AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.7 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The unimodal latitudinal pattern of K, Ca and Mg concentration and its potential drivers in forest foliage in eastern China

Zhijuan ShiaSining LiubYahan ChencDongdong DingaWenxuan Hana( )
Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province & National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
Show Author Information

Abstract

Potassium (K), calcium (Ca), and magnesium (Mg) are essential elements with important physiological functions in plants. Previous studies showed that leaf K, Ca, and Mg concentrations generally increase with increasing latitudes. However, recent meta-analyses suggested the possibility of a unimodal pattern in the concentrations of these elements along latitudinal gradients. The authenticity of this unimodal latitudinal pattern, however, requires validation through large-scale field experimental data, and exploration of the underlying mechanisms if the pattern is confirmed. Here, we collected leaves of common species of woody plants from 19 montane forests in the north-south transect of eastern China, including 322 species from 160 genera, 67 families; and then determined leaf K, Ca, and Mg concentrations to explore their latitudinal patterns and driving mechanisms. Our results support unimodal latitudinal patterns for all three elements in woody plants across eastern China, with peak values at latitude 36.5 ​± ​1.0° N. The shift of plant-functional-type compositions from evergreen broadleaves to deciduous broadleaves and to conifers along this latitudinal span was the key factor contributing to these patterns. Climatic factors, mainly temperature, and to a lesser extent solar radiation and precipitation, were the main environmental drivers. These factors, by altering the composition of plant communities and regulating plant physiological activities, influence the latitudinal patterns of plant nutrient concentrations. Our findings also suggest that high leaf K, Ca, and Mg concentrations may represent an adaptive strategy for plants to withstand water stress, which might be used to predict plant nutrient responses to climate changes at large scales, and broaden the understanding of biogeochemical cycling of K, Ca, and Mg.

References

 
Brady, N.C., Weil, R.R., 2010. Elements of the nature and properties of soils. Pearson Education International, New Jersey.
 

Chuine, I., 2010. Why does phenology drive species distribution? Philos. Trans. R. Soc. B 365 (1555), 3149–3160. https://doi.org/10.1098/rstb.2010.0142.

 

Cochrane, T.T., Cochrane, T.A., 2009. The vital role of potassium in the osmotic mechanism of stomata aperture modulation and its link with potassium deficiency. Plant Signal. Behav. 4 (3), 240–243. https://doi.org/10.4161/psb.4.3.7955.

 

Curtis, J.T., McIntosh, R.P., 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 31, 476–496. https://doi.org/10.2307/1931725.

 

Egilla, J.N., Davies, F.T., Boutton, T.W., 2005. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 43, 135–140. https://doi.org/10.1007/s11099-005-5140-2.

 

Elser, J.J., Fagan, W.F., Denno, R.F., Dobberfuhl, D.R., Folarin, A., Huberty, A., Interlandi, S., Kilham, S.S., McCauley, E., Schulz, K.L., Siemann, E.H., Sterner, R.W., 2000. Nutritional constrains in terrestrial and freshwater food webs. Nature 408, 578–580. https://doi.org/10.1038/35046058.

 

Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., Ngai, J.T., Seabloom, E.W., Shurin, J.B., Smith, J.E., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10 (12), 1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x.

 

Fang, J., 1991. Eco-climatic analysis of forest zones in China. Acta Ecol. Sin. 11 (4), 366–387.

 

Fang, J., Wang, X., Shen, Z., Tang, Z., He, J., Yu, D., Jiang, Y., Wang, Z., Zheng, C., Zhu, J., Guo, Z., 2009. Methods and protocols for plant community inventory. Biodiv. Sci. 17 (6), 533–548. https://www.biodiversity-science.net/EN/Y2009/V17/I6/533 (in Chinese).

 

Fang, J., Xiao, K., Wang, N., Cheng, X., 2014. East-Asian summer monsoon intensity indexes in early summer and their anomalous relationship with precipitation in Shaanxi Province. Arid. Land Geogr. 37 (1), 1–8. https://doi.org/10.13826/j.cnki.cn65-1103/x.2014.01.006. (in Chinese).

