AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Twenty years of population dynamics in European beech-oak forest at their rear range margin anticipate changes in its structure and composition

Álvaro Rubio-Cuadradoa( )Iciar AlberdiaIsabel CañellasaFernando MontesaJesús Rodríguez-CalcerradabRosana LópezbGuillermo G. GordalizabMaría Valbuena-CarabañabNikos NanoscRamón PereabLuis Gilb
Departamento de dinámica y gestión forestal, Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Ctra. La Coruña km 7.5, 28040, Madrid, Spain
Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, 28040, Madrid, Spain
School of Forestry and Natural Environment, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
Show Author Information

Abstract

There is an increasing interest in restoring degraded forests, which occupy half of the forest areas. Among the forms of restoration, passive restoration, which involves the elimination of degrading factors and the free evolution of natural dynamics by applying minimal or no management, is gaining attention. Natural dynamics is difficult to predict due to the influence of multiple interacting factors such as climatic and edaphic conditions, composition and abundance of species, and the successional character of these species. Here, we study the natural dynamics of a mixed forest located in central Spain, which maintained an open forest structure, due to intensive use, until grazing and cutting were banned in the 1960s. The most frequent woody species in this forest are Fagus sylvatica, Quercus petraea, Quercus pyrenaica, Ilex aquifolium, Sorbus aucuparia, Sorbus aria and Prunus avium, with contrasting shade and drought tolerance. These species are common in temperate European deciduous forest and are found here near their southern distribution limit, except for Q. pyrenaica. In order to analyze forest dynamics and composition, three inventories were carried out in 1994, 2005 and 2015. Our results show that, despite the Mediterranean influence, the natural dynamics of this forest has been mainly determined by different levels of shade tolerance. After the abandonment of grazing and cutting, Q. pyrenaica expanded rapidly due to its lower shade tolerance, whereas after canopy closure and forest densification, shade-tolerant species gained ground, particularly F. sylvatica, despite its lower drought and late-frost tolerance. If the current dynamics continue, F. sylvatica will overtake the rest of the species, which will be relegated to sites with shallow soils and steep slopes. Simultaneously, all the multi-centennial beech trees, which are undergoing a rapid mortality and decline process, will disappear.

References

 

Aldea, J., Bravo, F., Bravo-Oviedo, A., Ruiz-Peinado, R., Rodríguez, F., del Río, M., 2017. Thinning enhances the species-specific radial increment response to drought in Mediterranean pine-oak stands. Agric. For. Meteorol. 237-238, 371-383. https://doi.org/10.1016/J.AGRFORMET.2017.02.009.

 

Aranda, I., Gil, L., Pardos, J.A., 2000. Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees (Berl.) 14, 344-352. https://doi.org/10.1007/s004680050229.

 

Aranda, I., Gil, L., Pardos, J.A., 2005. Seasonal changes in apparent hydraulic conductance and their implications for water use of European beech (Fagus sylvatica L.) and sessile oak [Quercus petraea (Matt.) Liebl] in South Europe. Plant Ecol. 179, 155-167. https://doi.org/10.1007/s11258-004-7007-1.

 

Aranda, I., Cano, F.J., Gasco, A., Cochard, H., Nardini, A., Mancha, J.A., López, R., Sánchez-Gómez, D., 2015. Variation in photosynthetic performance and hydraulic architecture across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water stress. Tree Physiol. 35, 34-46. https://doi.org/10.1093/treephys/tpu101.

 

Arrieta, S., Suárez, F., 2001. Seedling diversity and spatially related regeneration dynamics in holly woodlands and surrounding habitats. Web. Ecol. 2, 38-46. https://doi.org/10.5194/we-2-38-2001.

 

Arrieta, S., Suárez, F., 2005. Spatial dynamics of Ilex aquifolium populations seed dispersal and seed bank: Understanding the first steps of regeneration. Plant Ecol. 177, 237-248. https://doi.org/10.1007/s11258-005-2186-y.

 

Atkinson, J., Bonser, S.P. 2020. "Active" and "passive" ecological restoration strategies in meta-analysis. Restor. Ecol. 28, 1032-1035. https://doi.org/10.1111/rec.13229.

