zweifel, R., Schaub, M., 2022. Photosynthetic acclimation and sensitivity to short- and long-term environmental changes in a drought-prone forest. J. Exp. Bot. 73, 2576–2588. https://doi.org/10.1093/jxb/erac033.

 

Shin, Y., Min, M.S., Borzee, A., 2021. Driven to the edge: species distribution modeling of a Clawed Salamander (Hynobiidae: Onychodactylus koreanus) predicts range shifts and drastic decrease of suitable habitats in response to climate change. Ecol. Evol. 11, 14669–14688. https://doi.org/10.1002/ece3.8155.

 

Singh, B.K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J.E., Liu, H., Trivedi, P., 2023. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 21, 640–656. https://doi.org/10.1038/s41579-023-00900-7.

 

Sitch, S., Huntingford, C., Gedney, N., Levy, P.E., Lomas, M., Piao, S.L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C.D., Prentice, I.C., Woodward, F.I., 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biol. 14, 2015–2039. https://doi.org/10.1111/j.1365-2486.2008.01626.x.

 

Smith, N.G., McNellis, R., Dukes, J.S., 2020. No acclimation: instantaneous responses to temperature maintain homeostatic photosynthetic rates under experimental warming across a precipitation gradient in Ulmus americana. AoB PLANTS 12, plaa027. https://doi.org/10.1093/aobpla/plaa027.

 

Sohng, J., Han, A.R., Jeong, M.A., Park, Y., Park, B.B., Park, P.S., 2014. Seasonal pattern of decomposition and N, P, and C dynamics in leaf litter in a Mongolian oak forest and a Korean pine plantation. Forests 5, 2561–2580. https://doi.org/10.3390/f5102561.

 

Sperry, J.S., Venturas, M.D., Todd, H.N., Trugman, A.T., Anderegg, W.R.L., Wang, Y., Tai, X., 2019. The impact of rising CO2 and acclimation on the response of US forests to global warming. PNAS 116, 25734–25744. https://doi.org/10.1073/pnas.1913072116.

 

Srinivasan, V., Kumar, P., Long, S.P., 2016. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Global Change Biol. 23, 1626–1635. https://doi.org/10.1111/gcb.13526.

 

Sterck, F., Anten, N.P.R., Schieving, F., Zuidema, P.A., 2016. Trait acclimation mitigates mortality risks of tropical canopy trees under global warming. Front. Plant Sci. 7, 607. https://doi.org/10.3389/fpls.2016.00607.

 

Suh, S., Park, S., Shim, K., Yang, B., Choi, E., Lee, J., Kim, T., 2014. The effect of rain fall event on CO2 emission in Pinus koraiensis plantation in Mt. Taehwa. Korean J. Environ. Biol. 32, 389–394. https://doi.org/10.11626/KJEB.2014.32.4.389.

 

Swann, A.L.S., Hoffman, F.M., Koven, C.D., Randerson, J.T., 2016. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. PNAS 113, 10019–10024. https://doi.org/10.1073/pnas.1604581113.

 

Tang, G., Beckage, B., Smith, B., 2014. Potential future dynamics of carbon fluxes and pools in New England forests and their climatic sensitivities: a model-based study. Global Biogeochem. Cycles 28, 286–299. https://doi.org/10.1002/2013GB004656.

 

Tao, F., Zhang, Z., 2010. Dynamic responses of terrestrial ecosystems structure and function to climate change in China. J. Geophys. Res. G: Biogeosciences 115, G03003. https://doi.org/10.1029/2009JG001062.

 

Walker, A.P., Kauwe, M.G.D., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R.F., McMahon, S.M., Medlyn, B.E., Moore, D.J.P., Norby, R.J., Zaehle, S., Anderson-Teixeira, K.J., Battipaglia, G., Brienen, R.J.W., Cabugao, K.G., Cailleret, M., Campbell, E., Canadell, J.G., Ciais, P., Craig, M.E., Ellsworth, D.S., Farquhar, G.D., Fatichi, S., Fisher, J.B., Frank, D.C., Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hungate, B.A., Iversen, C.M., Joos, F., Jiang, M., Keenan, T.F., Knauer, J., Korner, C., Leshyk, V.O., Leuzinger, S., Liu, Y., MacBean, N., Malhi, Y., McVicar, T.R., Penuelas, J., Pongratz, J., Powell, A.S., Riutta, T., Sabot, M.E.B., Schleucher, J., Sitch, S., Smith, W.K., Sulman, B., Taylor, B., Terrer, C., Torn, M.S., Treseder, K.K., Trugman, A.T., Trumbore, S.E., van Mantgem, P.J., Voelker, S.L., Whelan, M.E., Zuidema, P.A., 2020. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445. https://doi.org/10.1111/nph.16866.

 

Way, D.A., Oren, R., 2010. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol. 30, 669–688. https://doi.org/10.1093/treephys/tpq015.

 

Way, D.A., Oren, R., Kroner, Y., 2015. The space-time continuum: the effects of elevated CO2 and temperature on trees and the importance of scaling. Plant Cell Environ. 38, 991–1007. https://doi.org/10.1111/pce.12527.

 

William, R., Goodwell, A., Richardson, M., Le, P.V.V., Kumar, P., Stillwell, A.S., 2016. An environmental cost-benefit analysis of alternative green roofing strategies. Ecol. Eng. 95, 1–9. https://doi.org/10.1016/j.ecoleng.2016.06.091.

 

Woo, D.K., Do, W., 2021. The role of forest in climate change for carbon, nitrogen, and water: a case study of Pinus densiflora. Water 13, 3050. https://doi.org/10.3390/w13213050.

 

Woo, D.K., Riley, W.J., Grant, R.F., Wu, Y., 2022. Site-specific field management adaptation is key to feeding the world in the21st century. Agric. For. Meteorol. 327. https://doi.org/10.1016/j.agrformet.2022.109230.

 

Woo, D.K., Seo, Y., 2022. Effects of elevated temperature and abnormal precipitation on soil carbon and nitrogen dynamics in a Pinus densiflora forest. Front. For. Glob. Change 5, 1051210. https://doi.org/10.3389/ffgc.2022.1051210.

 

Yu, H., Lee, W.K., Son, Y., Kwak, D., Nam, K., Kim, M., Byun, J., Lee, S., Kwon, T., 2013. Estimating carbon stock in Korean forests between 2010 and 2110: a prediction based on forest volume-age relationships. For. Sci. Technol. 9, 105–110. https://doi.org/10.1080/21580103.2013.801174.

 

Yun, J., Jeong, S., 2021. Contributions of economic growth, terrestrial sinks, and atmospheric transport to the increasing atmospheric CO2 concentrations over the Korean Peninsula. Carbon Bal. Manag. 16, 22. https://doi.org/10.1186/s13021-021-00186-3.

Forest Ecosystems
Article number: 100183
Cite this article:
Woo DK. Potential reduction in carbon fixation capacity under climate change in a Pinus koraiensis forest. Forest Ecosystems, 2024, 11(2): 100183. https://doi.org/10.1016/j.fecs.2024.100183

95

Views

1

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 30 November 2023
Revised: 17 February 2024
Accepted: 05 March 2024
Published: 22 March 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return