 

Fernández, M., Novillo, C., Pardos, J.A., 2006. Effects of water and nutrient availability in Pinus pinaster Ait. open pollinated families at an early age: growth, gas exchange and water relations. New For. 31, 321–342. https://doi.org/10.1007/s11056-005-8196-8.

 

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37 (12), 4302–4315. https://doi.org/10.1002/joc.5086.

 

Field, T.S., Chatelet, D.S., Brodribb, T.J., 2009. Ancestral xerophobia: a hypothesis on the whole plant ecophysiology of early angiosperms. Geobiology 7 (2), 237–264. https://doi.org/10.1111/j.1472-4669.2009.00189.x.

 
Guo, W., 2017. Magnesium homeostasis mechanisms and magnesium use efficiency in plants. In: Hossain, M.A., Kamiya, T., Burritt, D.J., Tran, L.-S.P., Fujiwara, T. (Eds.), Plant Macronutrient Use Efficiency. Academic Press, UK, pp. 197–213. https://doi.org/10.1016/b978-0-12-811308-0.00011-9.
 

Han, W., Fang, J., Reich, P.B., Woodward, F.I., Wang, Z., 2011. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol. Lett. 14 (8), 788–796. https://doi.org/10.1111/j.1461-0248.2011.01641.x.

 

Han, W., Chen, Y., Zhao, F., Tang, L., Jiang, R., Zhang, F., 2012. Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Glob. Ecol. Biogeogr. 21 (3), 376–382. https://doi.org/10.1111/j.1466-8238.2011.00677.x.

 

Hasanuzzaman, M., Bhuyan, M.H.M.B., Nahar, K., Hossain, M.S., Mahmud, J.A., Hossen, M.S., Masud, A.A.C., Moumita, Fujita, M., 2018. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8 (3), 31. https://doi.org/10.3390/agronomy8030031.

 
Holdridge, L.R., 1967. Life Zone Ecology. Tropical Science Center, San Jose.
 

Jiao, C., Zhang, J., Wang, X., He, N., 2023. Plant magnesium on the Qinghai–Tibetan Plateau: Spatial patterns and influencing factors. Sci. Total Environ. 862, 166073. https://doi.org/10.1016/j.scitotenv.2022.160743.

 

Jin, Y., Qian, H., 2019. V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359. https://doi.org/10.1111/ecog.04434.

 
Katzensteiner, K., Glatzel, G., 1997. Causes of magnesium deficiency in forest ecosystems. In: Hüttl, R.F., Schaaf, W. (Eds.), Magnesium Deficiency in Forest Ecosystems. Springer, Dordrecht, pp. 227–251. https://doi.org/10.1007/978-94-011-5402-4_6.
 

Kira, T., 1991. Forest ecosystems of east and southeast Asia in a global perspective. Ecol. Res. 6 (2), 185–200. https://doi.org/10.1007/BF02347161.

 

Larkindale, J., Knight, M.R., 2002. Production against heat stress induced oxidative damage in Arabidopsis involves calcium abscisic acid, ethylene and salicylic acid. Plant Physiol. 128 (2), 682–695. https://doi.org/10.1104/pp.010320.

 

Li, X., He, N., Li, X., Li, S., Li, M., 2021. Spatial variation in leaf potassium concentrations and its role in plant adaptation strategies. Ecol. Indicat. 130 (1), 108063. https://doi.org/10.1016/j.ecolind.2021.108063.

 

Li, Y., He, W., Wu, J., Zhao, P., Chen, T., Zhu, L., Ouyang, L., Ni, G., Hölscher, D., 2021. Leaf stoichiometry is synergistically-driven by climate, site, soil characteristics and phylogeny in karst areas, Southwest China. Biogeochemistry 155, 283–301. https://doi.org/10.1007/s10533-021-00826-3.