 
Bravo, J.A., Roig, S., Serrada, R., 2008. Selvicultura en montes bajos y medios de Q. ilex L. Q. pyrenaica Willd. y Q. faginea Lam. In: Serrada, R., Montero, G., Reque, J.A. (Eds.), Compendio de Selvicultura Aplicada en España. INIA, Madrid, Spain.
 

Buma, B., Wessman, C.A., 2013. Forest resilience, climate change, and opportunities for adaptation: A specific case of a general problem. For. Ecol. Manag. 306, 216-225. https://doi.org/10.1016/j.foreco.2013.06.044.

 

Camarero, J.J., Gazol, A., Sangüesa-Barreda, G., et al., 2015. To die or not to die: early warnings of tree dieback in response to a severe drought. J. Ecol. 103, 44-57. https://doi.org/10.1111/1365-2745.12295.

 

Camisón, Á., Miguel, R., Marcos, J.L., Revilla, J., Tardáguila, M.A., Hernández, D., Lakicevic, M., Jovellar, L.C., Silla, F., 2015. Regeneration dynamics of Quercus pyrenaica Willd: In the Central System (Spain). For. Ecol. Manag. 343, 42-52. https://doi.org/10.1016/j.foreco.2015.01.023.

 

Cañellas, I., Del Río, M., Roig, S., Montero, G., 2004. Growth response to thinning in Quercus pyrenaica Willd. coppice stands in Spanish central mountain. Ann. For. Sci. 61, 243-250. https://doi.org/10.1051/forest:2004017.

 

Carpio, A.J., Apollonio, M., Acevedo, P., 2021. Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mamm. Rev. 51, 95-108. https://doi.org/10.1111/mam.12221.

 

Castillo, P., Vovlas, N., Troccoli, A., Liébanas, G., Rius, J.E.P., Landa, B.B., 2009. A new root-knot nematode, Meloidogyne silvestris n. sp. (Nematoda: Meloidogynidae), parasitizing European holly in northern Spain. Plant Pathol. 58, 606-619. https://doi.org/10.1111/j.1365-3059.2008.01991.x.

 

Cavin, L., Jump, A.S., 2017. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob. Chang. Biol. 23, 362-379. https://doi.org/10.1111/gcb.13366.

 

de Madariaga, J. Á., 1909. El hayedo más meridional. Rev. Montes. 788, 769-775.

 

de Tomás Marín, S., Rodríguez-Calcerrada, J., Arenas-Castro, S., Prieto, I., González, G., Gil, L., de la Riva, E.G., 2023. Fagus sylvatica and Quercus pyrenaica: Two neighbors with few things in common. For. Ecosyst. 10, 100097. https://doi.org/10.1016/j.fecs.2023.100097.

 

Diaci, J., Rozman, J., Rozman, A., 2020. Regeneration gap and microsite niche partitioning in a high alpine forest: Are Norway spruce seedlings more drought-tolerant than beech seedlings? For. Ecol. Manag. 455, 117688. https://doi.org/10.1016/j.foreco.2019.117688.

 

Diekmann, M., Michaelis, J., Pannek, A., 2015. Know your limits - The need for better data on species responses to soil variables. Basic Appl. Ecol. 16, 563-572.

 

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitao, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D., Lautenbach, S., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x.

 
FAO, 2020. Global forest resources assessment 2020. Main report. Rome, Italy.
 

Fox, J., Weisberg, S., 2011. An R Companion to Applied Regression, Second. SAGE Publications, Inc, Thousand Oaks, USA.

 

Gazol, A., Sangüesa-Barreda, G., Camarero, J.J., 2020. Forecasting forest vulnerability to drought in Pyrenean silver fir forests showing dieback. Front. For. Glob. Chang. 3, 36. https://doi.org/10.3389/ffgc.2020.00036.

 

Gea-Izquierdo, G., Montes, F., Gavilán, R.G., Cañellas, I., Rubio, A., 2015. Is this the end? Dynamics of a relict stand from pervasively deforested ancient Iberian pine forests. Eur. J. For. Res. 134, 525-536. https://doi.org/10.1007/s10342-015-0869-z.

 

Gil, L., Náager, J.A., Aranda, G.I., Doncel, I.G., Jimenez, J.G., Heredia, U.L., Milleron, M., Nanos, N., Garcia-Calvo, R.P.G., Calcerrada, J.R., Carabana, M.V., 2009. El Hayedo de Montejo: una gestión sostenible. Comunidad de Madrid, Madrid, España.

