AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Unveiling the adaptation strategies of woody plants in remnant forest patches to spatiotemporal urban expansion through leaf trait networks

College of Forestry, Guizhou University, Guiyang, 550025, China
Show Author Information

Abstract

Background

With the expansion of urban areas, the remnants of forested areas play a crucial role in preserving biodiversity in urban environments. This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches, thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.

Methods

Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang, China. We constructed leaf trait networks (LTNs) based on 26 anatomical, structural, and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.

Results and conclusions

Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees. With increasing urban expansion intensity, we observed a rise in the edge density of the LTN-shrubs. Additionally, modularity within the networks of shrubs decreased as road density and urban expansion intensity increased, and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index. Notably, patches subjected to 'leapfrog' expansion exhibited greater average patch length and diameter than those experiencing edge growth. Stomatal traits were found to have high degree centrality within these networks, signifying their substantial contribution to multiple functions. In urban remnant forests, shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks.

References

 

Adler, P.B., Roberto, S.G., Aldo, C., Joanna, S.H., Jayanti, R.M., Cyril, M.A., Miguel, F., 2014. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. USA 111 (27), 740-745. https://doi.org/10.1073/pnas.1410430111.

 

Amoako, C., Inkoom, D.K.B., 2018. The production of flood vulnerability in Accra, Ghana: Re-thinking flooding and informal urbanisation. Urban Stud. 55 (13), 2903-2922. https://doi.org/10.1177/0042098016686526.

 

Asner, G.P., Knapp, D.E., Anderson, C.B., Vaughn, N., 2016. Large-scale climatic and geophysical controls on the leaf economics spectrum. Proc. Natl. Acad. Sci. USA 113 (28), E4043-E4051. https://doi.org/10.1073/pnas.1604863113.

 

Chai, L., Huang, M., Hao, F., Wang, J., Jiang, D. Zhang, M., Huang, Y., 2019. Urbanization altered regional soil organic matter quantity and quality: insight from excitation emission matrix (EEM) and parallel factor analysis (PARAFAC). Chemosphere 220, 249-258. https://doi.org/10.1016/j.chemosphere.2018.12.132.

 
Chen, Q., 2004. Flora of Guizhou. Guizhou Science and Technology Press, Guiyang, China.
 

Debbage, N., Shepherd, J.M., 2015. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 54, 181-194. https://doi.org/10.1016/j.compenvurbsys.2015.08.002.

 

Dubois, J., Cheptou, P.O., 2017. Effects of fragmentation on plant adaptation to urban environments. Philos. T. R. Soc. B 372, 1712. https://doi.org/10.1098/rstb.2016.0038.

 

Fang, J., Wang, X., Shen, Z., Tang, Z., He, J., Yu, D., Jiang, Y., Wang, Z., Zheng, C., Zhu, J., Gao, Z., 2009. Methods and protocols for plant community inventory. Biodivers. Sci. 17, 533-548 (in Chinese). https://doi.org/10.3724/SP.J.1003.2009.09253.

 

Foo, C.H., 2016. Linking forest naturalness and human wellbeing—a study on public's experiential connection to remnant forests within a highly urbanized region in Malaysia. Urban For. Urban Green. 16, 13-24. https://doi.org/10.1016/j.ufug.2016.01.005.

 

Freschet, G.T., Kichenin, E., Wardle, D.A., 2015. Explaining within-community variation in plant biomass allocation: a balance between organ biomass and morphology above vs below ground? J. Veg. Sci. 26 (3), 431-440. https://doi.org/10.1111/jvs.12259.

 

Glockmann, M., Li, YF., Lakes, T., Kropp, JP., Rybski, D., 2022. Quantitative evidence for leapfrogging in urban growth. Environ. Plan. B Urban Anal. City Sci. 49, 352-367. https://doi.org/10.1177/2399808321998713.

 

Gong, P., Li, X.C., Zhang, W., 2019. 40-Year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 64 (15), 756-763. https://doi.org/10.1016/j.scib.2019.04.024.