 

Ma, H., Crowther, T.W., Mo, L., Maynard, D.S., Renner, S.S., van den Hoogen, J., Zou, Y., Liang, J.J., de-Miguel, S., Nabuurs, G.-J., Reich, P.B., Niinemets, Ü., Abegg, M., Yao, Y.C.A., Alberti, G., Zambrano, A.M.A., Alvarado, B.V., Alvarez-Dávila, E., Alvarez-Loayza, P., Alves, L.F., Ammer, C., Antón-Fernández, C., Araujo-Murakami, A., Arroyo, L., Avitabile, V., Aymard, G.A., Baker, T.R., Bałazy, R., Banki, O., Barroso, J.G., Bastian, M.L., Bastin, J.-F., Birigazzi, L., Birnbaum, P., Bitariho, R., Boeckx, P., Bongers, F., Bouriaud, O., Brancalion, P.H.S., Brandl, S., Brearley, F.Q., Brienen, R., Broadbent, E.N., Bruelheide, H., Bussotti, F., Cazzolla Gatti, R., César, R.G., Cesljar, G., Chazdon, R., Chen, H.Y.H., Chisholm, C., Cho, H.,Cienciala, E., Clark, C., Clark, D., Colletta, G.D., Coomes, D.A., Valverde, F.C., Corral-Rivas, J.J., Crim, P.M., Cumming, J.R., Dayanandan, S., de Gasper, A.L., Decuyper, M., Derroire, G., DeVries, B., Djordjevic, I., Dolezal, J., Dourdain, A., Engone Obiang, N.L., Enquist, B.J., Eyre, T.J., Fandohan, A.B., Fayle, T.M., Feldpausch, T.R., Ferreira, L.V., Finér, L., Fischer, M., Fletcher, C., Fridman, J., Frizzera, L., Gamarra, J.G.P., Gianelle, D., Glick, H.B., Harris, D.J., Hector, A., Hemp, A., Hengeveld, G., Hérault, B., Herbohn, J.L., Herold, M., Hillers, A., Coronado, E.N.H., Hui, C., Ibanez, T.T., Amaral, I., Imai, N., Jagodziński, A.M., Jaroszewicz, B., Johannsen, V.K., Joly, C.A., Jucker, T., Jung, I., Karminov, V., Kartawinata, K., Kearsley, E., Kenfack, D., Kennard, D.K., Kepfer-Rojas, S., Keppel, G., Khan, M.L., Killeen, T.J., Kim, H.S., Kitayama, K., Köhl, M., Korjus, H., Kraxner, F., Kucher, D., Laarmann, D., Lang, M., Lewis, S.L., Lu, H., Lukina, N.V., Maitner, B.S., Malhi, Y., Marcon, E., Marimon, B.S., Marimon-Junior, B.H., Marshall, A.R., Martin, E.H., Meave, J.A., Melo-Cruz, O., Mendoza, C., Merow, C., Mendoza, A.M., Moreno, V.S., Mukul, S.A., Mundhenk, P., Nava-Miranda, M.G., Neill, D., Neldner, V.J., Nevenic, R.V., Ngugi, M.R., Niklaus, P.A., Oleksyn, J., Ontikov, P., Ortiz-Malavasi, E., Pan, Y., Paquette, A., Parada-Gutierrez, A., Parfenova, E.I., Park, M., Parren, M., Parthasarathy, N., Peri, P.L., Pfautsch, S., Phillips, O.L., Picard, N., Piedade, M.T.F., Piotto, D., Pitman, N.C.A., Mendoza-Polo, I., Poulsen, A.D., Poulsen, J.R., Pretzsch, H., Arevalo, F.R., Restrepo-Correa, Z., Rodeghiero, M., Rolim, S.G., Roopsind, A., Rovero, F., Rutishauser, E., Saikia, P., Salas-Eljatib, C., Saner, P., Schall, P., Schelhaas, M.-J., Schepaschenko, D., Scherer-Lorenzen, M., Schmid, B., Schöngart, J., Searle, E.B., Seben, V., Serra-Diaz, J.M., Sheil, D., Shvidenko, A.Z., Silva-Espejo, J.E., Silveira, M., Singh, J., Sist, P., Slik, F., Sonké, B., Souza, A.F., Miścicki, S., Stereńczak, K.J., Svenning, J.-C., Svoboda, M., Swanepoel, B., Targhetta, N., Tchebakova, N., ter Steege, H., Thomas, R., Tikhonova, E., Umunay, P.M., Usoltsev, V.A., Valencia, R., Valladares, F., van der Plas, F., Van Do, T., van Nuland, M.E., Vasquez, R.M., Verbeeck, H., Viana, H., Vibrans, A.C., Vieira, S., von Gadow, K., Wang, H.-F., Watson, J.V., Werner, G.D.A., Westerlund, B., Wiser, S.K., Wittmann, F., Woell, H., Wortel, V., Zagt, R., Zawiła-Niedźwiecki, T., Zhang, C., Zhao, X., Zhou, M., Zhu, Z., Zo-Bi, I.C., Zohner, C.M., 2023. The global biogeography of tree leaf form and habit. Nat. Plants 9, 1795–1809. https://doi.org/10.1038/s41477-023-01543-5.