 

Giuggiola, A., Kuster, T.M., Saha, S., 2010. Drought-induced mortality of Scots pines at the southern limits of its distribution in Europe: Causes and consequences. IForest 3, 95-97.

 

Hampe, A., Petit, R.J., 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461-467. https://doi.org/10.1111/j.1461-0248.2005.00739.x.

 

Hein, S., Dhôte, J. -F., 2006. Effect of species composition, stand density and site index on the basal area increment of oak trees (Quercus sp.) in mixed stands with beech (Fagus sylvatica L.) in northern France. Ann. For. Sci. 63, 457-467. https://doi.org/10.1051/forest:2006026.

 

Knapp, B.O., Pallardy, S.G., 2018. Forty-eight years of forest succession: tree species change across four forest types in mid-Missouri. Forests 9, 633. https://doi.org/10.3390/f9100633.

 

Ledo, A., Montes, F., Condes, S., 2009. Species dynamics in a montane cloud forest: Identifying factors involved in changes in tree diversity and functional characteristics. For. Ecol. Manag. 258, S75-S84. https://doi.org/10.1016/j.foreco.2009.07.055.

 

Ligot, G., Balandier, P., Fayolle, A., Lejeune, P., Claessens, H., 2013. Height competition between Quercus petraea and Fagus sylvatica natural regeneration in mixed and uneven-aged stands. For. Ecol. Manag. 304, 391-398. https://doi.org/10.1016/j.foreco.2013.05.050.

 

López Santalla, A., Pardo Navarro, F., Alonso Náger, J., Gil Sánchez, L., 2003. El aprovechamiento tradicional del monte y sus efectos sobre la vegetacion en el Hayedo de Montejo (Madrid). Cuad. Soc. Esp. Cien. For. 16, 109-114.

 

Lorimer, C.G., Chapman, J.W., Lambert, W.D., 1994. Tall understorey vegetation as a factor in the poor development of oak seedlings beneath mature stands. J. Ecol. 82, 227. https://doi.org/10.2307/2261291.

 

Lüdecke, D., Ben-Shachar, M.S., Patil, I., Philip, W., Makowshi, D., 2021. performance: an R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 1, 3139. https://doi.org/10.21105/joss.03139.

 

Manso, R., Morneau, F., Ningre, F., Fortin, M., 2015. Effect of climate and intra- and inter-specific competition on diameter increment in beech and oak stands. Forestry 88, 540-551. https://doi.org/10.1093/forestry/cpv020.

 

Marchetti, M., Vizzarri, M., Sallustio, L., di Cristofaro, M., Lasserre, B., Lombardi, F., Giancola, C., Perone, A., Simpatico, A., Santopuoli, G., 2018. Behind forest cover changes: is natural regrowth supporting landscape restoration? Findings from Central Italy. Plant Biosyst. 152, 524-535. https://doi.org/10.1080/11263504.2018.1435585.

 

Martín-Forés, I., Magro, S., Bravo-Oviedo, A., Alfaro-Sánchez, R., Espelta, J.M., Frei, T., Valdés-Correcher, E., Rodríguez Fernández-Blanco, C., Winkel, G., Gerzabek, G., González-Martínez, S.C., Hampe, A., Valladares, F., 2020. Spontaneous forest regrowth in South-West Europe: Consequences for nature's contributions to people. People Nat. 2, 980-994. https://doi.org/10.1002/pan3.10161.

 

Masaki, T., Osumi, K., Takahashi, K., Hozshizaki, K., 2005. Seedling dynamics of Acer mono and Fagus crenata: An environmental filter limiting their adult distributions. Plant Ecol. 177, 189-199.

 

McCarthy, J., 2001. Gap dynamics of forest trees: A review with particular attention to boreal forests. Environ. Rev. 9, 1-59.

 

McGregor, R.R., Sakalidis, M.L., Hamelin, R.C., 2016. Neofusicoccum arbuti: A hidden threat to Arbutus menziesii characterized by widespread latent infections and a broad host range. Can. J. Plant Pathol. 38, 70-81. https://doi.org/10.1080/07060661.2015.1135476.

 

Mellanby, K., 1968. The effects of some mammals and birds on regeneration of oak. J. Appl. Ecol. 5, 359. https://doi.org/10.2307/2401566.