 
Grime, J.P., Pierce, S., 2012. The Evolutionary Strategies that Shape Ecosystems. WileyBlackwell, Chichester, UK.
 

Guo, K., Guan, M., Yu, D., 2021. Urban surface water flood modelling - a comprehensive review of current models and future challenges. Hydrol. Earth Syst. Sci. 25 (5), 2843-2860. http://doi.org/10.5194/hess-25-2843-2021.

 

He, N., Li, Y., Liu, C., Xu, L., Li, M., Zhang, J., He, J., Tang, Z., Han, X., Ye, Q., Xiao, C., Yu, Q., Liu, S., Sun, W., Niu S., Li, S., Sack, L., Yu, G., 2020. Plant trait networks: improved resolution of the dimensionality of adaptation. Trends Ecol. Evol. 35 (10), 908-918. https://doi.org/10.1016/j.tree.2020.06.003.

 

Hetherington, A.M., 2001. Guard cell signaling. Cell 107 (6), 711-714. https://doi.org/10.1016/S0092-8674 (01)00606-7.

 

Hetherington, A.M., Woodward, F.I., 2003. The role of stomata in sensing and driving environmental change. Nature 424 (6951), 901-908. https://doi.org/10.1038/nature01843.

 

Hofer, G., Wagner, H.H., Herzog, F., Edwards, P.J., 2008. Effects of topographic variability on the scaling of plant species richness in gradient dominated landscapes. Ecography 31 (1), 131-139. https://doi.org/10.1111/j.2007.0906-7590.05246.x.

 

Hu, L., Qin, D., Lu, H., Li, W., Shang, K., Lin, D., Zhao, L., Yang, Y., Qian, S., 2021. Urban growth drives trait composition of urban spontaneous plant communities in a mountainous city in China. J. Environ. Manag. 293, 112869. https://doi.org/10.1016/j.jenvman.2021.112869.

 

Jia, L., Ma, Q., Du, C., Hu, G., Shang, C., 2020. Rapid urbanization in a mountainous landscape: patterns, drivers, and planning implications. Landsc. Ecol. 35, 2449-2469. https://doi.org/10.1007/s10980-020-01056-y.

 

Körner, C., 2012. Treelines will be understood once the functional difference between a tree and a shrub is. Ambio 41, 197-206. https://doi.org/10.1007/s13280-012-0313-2.

 

Koschützki, D., Schreiber, F., 2008. Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. Biol. 2 (2), 193-201. https://doi.org/10.1111/1365-2435.12850.

 

Kühn, I., Klotz, S., 2006. Urbanization and homogenization: comparing the floras of urban and rural areas in Germany. Biol. Conserv. 127, 292-300. https://doi.org/10.1016/j.biocon.2005.06.033.

 

Kunstler, G., Falster, D., David A.C., Francis, H., Robert, M.K, Daniel, C.L., Lourens, P., Mark, V., Vieilledent, G., Wright, S.J., Aiba, M., Baraloto, C., Caspersen, J., Cornelissen, J.H.C., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., Kattge, J., Kurokawa, H., Onoda, Y., Peñuelas, J., Poorter, H., Uriarte, M., Richardson, S., Ruiz-Benito, P., Sun, I-F., Ståhl, G., Swenson, N.G., Thompson, J., Westerlund, B., Wirth, C., Zavala, M.A., Zeng, H., Zimmerman, J.K., Zimmermann, N.E., Westoby, M., 2016. Plant functional traits have globally consistent effects on competition. Nature 529, 204-207. https://doi.org/10.1038/nature16476.

 

LaPaix, R., Harper, K., Freedman, B., 2012. Patterns of exotic plants in relation to anthropogenic edges within urban forest remnants. Appl. Veg. Sci. 15, 525-535. https://doi.org/10.1111/j.1654-109X.2012.01195.x.