 

Maathuis, F.J.M., Diatloff, E., 2013. Roles and functions of plant mineral nutrients. Methods Mol. Biol. 953, 1–21. https://doi.org/10.1007/978-1-62703-152-3_1.

 

Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L.L., Hernández-Hernández, T., 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207 (2), 437–453. https://doi.org/10.1111/nph.13264.

 

Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, D., Jombart, T., Schiffers, K, Thuiller, W., 2012. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756. https://doi.org/10.1111/j.2041-210X.2012.00196.x.

 

Oddo, E., Inzerillo, S., La Bella, F., Grisafi, F., Salleo, S., Nardini, A., Goldstein, G., 2011. Short-term effects of potassium fertilization on hydraulic conductance of Laurus nobilis L. Tree Physiol. 31 (2), 131–138. https://doi.org/10.1093/treephys/tpq115.

 

Pagel, M., 1999. Inferring the historical patterns of biological evolution. Nature 401, 877–884. https://doi.org/10.1038/44766.

 

Patric, A., Rainer, B., Anna, A., 2004. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 136 (1), 2556–2576. https://doi.org/10.1104/pp.104.046482.

 

Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca, S., Obersteiner, M., Janssens, I.A., 2013. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934. https://doi.org/10.1038/ncomms3934.

 

Pérez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., Urcelay, C., Veneklaas, E.J., Reich, P.B., Poorter, L., Wright, I.J., Ray, P., Enrico, L., Pausas, J.G., De Vos, A.C., Buchmann, N., Funes, G., Quétier, F., Hodgson, J.G., Thompson, K., Morgan, H.D., Ter Steege, H., Van Der Heijden, M.G.A., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M.V., Conti, G., Staver, A.C., Aquino, S., Cornelissen, J.H.C., 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61 (3), 167–234. https://doi.org/10.1071/BT12225.

 
Ran, Y., Li, X., 2019. Plant functional types map in China (1 km). National Tibetan Plateau/Third Pole Environment Data Center. https://doi.org/10.11888/Ecolo.tpdc.270101 (Accessed 10 December 2023).
 
R Development Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. (Accessed 10 December 2023).
 

Reich, P.B., Oleksyn, J., 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 101 (30), 11001–11006. https://doi.org/10.1073/pnas.0403588101.

 

Sardans, J., Alonso, R., Carnicer, J., Fernández-Martínez, M., Vivanco, M.G., Peñuelas, J., 2016. Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Perspect. Plant Ecol. Evol. Systemat. 18, 52–69. https://doi.org/10.1016/j.ppees.2016.01.001.

 

Sardans, J., Janssens, I.A., Alonso, R., Veresoglou, S.D., Rillig, M.C., Sanders, T.G.M., Carnicer, J., Filella, I., Farré-Armengol, G., Peñuelas, J., 2015. Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Glob. Ecol. Biogeogr. 24 (2), 240–255. https://doi.org/10.1111/geb.12253.

 

Sardans, J., Peñuelas, J., 2015. Potassium: a neglected nutrient in global change. Glob. Ecol. Biogeogr. 24 (3), 261–275. https://doi.org/10.1111/geb.12259.