 

Minnemayer, S., Laestadius, L., Sizer, N., 2011. A World of Opportunity. Washington, DC., USA.

 

Montes, F., Cañellas, I., del Río, M., Calama, R., Montero, G., 2004. The effects of thinning on the structural diversity of coppice forests. Ann. For. Sci. 61, 771-779. https://doi.org/10.1051/forest:2004074.

 

Moreno-Fernández, D., Aldea, J., Gea-Izquierdo, G., Cañellas, I., Martín-Benito, D., 2021. Influence of climate and thinning on Quercus pyrenaica Willd. coppices growth dynamics. Eur. J. For. Res. 140, 187-197. https://doi.org/10.1007/s10342-020-01322-3.

 

Muffler, L., Weigel, R., Hacket-Pain, A.J., Klisz, M., van der Maaten, E., Wilmking, M., Kreyling, J., van der Maaten-Theunissen, M., 2020. Lowest drought sensitivity and decreasing growth synchrony towards the dry distribution margin of European beech. J. Biogeogr. https://doi.org/10.1111/jbi.13884.

 

Niinemets, Ü., Valladares, F., 2006. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol. Monogr. 76, 521-547. https://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2.

 

Oliva, J., Colinas, C., 2007. Decline of silver fir (Abies alba Mill.) stands in the Spanish Pyrenees: Role of management, historic dynamics and pathogens. For. Ecol. Manag. 252, 84-97. https://doi.org/10.1016/j.foreco.2007.06.017.

 

Pardo, F., Gil, L., 2005. The impact of traditional land use on woodlands: a case study in the Spanish Central System. J. Hist. Geogr. 31, 390-408. https://doi.org/10.1016/J.JHG.2004.11.002.

 

Pardo, F., Gil, L., Pardos, J.A., 1997. Field study of beech (Fagus sylvatica L.) and melojo oak (Quercus pyrenaica Willd) leaf litter decomposition in the centre of the Iberian Peninsula. Plant Soil 191, 89-100. https://doi.org/10.1023/A:1004237305438.

 

Perea, R., López-Sánchez, A., Pallarés, J., Gordaliza, G.G., González-Doncel, I., Gil, L., Rodríguez-Calcerrada, J., 2020. Tree recruitment in a drought- and herbivory-stressed oak-beech forest: Implications for future species coexistence. For. Ecol. Manag. 477, 118489. https://doi.org/10.1016/j.foreco.2020.118489.

 

Petritan, I.C., Marzano, R., Petritan, A.M., Lingua, E., 2014. Overstory succession in a mixed Quercus petraea-Fagus sylvatica old growth forest revealed through the spatial pattern of competition and mortality. For. Ecol. Manag. 326, 9-17. https://doi.org/10.1016/j.foreco.2014.04.017.

 

Petritan, A.M., Bouriaud, O., Frank, D.C., Petritan, I.C., 2017. Dendroecological reconstruction of disturbance history of an old-growth mixed sessile oak-beech forest. J. Veg. Sci. 28, 117-127. https://doi.org/10.1111/jvs.12460.

 

Piovesan, G., Biondi, F., Di Filippo, A., Alessandrini, A., Maugeri, M., 2008. Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob. Chang Biol. 14, 1265-1281. https://doi.org/10.1111/j.1365-2486.2008.01570.x.

 
R Development Core Team, 2022. R: a language and environment for statistical computing. http://www.R-project.org/. (Accessed 2 September 2023).
 

Rodríguez-Calcerrada, J., Pardos, J.A., Gil, L., Aranda, I., 2007. Summer field performance of Quercus petraea (Matt.) Liebl and Quercus pyrenaica Willd seedlings, planted in three sites with contrasting canopy cover. New For. 33, 67-80. https://doi.org/10.1007/s11056-006-9014-7.

 

Rodríguez-Calcerrada, J., Pardos, J.A., Gil, L., Reich, P.B., Aranda, I., 2008. Light response in seedlings of a temperate (Quercus petraea) and a sub-Mediterranean species (Quercus pyrenaica): Contrasting ecological strategies as potential keys to regeneration performance in mixed marginal populations. Plant Ecol. 195, 273-285. https://doi.org/10.1007/s11258-007-9329-2.

