AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.4 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Modeling the effect of stand and site characteristics on the probability of mistletoe infestation in Scots pine stands using remote sensing data

Luiza Tymińska-Czabańskaa( )Piotr Janieca,bPaweł HawryłoaJacek ŚlopekcAnna ZielonkadPaweł NetzelaDaniel JanczykeJarosław Sochaa
Department of Forest Resources Management, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, Krakow, 31-425, Poland
Forest Management and Geodesy Bureau, Ul. Lesnikow 21, 05-090, Sekocin Stary, Poland
Department of Geoinformatics and Cartography, Institute of Geography and Regional Development, Faculty of Earth Sciences and Environmental Management, University of Wroclaw, Pl. Uniwersytecki 1, Wroclaw, Poland
Institute of Geography and Spatial Management, Faculty of Geography & Geology, Jagiellonian University in Krakow, Ul. Gronostajowa 7, 30-387, Poland
Torun Regional Directorate of State Forests, Ul. Adama Mickiewicza 9, 87-100, Torun, Poland
Show Author Information

Abstract

Over the past decade, the presence of mistletoe (Viscum album ssp. austriacum) in Scots pine stands has increased in many European countries. Understanding the factors that influence the occurrence of mistletoe in stands is key to making appropriate forest management decisions to limit damage and prevent the spread of mistletoe in the future. Therefore, the main objective of this study was to determine the probability of mistletoe occurrence in Scots pine stands in relation to stand-related endogenous factors such as age, top height, and stand density, as well as topographic and edaphic factors. We used unmanned aerial vehicle (UAV) imagery from 2,247 stands to detect mistletoe in Scots pine stands, while majority stand and site characteristics were calculated from airborne laser scanning (ALS) data. Information on stand age and site type from the State Forest database were also used. We found that mistletoe infestation in Scots pine stands is influenced by stand and site characteristics. We documented that the densest, tallest, and oldest stands were more susceptible to mistletoe infestation. Site type and specific microsite conditions associated with topography were also important factors driving mistletoe occurrence. In addition, climatic water balance was a significant factor in increasing the probability of mistletoe occurrence, which is important in the context of predicted temperature increases associated with climate change. Our results are important for better understanding patterns of mistletoe infestation and ecosystem functioning under climate change. In an era of climate change and technological development, the use of remote sensing methods to determine the risk of mistletoe infestation can be a very useful tool for managing forest ecosystems to maintain forest sustainability and prevent forest disturbance.

References

 

Adams, H.D., Zeppel, M.J.B., Anderegg, W.R.L., Hartmann, H., Landhausser, S.M., Tissue, D.T., Huxman, T.E., Hudson, P.J., Franz, T.E., Allen, C.D., Anderegg, L.D.L., Barron-Gafford, G.A., Beerling, D.J., Breshears, D.D., Brodribb, T.J., Bugmann, H., Cobb, R.C., Collins, A.D., Dickman, L.T., Duan, H., Ewers, B.E., Galiano, L., Galvez, D.A., Garcia-Forner, N., Gaylord, M.L., Germino, M.J., Gessler, A., Hacke, U.G., Hakamada, R., Hector, A., Jenkins, M.W., Kane, J.M., Kolb, T.E., Law, D.J., Lewis, J.D., Limousin, J.M., Love, D.M., Macalady, A.K., Martínez-Vilalta, J., Mencuccini, M., Mitchell, P.J., Muss, J.D., O'Brien, M.J., O'Grady, A.P., Pangle, R.E., Pinkard, E.A., Piper, F.I., Plaut, J.A., Pockman, W.T., Quirk, J., Reinhardt, K., Ripullone, F., Ryan, M.G., Sala, A., Sevanto, S., Sperry, J.S., Vargas, R., Vennetier, M., Way, D.A., Xu, C., Yepez, E.A., McDowell, N.G., 2017. A multi-species synthesis of physiological mechanisms in drought induced tree mortality. Nat. Ecol. Evol. 1, 1285-1291. https://doi.org/10.1038/s41559-017-0248-x.