 

Sardans, J., Peñuelas, J., Coll, M., Vayreda, J., Rivas-Ubach, A., 2012. Stoichiometry of potassium is largely determined by water availability and growth in Catalonian forests. Funct. Ecol. 26 (5), 1077–1089. https://doi.org/10.1111/j.1365-2435.2012.02023.x.

 

Sanders, D., Pelloux, J., Brownlee, C., Harper, J.F., 2002. Calcium at the crossroads of signaling. Plant Cell 14 (S1), S401–S417. https://doi.org/10.1105/tpc.002899.

 

Sterner, R.W., Elser, J.J., 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, NJ.

 

Tian, D., Yan, Z., Niklas, K.J., Han, W., Kattge, J., Reich, P.B., Luo, Y., Chen, Y., Tang, Z., Hu, H., Wright, I.J., Schmid, B., Fang, J., 2018. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. Natl. Sci. Rev. 5 (5), 728–739. https://doi.org/10.1093/nsr/nwx142.

 

Tian, X., He, D., Bai, S., Zeng, W., Wang, Z., Wang, M., Wu, L., Chen, Z., 2021. Physiological and molecular advances in magnesium nutrition of plants. Plant Soil 468 (1–2), 1–17. https://doi.org/10.1007/s11104-021-05139-w.

 

Tränkner, M., Tavakol, E., Jákli, B., 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plantarum 163 (3), 414–431. https://doi.org/10.1111/ppl.12747.

 

Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F., Jackson, R.B., 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82 (2), 205–220. https://doi.org/10.1890/11-0416.1.

 

Wei, S., Dai, Y., Duan, Q., Liu, B., Yuan, H., 2014. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 6 (1), 249–263. https://doi.org/10.1002/2013MS000293.

 

Wild, A., Skarlou, V., Clement, C.R., Snaydon, R.W., 1974. Comparison of potassium uptake by four plant species grown in sand and in flowing solution culture. J. Appl. Ecol. 11 (2), 801–812. https://doi.org/10.2307/2402229.

 

Xie, Y., Li, F., Xie, Y., 2023. Contrasting global patterns and trait controls of major mineral elements in leaf. Glob. Ecol. Biogeogr. 32 (8), 1452–1461. https://doi.org/10.1111/geb.13697.

 

Yang, T., Cui, G., Luo, Z., 2004. Advances in the study of calcium and plant stress tolerance. Crop Research 5, 380–384.

 

Zhang, M., Luo, Y., Yan, Z., Chen, J., Eziz, A., Li, K., Han, W., 2019. Resorptions of 10 mineral elements in leaves of desert shrubs and their contrasting responses to aridity. J. Plant Ecol. 12 (2), 358–366. https://doi.org/10.1093/jpe/rty034.

 

Zhang, P., Lü, X., Li, M., Wu, T., Jin, G., 2022. N limitation increases along a temperate forest succession: evidences from leaf stoichiometry and nutrient resorption. J. Plant Ecol. 15 (5), 1021–1035. https://doi.org/10.1093/jpe/rtac017.

 

Zhang, S., Zhang, J., Slik, J.W.F., Cao, K., 2012. Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Glob. Ecol. Biogeogr. 21 (8), 809–818. https://doi.org/10.1111/j.1466-8238.2011.00729.x.

 

Zhao, N., Yu, G., He, N., Wang, Q., Guo, D., Zhang, X., Wang, R., Xu, Z., Jiao, Cui, Li, N., Jia, Y., 2016. Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Glob. Ecol. Biogeogr. 25 (3), 359–367. https://doi.org/10.1111/geb.12427.

 

Zheng, D., 2008. Research on China's Ecological Geography Regional System. Commercial Press, Beijing.

Forest Ecosystems
Article number: 100193
Cite this article:
Shi Z, Liu S, Chen Y, et al. The unimodal latitudinal pattern of K, Ca and Mg concentration and its potential drivers in forest foliage in eastern China. Forest Ecosystems, 2024, 11(3): 100193. https://doi.org/10.1016/j.fecs.2024.100193

51

Views

2

Downloads

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 27 November 2023
Revised: 31 March 2024
Accepted: 31 March 2024
Published: 06 April 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return