 

Li, R.H., Zhu, S.D., Chen, H.Y.H., John, R., Zhou, G.Y., Zhang, D.Q., Zhang, Q.M., Ye, Q., 2015. Are functional traits a good predictor of global change impacts on tree species abundance dynamics in a subtropical forest? Ecol. Lett. 18, 1181-1189. https://doi.org/10.1111/ele.12497.

 
Li, Y., 2020. Variation of Leaf Trait Network Among Different Vegetation Types and its Influencing Factors. Ph. D Dissertation, Beijing Forestry University, China (inChinese).
 

Li, Y., Liu, C., Sack, L., Xu, L., Li, M., Zhang, J., He, N., 2022. Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecol. Lett. 25, 1442-1457. https://doi.org/10.1111/ele.14009.

 

Li, Y., Liu, C., Xu, L., Li, M., Zhang, J., He, N., 2021. Leaf trait networks based on global data: representing variation and adaptation in plants. Front. Plant Sci. 12, 710530. https://doi.org/10.3389/fpls.2021.710530.

 

Liu, C., Li, Y., Xu, L., Chen, Z., He, N., 2019. Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Sci. Rep. 9, 5803. https://doi.org/10.1111/1365-2435.14415.

 

Lundgren, M.R., Mathers, A., Baillie, A.L., Dunn, J., Wilson, M.J., Hunt, L., Pajor, R., Fradera-Soler, M., Rolfe, S., Osborne, C.P., Sturrock, C.J., Gray, J.E., Mooney, S.J., Fleming, A.J., 2019. Mesophyll porosity is modulated by the presence of functional stomata. Nat. Commun. 10, 2825. https://doi.org/10.1038/s41467-019-10826-5.

 

Maire, V., Wright, I.J., Prentice, I.C., Batjes, N.H., Bhaskar, R., Bodegom, P.M., Cornwell, W.K., Ellsworth, D., Niinemets, Ü., Ordonez, A., Reich, P.B., Santiago, L.S., 2015. Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecol. Biogeogr. 24 (6), 706-717. https://doi.org/10.1111/geb.12296.

 

McDonald, P.G., Fonseca, C.R., Overton, J.M., Westoby, M., 2003. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct. Ecol. 17, 50-57. https://doi.org/10.2307/3599027.

 
McDonnell, M.J., Pickett, S.T.A., Pouyat, R.V., 1993. The application of the ecologicalgradient paradigm to the study of urban effects. In: McDonnell, M.J., Pickett, S.T.A.(Eds.), Humans as Components of Ecosystems: Subtle Human Effects and the Ecologyof Populated Areas. Springer, New York, pp. 175–189.
 

McKinney, M.L., 2002. Urbanization, biodiversity, and conservation. Bioscience 52, 883-890. https://doi.org/10.1641/0006-3568 (2002)052[0883:UBAC]2.0.CO;2.

 

Nathan, O., Monicah, O., Jayne, M., Isaya, S., George, N., Daniel, M., 2022. Nutrient and organic carbon losses by erosion, and their economic and environmental implications in the drylands of Kenya. Environ. Chall. 7, 100519. https://doi.org/10.1016/j.envc.2022.100519.

 
Nowak, D.J., 2010. Urban biodiversity and climate change. In: Müller, N., Werner, P., Kelcey, J.G. (Eds.), Urban Biodiversity and Design. Wiley-Blackwell, UK, pp. 101–117. https://doi.org/10.1002/9781444318654.
 

Ou, J., Liu, X., Li, X., Chen, Y., 2013. Quantifying the relationship between urban forms and carbon emissions using panel data analysis. Landsc. Ecol. 28, 1889-1907. https://doi.org/10.1007/s10980-013-9943-4.

 

Rao, Q., Chen, J., Chou, Q., Ren, W., Cao, T., Zhang, M., Xiao, H., Liu, Z., Chen, J., Su, H., Xie, P., 2023. Linking trait network parameters with plant growth across light gradients and seasons. Funct. Ecol. 37 (6), 1732-1746. https://doi.org/10.1111/1365-2435.14327.