 

Aukema, J.E., Martínez del Rio, C., 2002. Where does a fruit-eating bird deposit mistletoe seeds? Seed deposition patterns and an experiment. Ecology 83, 3489-3496.

 

Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24 (1), 43-69. https://doi.org/10.1080/02626667909491834.

 

Barbu, C., 2009. Impact of mistletoe attack (Viscum album ssp. abietis) on the radial growth of silver fir. A case study in the North of Eastern Carpathians. Ann. For. Res. 52, 89-96.

 

Brovkina, O., Cienciala, E., Surový, P., Janata, P., 2018. Unmanned aerial vehicles (UAV) for assessment of qualitative classification of Norway spruce in temperate forest stands. Geo-Spat. Inf. Sci. 21, 12-20. https://doi.org/10.1080/10095020.2017.1416994.

 

Cardil, A., Otsu, K., Pla, M., Silva, C.A., Brotons, L., 2019. Quantifying pine processionary moth defoliation in a pine-oak mixed forest using unmanned aerial systems and multispectral imagery. PLoS One 14, e0213027. https://doi.org/10.1371/journal.pone.0213027.

 

Cardil, A., Vepakomma, U., Brotons, L., 2017. Assessing pine processionary moth defoliation using unmanned aerial systems. Forests 8 (10), 402. https://doi.org/10.3390/f8100402.

 

Cheng, J., Sun, J., Yao, K., Xu, M., Cao, Y., 2022. A variable selection method based on mutual information and variance inflation factor. Spectrochim. Acta: Mol. Biomol. Spectrosc. 268, 120652. https://doi.org/10.1016/j.saa.2021.120652.

 

Dobbertin, M., 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124, 319-333. https://doi.org/10.1007/s10342-005-0085-3.

 

Dobbertin, M., Rigling, A., 2006. Pine mistletoe (Viscum album ssp. austriacum) contributes to Scots pine (Pinus sylvestris) mortality in the Rhone valley of Switzerland. For. Pathol. 36, 309-322. https://doi.org/10.1111/j.1439-0329.2006.00457.x.

 

Greenwood, D.L., Weisberg, P.J., 2008. Density-dependent tree mortality in pinyon-juniper woodlands. For. Ecol. Manag. 255, 2129-2137. https://doi.org/10.1016/j.foreco.2007.12.048.

 

Guibard, A., Sèbe, F., Dragna, D., Ollivier, S., 2022. Influence of meteorological conditions and topography on the active space of mountain birds assessed by a wave-based sound propagation model. J. Acoust. Soc. Am. 151, 3703-3718. https://doi.org/10.1121/10.0011545.

 
Hastie, T.J., Tibshirani, R.J., 1990. Generalized Additive Models. Routledge, New York.
 

Hesse, B.D., Hartmann, H., Rötzer, T., Landhäusser, S.M., Goisser, M., Weikl, F., Pritsch, K., Grams, T.E.E., 2021. Mature beech and spruce trees under drought – higher C investment in reproduction at the expense of whole-tree NSC stores. Environ. Exp. Bot. 191, 104615. https://doi.org/10.1016/j.envexpbot.2021.104615.

 

Hossain, M., Veneklaas, E.J., Hardy, G.E.S.J., Poot, P., 2018. Tree host-pathogen interactions as influenced by drought timing: linking physiological performance, biochemical defence and disease severity. Tree Physiol. 39, 6-18. https://doi.org/10.1093/treephys/tpy113.

 

Idžojtić, M., Pernar, R., Glavaš, M., Zebec, M., Diminić, D., 2008. The incidence of mistletoe (Viscum album ssp. abietis) on silver fir (Abies alba) in Croatia. Biologia (Bratisl) 63, 81-85. https://doi.org/10.2478/s11756-008-0014-2.

 

Iszkulo, G., Armatys, L., Dering, M., Ksepko, M., Tomaszewski, D., Ważna, A., Giertych, M.J., 2020. Mistletoe as a threat to the health state of coniferous forest. Sylwan 164, 226-236. https://doi.org/10.26202/sylwan.2019121.