 

Rodríguez-Calcerrada, J., Cano, F.J., Valbuena-Carabaña, M., Gil, L., Aranda, I., 2010. Functional performance of oak seedlings naturally regenerated across microhabitats of distinct overstorey canopy closure. New For. 39, 245-259. https://doi.org/10.1007/s11056-009-9168-1.

 

Rodríguez-Calcerrada, J., López, R., Salomón, R., Gordaliza, G.G., Valbuena-Carabana, M., Oleksyn, J., Gil, L., 2015. Stem CO2 efflux in six co-occurring tree species: underlying factors and ecological implications. Plant Cell Environ. 38, 1104-1115. https://doi.org/10.1111/pce.12463.

 

Rodríguez-Calcerrada, J., Salomón, R.L., Gordaliza, G.G., Miranda, J.C., Miranda, E., de la Riva, E.G., Gil, L., 2019. Respiratory costs of producing and maintaining stem biomass in eight co-occurring tree species. Tree Physiol. 39, 1838-1854. https://doi.org/10.1093/TREEPHYS/TPZ069.

 

Rubio-Cuadrado, Á., Camarero, J.J., del Río, M., Sánchez-González, M., Ruiz-Peinado, R., Bravo-Oviedo, A., Gil, L., Montes, F., 2018. Drought modifies tree competitiveness in an oak-beech temperate forest. For. Ecol. Manag. 429, 7-17. https://doi.org/10.1016/j.foreco.2018.06.035.

 

Rubio-Cuadrado, Á., Camarero, J.J., Gordaliza, G.G., Cerioni, M., Montes, F., Gil, L., 2020a. Competition overrides climate as trigger of growth decline in a mixed Fagaceae Mediterranean rear-edge forest. Ann. For. Sci. 77, 1-18. https://doi.org/10.1007/s13595-020-01004-5.

 
Rubio-Cuadrado, Á., Camarero Martínez, J.J., Gonzalez Gordaliza, G.J., Matteo, C., Fernando, M., Sanchez, G., Alfonso, L., 2020b. Datos de dendrocronología y competencia de El Hayedo de Montejo. e-cienciaDatos V1. https://doi.org/10.21950/VEQWPI. (Accessed 2 September 2023).
 

Rubio-Cuadrado, Á., Camarero, J.J., Rodríguez-Calcerrada, J., Perea, R., Gómez, C., Montes, F., Gil, L., 2021a. Impact of successive spring frosts on leaf phenology and radial growth in three deciduous tree species with contrasting climate requirements in central Spain. Tree Physiol. 41, 2279-2292. https://doi.org/10.1093/TREEPHYS/TPAB076.

 

Rubio-Cuadrado, Á., Gómez, C., Rodríguez-Calcerrada, J., Perea, R., Gordaliza, G.G., Camarero, J.J., Montes, F., Gil, L., 2021b. Differential response of oak and beech to late frost damage: an integrated analysis from organ to forest. Agric. For. Meteorol. 297, 108243. https://doi.org/10.1016/j.agrformet.2020.108243.

 

Salomón, R., Valbuena-Carabaña, M., Gil, L., Gonzalez-Doncel, I., 2013. Clonal structure influences stem growth in Quercus pyrenaica Willd. coppices: Bigger is less vigorous. For. Ecol. Manag. 296, 108-118. https://doi.org/10.1016/j.foreco.2013.02.011.

 

Salomón, R., Rodríguez-Calcerrada, J., Zafra, E., Morales-Molino, C., Rodríguez-García, A., González-Doncel, I., Oleksyn, J., Zytkowiak, R., López, R., Miranda, J.C., Gil, L., Valbuena-Carabaña, M., 2016. Unearthing the roots of degradation of Quercus pyrenaica coppices: A root-to-shoot imbalance caused by historical management? For. Ecol. Manag. 363, 200-211. https://doi.org/10.1016/j.foreco.2015.12.040.

 

Salomón, R., Rodríguez-Calcerrada, J., González-Doncel, I., Gil, L., Valbuena-Carabaña, M., 2017. On the general failure of coppice conversion into high forest in Quercus pyrenaica stands: a genetic and physiological approach. Folia Geobot. 52, 101-112. https://doi.org/10.1007/s12224-016-9257-9.