 

Rao, Q., Su, H., Ruan, L., Xia, W., Deng, X., Wang, L., Xu, P., Shen, H., Chen, J., Xie, P., 2022. Phosphorus enrichment affects trait network topologies and the growth of submerged macrophytes. Environ. Poll. 292, 118331. https://doi.org/10.1016/j.envpol.2021.118331.

 

Rao, Q., Su, H., Ruan, L., Xia, W., Deng, X., 2021. Phosphorus enrichment affects trait network topologies and the growth of submerged macrophytes. Environ. Poll. 292, 118331. https://doi.org/10.1016/j.envpol.2021.118331.

 

Referowska-Chodak, E., 2019. Pressures and threats to nature related to human activities in European urban and suburban forests. Forests 10 (9), 765. https://doi.org/10.3390/f10090765.

 

Reich, P.B., 2014. The world-wide 'fast-slow' plant economics spectrum: a traits manifesto. J. Ecol. 102, 275-301. https://doi.org/10.1111/1365-2745.12211.

 

Reich, P.B., Walters, M.B., Ellsworth, D.S., 1997. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 25 (9), 13730-13734. https://doi.org/10.1073/pnas.94.25.1373.

 

Roumet, C., Birouste, M., Picon-Cochard, C., Ghestem, M., Osman, N., Vrignon-Brenas, S., Cao, Kf., Stokes, A., 2016. Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol. 210, 815-826. https://doi.org/10.1111/nph.13828.

 

Sack, L., Cowan, P.D., Holbrook, N.M., 2003. The 'hydrology' of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ. 26 (8), 1343-1356. https://doi.org/10.1046/j.0016-8025.2003.01058.x.

 

Salghuna, N.N., Prasad, P., Kumari, J.A., 2021. Assessing the impact of land use and land cover changes on the remnant patches of Kondapalli reserve forest of the Eastern Ghats, Andhra Pradesh, India. Egypt. J. Remote Sens. Space Sci. 24, 329-329. https://doi.org/10.1016/j.ejrs.2018.01.005.

 

Stearns, S.C., 1989. Trade-offs in life-history evolution. Funct. Ecol. 3 (3), 259-268. https://doi.org/10.2307/2389364.

 

Swan, C.M., Johnson, A., Nowak, D.J., 2017. Differential organization of taxonomic and functional diversity in an urban woody plant metacommunity. Appl. Veg. Sci. 20, 7-17. https://doi.org/10.1111/avsc.12266.

 

Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let the concept of trait be functional! J. Veg. Sci. 116 (5), 882-892. https://doi.org/10.1111/jvs.12291.

 

Wang, X., Ji, M., Zhang, Y., Zhang, L., Akram, M.A., Dong, L., Hu, W., Xiong, J., Sun, J., Li, H., Degen, A.A., Ran J., Deng, J., 2023. Plant trait networks reveal adaptation strategies in the drylands of China. BMC Plant Biol. 23, 266. https://doi.org/10.1186/s12870-023-04273-0.

 

Wang, L., Rao, Q., Su, H., Ruan, L., Deng, X., Liu, J., Chen, J., Xie, P., 2022. Linking the network topology of plant traits with community structure, functioning, and adaptive strategies of submerged macrophytes. Sci. Total Environ. 850, 158092. https://doi.org/10.1016/j.scitotenv.2022.158092.

 

Wang, Z., Yang, J., 2022. Urbanization strengthens the edge effects on species diversity and composition of woody plants in remnant forests. Forest Ecosyst. 9, 100063. https://doi.org/10.1016/j.fecs.2022.100063.

 

Williams, N.S.G., Schwartz, M.W., Vesk, P.A., McCarthy, M.A., Hahs, A.K., Clemants, S.E., Corlett, R.T., Duncan, R.P., Norton, B.A., Thompson, K., McDonnell, M.J., 2009. A conceptual framework for predicting the effects of urban environments on floras. J. Ecol. 97, 4-9. https://doi.org/10.1111/j.1365-2745.2008.01460.x.