 

Jactel, H., Petit, J., Desprez-Loustau, M.L., Delzon, S., Piou, D., Battisti, A., Koricheva, J., 2012. Drought effects on damage by forest insects and pathogens: A meta-analysis. Global Change Biol. 18, 267-276. https://doi.org/10.1111/j.1365-2486.2011.02512.x.

 
James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical Learningw with Applications in R, first ed. Springer-Verlag, New York.
 

Joseph, J., Luster, J., Bottero, A., Buser, N., Baechli, L., Sever, K., Gessler, A., 2021. Effects of drought on nitrogen uptake and carbon dynamics in trees. Tree Physiol. 41, 927-943. https://doi.org/10.1093/treephys/tpaa146.

 

Kollas, C., Gutsch, M., Hommel, R., Lasch-Born, P., Suckow, F., 2018. Mistletoe-induced growth reductions at the forest stand scale. Tree Physiol. 38, 735-744. https://doi.org/10.1093/treephys/tpx150.

 

Kołodziejek, J., Patykowski, J., Kołodziejek, R., 2013. Distribution, frequency and host patterns of European mistletoe (Viscum album subsp. album) in the major city of Lodz, Poland. Biologia 68, 55-64. https://doi.org/10.2478/s11756-012-0128-4.

 

Lech, P., Zółciak, A., Hildebrand, R., 2020. Occurrence of European mistletoe (Viscum album L.) on forest trees in Poland and its dynamics of spread in the period 2008–2018. Forests 11, 83. https://doi.org/10.3390/f11010083.

 

Lorenc, F., Véle, A., 2022. Characteristics of Pinus sylvestris stands infected by Viscum album subsp. austriacum. Austr. J. For. Sci. 139, 31-50.

 

Łabędzki, L., Bąk, B., 2004. Standardized climatic water balance as drought index. Acta Agroph. 3(1), 117-124.

 

Martínez del Rio, C., Silva, A., Medel, R., Hourdequin, M., 2015. Seed dispersers as disease vectors: bird transmission of mistletoe seeds to plant hosts. Ecology 77, 912-921.

 

Mellado, A., Zamora, R., 2017. Parasites structuring ecological communities: The mistletoe footprint in Mediterranean pine forests. Funct. Ecol. 31, 2167-2176. https://doi.org/10.1111/1365-2435.12907.

 

Melnychuk, M.C., Peterson, E., Elliott, M., Hilborn, R., 2017. Fisheries management impacts on target species status. PNAS 114, 178-183. https://doi.org/10.1073/pnas.1609915114.

 

Miraki, M., Sohrabi, H., Fatehi, P., Kneubuehler, M., 2021. Detection of mistletoe infected trees using UAV high spatial resolution images. J. Plant Dis. Prot. 128, 1679-1689. https://doi.org/10.1007/s41348-021-00502-6.

 

Murphy, P.N.C., Ogilvie, J., Castonguay, M., Zhang, C., Meng, F-R., Arp, P.A., 2008. Improving forest operations planning through high-resolution flow-channel and wet-areas mapping. Forest. For. Chron. 84, 568-574. https://doi.org/10.5558/tfc84568-4.

 
Murray, L., Nguyen, H., Lee, Y., Remmenga, M.D., Smith, D.W., 2012. Variance inflation factors in regression models with dummy variables. In: Conference on Applied Statistics in Agriculture, New Prairie Press, Kansas. https://doi.org/10.4148/2475-7772.1034.
 

Netzel, P., Slopek, J., 2021. Comparison of different implementations of a raster map calculator. Comput. Geosci. 154, 104824. https://doi.org/10.1016/j.cageo.2021.104824.

 

Newman, D.R., Lindsay, J.B., Cockburn, J.M.H., 2018. Evaluating metrics of local topographic position for multiscale geomorphometric analysis. Geomorphology 312, 40-50. https://doi.org/10.1016/j.geomorph.2018.04.003.

 

Noordermeer, L., Bollandsås, O.M., Gobakken, T., Næsset, E., 2018. Direct and indirect site index determination for Norway spruce and Scots pine using bitemporal airborne laser scanner data. For. Ecol. Manag. 428, 104-114. https://doi.org/10.1016/j.foreco.2018.06.041.

