AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Estimating wood quality attributes from dense airborne LiDAR point clouds

Nicolas Cattaneo( )Stefano PulitiCarolin FischerRasmus Astrup
Norwegian Institute of Bioeconomy Research (NIBIO), Division of Forest and Forest Resources, Høgskoleveien 8, 1433, Ås, Norway
Show Author Information

Abstract

Mapping individual tree quality parameters from high-density LiDAR point clouds is an important step towards improved forest inventories. We present a novel machine learning-based workflow that uses individual tree point clouds from drone laser scanning to predict wood quality indicators in standing trees. Unlike object reconstruction methods, our approach is based on simple metrics computed on vertical slices that summarize information on point distances, angles, and geometric attributes of the space between and around the points. Our models use these slice metrics as predictors and achieve high accuracy for predicting the diameter of the largest branch per log (DLBs) and stem diameter at different heights (DS) from survey-grade drone laser scans. We show that our models are also robust and accurate when tested on suboptimal versions of the data generated by reductions in the number of points or emulations of suboptimal single-tree segmentation scenarios. Our approach provides a simple, clear, and scalable solution that can be adapted to different situations both for research and more operational mapping.

References

 

Björklund, L., Petersson, H., 1999. Predicting knot diameter of Pinus sylvestris in Sweden. Scand. J. For. Res. 14, 376-384. https://doi.org/10.1080/02827589950152700.

 

Boudon, F., Preuksakarn, C., Ferraro, P., Diener, J., Nacry, P., Nikinmaa, E., Godin, C., 2014. Quantitative assessment of automatic reconstructions of branching systems obtained from laser scanning. Ann. Bot. 114, 853-862. https://doi.org/10.1093/aob/mcu062.

 

Bournez, E., Landes, T., Saudreau, M., Kastendeuch, P., Najjar, G., 2017. From TLS point clouds to 3D models of trees: a comparison of existing algorithms for 3D tree reconstruction. Int. Arch. Photogramm. Remote Sens. 42, 113-120. https://doi.org/10.5194/isprs-archives-XLII-2-W3-113-2017.

 

Brede, B., Calders, K., Lau, A., Raumonen, P., Bartholomeus, H.M., Herold, M., Kooistra, L., 2019. Non-destructive tree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR. Remote Sens. Environ. 233, 111355. https://doi.org/10.1016/j.rse.2019.111355.

 

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5-32. https://doi.org/10.1023/A:1010933404324.

 

Drew, D.M., Downes, G.M., Seifert, T., Eckes-Shepard, A., Achim, A., 2022. A review of progress and applications in wood quality modelling. Curr. For. Rep. 8, 317-332. https://doi.org/10.1007/s40725-022-00171-0.

 
Ester, M., Kriegel, H. -P., Sander, J., Xu, X., 1996. A density-based algorithm fordiscovering clusters in large spatial databases with noise. KDD'96. In: Proceedings ofthe Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231.
 

Fischer, C., Høibø, O.A., Vestøl, G.I., Hauglin, M., Hansen, E.H., Gobakken, T., 2018. Predicting dynamic modulus of elasticity of Norway spruce structural timber by forest inventory, airborne laser scanning and harvester-derived data. Scand. J. For. Res. 33, 603-612. https://doi.org/10.1080/02827581.2018.1427790.

 

Hilker, T., Frazer, G.W., Coops, N.C., Wulder, M.A., Newnham, G.J., Stewart, J.D., van Leeuwen, M., Culvenor, D.S., 2013. Prediction of wood fiber attributes from LiDAR-derived Forest canopy indicators. For. Sci. 59, 231-242. https://doi.org/10.5849/forsci.11-074.

 
Høibø, O.A., 1991. The Quality of Wood of Norway Spruce (Picea abies (L.) Karst) Planted with Different Spacing. Dissertation. Agricultural University of Norway.
 

Kaitaniemi, P., Lintunen, A., Sievänen, R., 2020. Power-law estimation of branch growth. Ecol. Model. 416, 108900. https://doi.org/10.1016/j.ecolmodel.2019.108900.

 

Kangas, A., Astrup, R., Breidenbach, J., Fridman, J., Gobakken, T., Korhonen, K.T., Maltamo, M., Nilsson, M., Nord-Larsen, T., Næsset, E., Olsson, H., 2018. Remote sensing and forest inventories in Nordic countries – roadmap for the future. Scand. J. For. Res. 33, 397-412. https://doi.org/10.1080/02827581.2017.1416666.

 

Kuhn, M., 2008. Building predictive models in R using the caret Package. J. Stat. Softw. 28, 1-26. https://doi.org/10.18637/jss.v028.i05.

 
Kuhn, M., Johnson, K., 2013. In: Kuhn, M., Johnson, K. (Eds.), An Introduction to Feature Selection BT - Applied Predictive Modeling. Springer, New York, NY, pp. 487–519. https://doi.org/10.1007/978-1-4614-6849-3_19.
 