 

Sánchez de Dios, R., Hernández, L., Montes, F., Sainz-Ollero, H., Cañellas, I., 2016. Tracking the leading edge of Fagus sylvatica in North-Western Iberia: Holocene migration inertia, forest succession and recent global change. Perspect. Plant Ecol. Evol. Syst. 20, 11-21. https://doi.org/10.1016/j.ppees.2016.03.001.

 

Sánchez de Dios, R., Gómez, C., Aulló, I., Cañellas, I., Gea-Izquierdo, G., Montes, F., Sainz-Ollero, H., Velázquez, J.C., Hernández, L., 2020. Fagus sylvatica L. peripheral populations in the Mediterranean Iberian Peninsula: climatic or anthropic relicts? Ecosystems 1-16. https://doi.org/10.1007/s10021-020-00513-8.

 

Sangüesa-Barreda, G., Di Filippo, A., Piovesan, G., Rozas, V., Di Fiore, L., García-Hidalgo, M., Garcia-Cervigon, A.I., Muñoz-Garachana, D., Baliva, M., Olano, J.M., 2021. Warmer springs have increased the frequency and extension of late-frost defoliations in southern European beech forests. Sci. Total Environ. 775, 145860. https://doi.org/10.1016/j.scitotenv.2021.145860.

 

Shaw, M.W., 1968. Factors affecting the natural regeneration of sessile oak (Quercus petraea) in North Wales: I. A preliminary study of acorn production, viability and losses. J. Ecol. 56, 565. https://doi.org/10.2307/2258251.

 

Shibata, M., Nakashizuka, T., 1995. Seed and seedling demography of four co-occurring Carpinus species in a temperate deciduous forest. Ecology 76, 1099-1108. https://doi.org/10.2307/1940918.

 

Stoyan, D., Stoyan, H., 1994. Fractals, Random Shapes, and Point Fields: Methods of Geometrical Statistics. Wiley, New York, USA.

 

Tegel, W., Seim, A., Hakelberg, D., Hoffmann, S., Panev, M., Westphal, T., Buntgen, U., 2014. A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur. J. For. Res. 133, 61-71. https://doi.org/10.1007/s10342-013-0737-7.

 

Valbuena-Carabaña, M., González-Martínez, S.C., Gil, L., 2008. Coppice forests and genetic diversity: A case study in Quercus pyrenaica Willd. from Central Spain. For. Ecol. Manag. 254, 225-232. https://doi.org/10.1016/J.FORECO.2007.08.001.

 

Van Couwenberghe, R., Gégout, J. -C., Lacombe, E., Collet, C., 2013. Light and competition gradients fail to explain the coexistence of shade-tolerant Fagus sylvatica and shade-intermediate Quercus petraea seedlings. Ann. Bot. 112, 1421-1430. https://doi.org/10.1093/aob/mct200.

 

Vega, C., Fernández, V., Gil, L., Valbuena-Carabaña, M., 2022. Clonal diversity and fine-scale genetic structure of a keystone species: Ilex aquifolium. Forests 13, 1431. https://doi.org/10.3390/f13091431.

 

Venables, B., Riplley, B., 2002. Modern Applied Statistics with S, fourth ed. Springer, Verlag, New York, USA.

 

Walthert, L., Meier, E.S., 2017. Tree species distribution in temperate forests is more influenced by soil than by climate. Ecol. Evol. 7, 9473-9484. https://doi.org/10.1002/ece3.3436.

 

Yaussy, D.A., Iverson, L.R., Matthews, S.N., 2013. Competition and climate affects US hardwood-forest tree mortality. For. Sci. 59, 416-430. https://doi.org/10.5849/forsci.11-047.

 

Zeileis, A., Kleiber, C., Jackman, S., 2008. Regression models for count data in R. J. Stat. Softw. 27, 1-25. https://doi.org/10.18637/jss.v027.i08.

Forest Ecosystems
Article number: 100197
Cite this article:
Rubio-Cuadrado Á, Alberdi I, Cañellas I, et al. Twenty years of population dynamics in European beech-oak forest at their rear range margin anticipate changes in its structure and composition. Forest Ecosystems, 2024, 11(3): 100197. https://doi.org/10.1016/j.fecs.2024.100197

54

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 October 2023
Revised: 04 April 2024
Accepted: 13 April 2024
Published: 20 April 2024
© 2024 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return