 
Pascual-Ferrer, J., Candela, L., 2015. In: Water balance on the central rift valley, in case studies for developing globally responsible engineers. Global Dimension in Engineering Education Barcelona. http://gdee.eu/index.php/resources.html (Accessed 15 January 2024).
 

Pilichowski, S., Filip, R., Kościelska, A., Zaroffe, G., Zyzniewska, A., Iszkuło, G., 2018. Influence of Viscum album ssp. Austriacum (Wiesb.) Vollm. on tree radial growth of Pinus sylvestris L. Sylwan 162, 452-459.

 

Quinn, P., Beven, K., Chevallier, P., Planchon, O., 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital elevation models. Hydrol. Process. 5(1), 59-79. https://doi.org/10.1002/hyp.3360050106.

 

Reich, R.W., Mielke Jr. P.W., Hawksworth, F.G., 1991. Spatial analysis of ponderosa pine trees infected with dwarf mistletoe. Can. J. For. Res. 21, 1808-1815.

 

Rennó, C. D., Nobre, A. D., Cuartas, L. A., Soares, J. V., Hodnett, M. G., Tomasella, J., Waterloo, M. J., 2008. HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sens. Environ. 112, 3469–3481. https://doi.org/10.1016/j.rse.2008.03.018.

 

Rita, A., Bonanomi, G., Allevato, E., Borghetti, M., Cesarano, G., Mogavero, V., Rossi, S., Saulino, L., Zotti, M., Saracino, A., 2021. Topography modulates near-ground microclimate in the Mediterranean Fagus sylvatica treeline. Sci. Rep. 11, 8122. https://doi.org/10.1038/s41598-021-87661-6.

 

Roussel, J.R., Auty, D., Coops, N.C., Tompalski, P., Goodbody, T.R.H., Meador, A.S., Bourdon, J.F., de Boissieu, F., Achim, A., 2020. lidR: an R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 251, 112061. https://doi.org/10.1016/j.rse.2020.112061.

 

Sangüesa-Barreda, G., Linares, J.C., Camarero, J.J., 2012. Mistletoe effects on Scots pine decline following drought events: insights from within-tree spatial patterns, growth and carbohydrates. Tree Physiol. 32, 585-598. https://doi.org/10.1093/treephys/tps031.

 

Sayad, E., Boshkar, E., Gholami, S., 2017. Different role of host and habitat features in determining spatial distribution of mistletoe infection. For. Ecol. Manag. 384, 323-330. https://doi.org/10.1016/j.foreco.2016.11.012.

 

Senf, C., Pflugmacher, D., Zhiqiang, Y., Sebald, J., Knorn, J., Neumann, M., Hostert, P., Seidl, R., 2018. Canopy mortality has doubled in Europe's temperate forests over the last three decades. Nat. Commun. 9, 4978. https://doi.org/10.1038/s41467-018-07539-6.

 

Senf, C., Seidl, R., 2021. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63-70. https://doi.org/10.1038/s41893-020-00609-y.

 

Sevanto, S., 2018. Drought impacts on phloem transport. Curr. Opin. Plant Biol. 43, 76-81. https://doi.org/10.1016/j.pbi.2018.01.002.

 

Socha, J., Hawryło, P., Tymińska-Czabańska, L., Reineking, B., Lindner, M., Netzel, P., Grabska-Szwagrzyk, E., Vallejos, R., Reyer, C.P.O., 2023. Higher site productivity and stand age enhance forest susceptibility to drought-induced mortality. Agric. For. Meteorol. 341, 109680. https://doi.org/10.1016/j.agrformet.2023.109680.

 

Socha, J., Pierzchalski, M., Bałazy, R., Ciesielski, M., 2017. Modelling top height growth and site index using repeated laser scanning data. For. Ecol. Manag. 406, 307-317. https://doi.org/10.1016/j.foreco.2017.09.039.

 

Socha, J., Tymińska-Czabańska, L., Bronisz, K., Zięba, S., Hawryło, P., 2021. Regional height growth models for Scots pine in Poland. Sci. Rep. 11, 10330. https://doi.org/10.1038/s41598-021-89826-9.