KVH, 2021. P-1725 IMU. https://ir.kvh.com/node/24081/pdf. (Accessed 15 October2023).
 

Lei, Y.C., Zhang, S.Y., Jiang, Z., 2005. Models for predicting lumber bending MOR and MOE based on tree and stand characteristics in black spruce. Wood Sci. Technol. 39, 37-47. https://doi.org/10.1007/s00226-004-0269-x.

 

Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., Holopainen, M., Brolly, G., Francesco, P., Hackenberg, J., Huang, H., Jo, H.-W., Katoh, M., Liu, L., Mokroš, M., Morel, J., Olofsson, K., Poveda-Lopez, J., Trochta, J., Wang, D., Wang, Y., 2018. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS J. Photogramm. Rem. Sens. 144, 137-179. https://doi.org/10.1016/j.isprsjprs.2018.06.021.

 
Liaw, A., Wiener, M., 2002. Classification and regression by randomForest, pp. 18–22. R News 2. https://CRAN.R-project.org/doc/Rnews/. (Accessed 15 October 2023).
 

Luther, J.E., Skinner, R., Fournier, R.A., van Lier, O.R., Bowers, W.W., Coté, J.-F., Hopkinson, C., Moulton, T., 2014. Predicting wood quantity and quality attributes of balsam fir and black spruce using airborne laser scanner data. Forestry 87, 313-326. https://doi.org/10.1093/forestry/cpt039.

 

Maguire, D.A., Johnston, S.R., Cahill, J., 1999. Predicting branch diameters on second-growth Douglas-fir from tree-level descriptors. Can. J. Forest Res. 29, 1829-1840. https://doi.org/10.1139/x99-147.

 

Mäkinen, H., Colin, F., 1998. Predicting branch angle and branch diameter of Scots pine from usual tree measurements and stand structural information. Can. J. Forest Res. 28, 1686-1696. https://doi.org/10.1139/x98-141.

 

Maltamo, M., Karjalainen, T., Repola, J., Vauhkonen, J., 2018. Incorporating tree-and stand-level information on crown base height into multivariate forest management inventories based on airborne laser scanning. Silva Fenn. 52, 10006. https://doi.org/10.14214/sf.10006.

 
Molnar, C., 2022. Interpretable Machine Learning, 2nd ed. https://christophm.github.io/interpretable-ml-book/. (Accessed 15 October 2023).
 

Oja, J., Wallbäcks, L., Grundberg, S., Hägerdal, E., Grönlund, A., 2003. Automatic grading of Scots pine (Pinus sylvestris L.) sawlogs using an industrial X-ray log scanner. Comput. Electron. Agr. 41, 63-75. https://doi.org/10.1016/S0168-1699(03)00042-5.

 

Paynter, I., Genest, D., Saenz, E., Peri, F., Boucher, P., Li, Z., Strahler, A., Schaaf, C., 2018. Classifying ecosystems with metaproperties from terrestrial laser scanner data. Methods Ecol. Evol. 9, 210-222. https://doi.org/10.1111/2041-210X.12854.

 

Puliti, S., McLean, J.P., Cattaneo, N., Fischer, C., Astrup, R., 2022. Tree height-growth trajectory estimation using uni-temporal UAV laser scanning data and deep learning. Forestry 96 (1), 37-48. https://doi.org/10.1093/forestry/cpac026.

 
Puliti, S., Pearse, G., Surový, P., Wallace, L., Hollaus, M., Wielgosz, M., Astrup, R., 2023. FOR-Instance: a UAV Laser Scanning Benchmark Dataset for Semantic and Instance Segmentation of Individual Trees. https://doi.org/10.48550/arXiv.2309.01279 arXiv: 2309.01279 [cs. CV].
 
Puliti, S., Pearse, G.D., Watt, M.S., Mitchard, E., McNicol, I., Bremer, M., Rutzinger, M., Surovy, P., Wallace, L., Hollaus, M., Astrup, R., 2021. A New Drone Laser Scanning Benchmark Dataset for Characterization of Single-Tree and Forest Biophysical Properties. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, pp. 728–730.
 

Pyörälä, J., Kankare, V., Liang, X., Saarinen, N., Rikala, J., Kivinen, V.-P., Sipi, M., Holopainen, M., Hyyppä, J., Vastaranta, M., 2019a. Assessing log geometry and wood quality in standing timber using terrestrial laser-scanning point clouds. Forestry 92, 177-187. https://doi.org/10.1093/forestry/cpy044.

 

Pyörälä, J., Kankare, V., Vastaranta, M., Rikala, J., Holopainen, M., Sipi, M., Hyyppä, J., Uusitalo, J., 2018a. Comparison of terrestrial laser scanning and X-ray scanning in measuring Scots pine (Pinus sylvestris L.) branch structure. Scand. J. For. Res. 33, 291-298. https://doi.org/10.1080/02827581.2017.1355409.