 

Williams, N.S.G., Hahs, A.K., Vesk, P.A., 2015. Urbanisation, plant traits and the composition of urban floras. Perspect. Plant Ecol. Evol. Systemat. 17, 78-86. https://doi.org/10.1016/j.ppees.2014.10.002.

 

Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. https://doi.org/10.1038/nature02403.

 

Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Garnier, E., Hikosaka, K., Lamont, B.B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D.I., Westoby, M., 2005. Assessing the generality of global leaf trait relationships. New Phytol. 166 (2), 485-496. https://doi.org/10.1111/j.1469-8137.2005.01349.x.

 

Xu, C., Liu, M., Zhang, C., An, S., Yu, W., Chen, J., 2007. The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China. Landsc. Ecol. 22, 925-937. https://doi.org/10.1007/s10980-007-9079-5.

 

Yang, J., Yang, J., Xing, D., Luo, X., Lu, S., Huang, C., Hahs, A.K., 2021. Impacts of the remnant sizes, forest types, and landscape patterns of surrounding areas on woody plant diversity of urban remnant forest patches. Urban Ecosyst. 24, 345-354. https://doi.org/10.1007/s11252-020-01040-z.

 

Yang, J., Wang, Z., Zheng, Y., Pan, Y., 2022. Shifts in plant ecological strategies in remnant forest patches along urbanization gradients. Forest Ecol. Manag. 524, 120540. https://doi.org/10.1016/j.foreco.2022.120540.

 

Yang, Y., Lv, H., Fu, Y., He, X., Wang, W., 2019. Associations between road density, urban forest landscapes, and structural-taxonomic attributes in Northeastern China: decoupling and implications. Forests 10 (1), 58. https://doi.org/10.3390/f10010058.

 

Yang, J., Wang, Z., Pan, Y., Zheng, Y., 2023. Woody plant functional traits and phylogenetic signals correlate with urbanization in remnant forest patches. Ecol. Evol. 8 (13), e10366. https://doi.org/10.1002/ece3.10366.

 

Yao, Z., Wu, Y., You, H., Xin, Z., 2022. Research progress of plant competitor-stress tolerator-ruderal (CSR) theory and its application. Acta Ecol. Sin. 42 (1), 24-36. https://doi.org/10.5846/stxb202101060055.

 

Zhang, D., Wang, W., Zheng, H., Ren, Z., Zhai, C., Tang, Z., Shen, G., He, X., 2017. Effects of urbanization intensity on forest structural-taxonomic attributes, landscape patterns and their associations in Changchun, northeast China: implications for urban green infrastructure planning. Ecol. Ind. 80, 286-296. https://doi.org/10.1016/j.ecolind.2017.05.042.

 

Zhang, Y., Loreau, M., He, N., Zhang, G., Han, X., 2017. Mowing exacerbates the loss of ecosystem stability under nitrogen enrichment in a temperate grassland. Funct. Ecol. 31, 1637-1646. https://doi.org/10.1111/1365-2435.12850.

 

Zhu, T., Jiang, W., Shen, H., Yuan, J., Chen, J., Gong, Z. Wang, L., Zhang, M., Rao, Q., 2023. Characteristics of plant trait network and its influencing factors in impounded lakes and channel rivers of South-to-North Water Transfer Project, China. Front. Plant Sci. 14, 1127209. https://doi.org/10.3389/fpls.2023.1127209.

 

Zipperer, W.C., 2002. Species composition and structure of regenerated and remnant forest patches within an urban landscape. Urban Ecosyst. 6, 271-290. https://doi.org/10.1023/B:UECO.0000004827.12561.d4.

Forest Ecosystems
Article number: 100186
Cite this article:
Jian M, Yang J. Unveiling the adaptation strategies of woody plants in remnant forest patches to spatiotemporal urban expansion through leaf trait networks. Forest Ecosystems, 2024, 11(2): 100186. https://doi.org/10.1016/j.fecs.2024.100186

140

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 November 2023
Revised: 13 March 2024
Accepted: 13 March 2024
Published: 22 March 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return