 

Szmidla, H., Tkaczyk, M., Plewa, R., Tarwacki, G., Sierota, Z., 2019. Impact of common mistletoe (Viscum album L.) on Scots pine forests-A call for action. Forests 10, 847. https://doi.org/10.3390/f10100847.

 

Thornthwaite, C., Wilm, H., 1944. Report of the committee on transpiration and evaporation. Trans. Am. Geophys. Union 25, 686-693.

 

Tymińska-Czabańska, L., Hawryło, P., Socha, J., 2022. Assessment of the effect of stand density on the height growth of Scots pine using repeated ALS data. Int. J. Appl. Earth Obs. Geoinf. 108, 102763. https://doi.org/10.1016/j.jag.2022.102763.

 

Vertui, F., Tagliaferro, F., 1998. Scots pine (Pinus sylverstris L.) die-back by unknown causes in the Aosta Valley, Italy. Chemosphere 36, 1061-1065. https://doi.org/10.1016/S0045-6535(97)10172-2.

 

Walas, Ł., Kędziora, W., Ksepko, M., Rabska, M., Tomaszewski, D., Thomas, P.A., Wójcik, R., Iszkuło, G., 2022. The future of Viscum album L. in Europe will be shaped by temperature and host availability. Sci. Rep. 12, 17072. https://doi.org/10.1038/s41598-022-21532-6.

 

Wang, Y., Lehtomäki, M., Liang, X., Pyörälä, J., Kukko, A., Jaakkola, A., Liu, J., Feng, Z., Chen, R., Hyyppä, J., 2019. Is field-measured tree height as reliable as believed – a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS J. Photogramm. Remote Sens. 147, 132-145. https://doi.org/10.1016/j.isprsjprs.2018.11.008.

 

White, J.C., Coops, N.C., Wulder, M.A., Vastaranta, M., Hilker, T., Tompalski, P., 2016. Remote sensing technologies for enhancing forest inventories: a review. Can. J. Rem. Sens. 42, 619-641. https://doi.org/10.1080/07038992.2016.1207484.

 
Wood, J., 1996. The Geomorphological Characterisation of Digital Elevation Models. Department of Geography, University of Leicester. U. K Dissertation. http://hdl.handle.net/2381/34503 (Accessed 2 December 2022).
 

Wood, S.N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3-36. https://doi.org/10.1111/j.1467-9868.2010.00749.x.

 
Wood, S.N., 2017. Generalized Additive Models: An Introduction with R. In: Chapter 7: GAMs in Practice: mgcv, Second Edition (2nd ed.). Chapman and Hall/CRC, pp. 325–404. doi: 10.1201/9781315370279.
 

Wulder, M.A., White, J.C., Coops, N.C., Butson, C.R., 2008. Multi-temporal analysis of high spatial resolution imagery for disturbance monitoring. Remote Sens. Environ. 112, 2729-2740. https://doi.org/10.1016/j.rse.2008.01.010.

 

Yadav, B., Jogawat, A., Rahman, M.S., Narayan, O.P., 2021. Secondary metabolites in the drought stress tolerance of crop plants: a review. Gene Rep. 23, 101040. https://doi.org/10.1016/j.genrep.2021.101040.

 

Zweifel, R., Bangerter, S., Rigling, A., Sterck, F.J., 2012. Pine and mistletoes: how to live with a leak in the water flow and storage system? J. Exp. Bot. 63, 2565-2578. https://doi.org/10.1093/jxb/err432.

Forest Ecosystems
Article number: 100191
Cite this article:
Tymińska-Czabańska L, Janiec P, Hawryło P, et al. Modeling the effect of stand and site characteristics on the probability of mistletoe infestation in Scots pine stands using remote sensing data. Forest Ecosystems, 2024, 11(3): 100191. https://doi.org/10.1016/j.fecs.2024.100191

53

Views

2

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 03 January 2024
Revised: 26 March 2024
Accepted: 26 March 2024
Published: 04 April 2024
© 2024 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return