 

Pyörälä, J., Liang, X., Saarinen, N., Kankare, V., Wang, Y., Holopainen, M., Hyyppä, J., Vastaranta, M., 2018b. Assessing branching structure for biomass and wood quality estimation using terrestrial laser scanning point clouds. Can. J. Rem. Sens. 44, 462-475. https://doi.org/10.1080/07038992.2018.1557040.

 

Pyörälä, J., Saarinen, N., Kankare, V., Coops, N.C., Liang, X., Wang, Y., Holopainen, M., Hyyppä, J., Vastaranta, M., 2019b. Variability of wood properties using airborne and terrestrial laser scanning. Remote Sens. Environ. 235, 111474. https://doi.org/10.1016/j.rse.2019.111474.

 
R Core Team, 2018. R: A Language and Environment for Statistical Computing.
 

Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M., Holopainen, M., Disney, M., Lewis, P., 2013. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens. 5, 491-520. https://doi.org/10.3390/rs5020491.

 
Riegl, 2021. Riegl miniVUX-1UAV. http://www.riegl.com/products/unmanned-scanning/riegl-minivux-1uav. (Accessed 15 October 2023).
 

Seidel, D., Ehbrecht, M., Puettmann, K., 2016. Assessing different components of three-dimensional forest structure with single-scan terrestrial laser scanning: a case study. For. Ecol. Manage. 381, 196-208. https://doi.org/10.1016/j.foreco.2016.09.036.

 
Skog, J., Oja, J., 2007. Improved Log Sorting Combining X-Ray and 3D Scanning-APreliminary Study. Quality Control for Wood and Wood Products - COST E53. TheFirst Conference. COST, pp. 133–140.
 

Straker, A., Puliti, S., Breidenbach, J., Kleinn, C., Pearse, G., Astrup, R., Magdon, P., 2023. Instance segmentation of individual tree crowns with YOLOv5: a comparison of approaches using the ForInstance benchmark LiDAR dataset. ISPRS Open Journal of Photogrammetry and Remote Sensing 9, 100045. https://doi.org/10.1016/j.ophoto.2023.100045.

 
Systems Phoenix Lidar, 2021. miniRanger-2 Lite. https://www.phoenixlidar.com/wp-content/uploads/2020/10/miniRANGER-LITE-2-Spec-Sheet.pdf. (Accessed 15 October 2023).
 
Unmanned Nordic, 2021. Staaker BG200. https://nordicunmanned.com/drones/staaker-bg200/. (Accessed 15 October 2023).
 

Vestøl, G.I., Høibø, O.A., 2001. Prediction of knot diameter in Picea abies (L.) Karst. Holz als Roh- Werkst. 59, 129-136. https://doi.org/10.1007/s001070050484.

 

Wielgosz, M., Puliti, S., Wilkes, P., Astrup, R., 2023. Point2Tree(P2T)–Framework for parameter tuning of semantic and instance segmentation used with mobile laser scanning data in coniferous forest. Remote Sens. 15, 3737. https://doi.org/10.3390/rs15153737.

 

Wilhelmsson, L., Arlinger, J., Spångberg, K., Lundqvist, S.-O., Grahn, T., Hedenberg, Ö., Olsson, L., 2002. Models for predicting wood properties in stems of Picea abies and Pinus sylvestris in Sweden. Scand. J. For. Res. 17, 330-350. https://doi.org/10.1080/02827580260138080.

 

Wilkes, P., Disney, M., Armston, J., Bartholomeus, H., Bentley, L., Brede, B., Burt, A., Calders, K., Chavana-Bryant, C., Clewley, D., Duncanson, L., Forbes, B., Krisanski, S., Malhi, Y., Moffat, D., Origo, N., Shenkin, A., Yang, W., 2023. TLS2trees: a scalable tree segmentation pipeline for TLS data. Methods Ecol. Evol. 14, 3083-3099. https://doi.org/10.1111/2041-210X.14233.

 

Winberg, O., Pyörälä, J., Yu, X., Kaartinen, H., Kukko, A., Holopainen, M., Holmgren, J., Lehtomäki, M., Hyyppä, J., 2023. Branch information extraction from Norway spruce using handheld laser scanning point clouds in Nordic forests. ISPRS Open Journal of Photogrammetry and Remote Sensing 9, 100040. https://doi.org/10.1016/j.ophoto.2023.100040.

 
Zobel, B.J., van Buijtenen, J.P., 1989. Wood Variation. Springer, Berlin, Heidelberg.
Forest Ecosystems
Article number: 100184
Cite this article:
Cattaneo N, Puliti S, Fischer C, et al. Estimating wood quality attributes from dense airborne LiDAR point clouds. Forest Ecosystems, 2024, 11(2): 100184. https://doi.org/10.1016/j.fecs.2024.100184

110

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 October 2023
Revised: 05 March 2024
Accepted: 05 March 2024
Published: 16 March 2024
© 2024 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return