AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The effects of data aggregation on long-term projections of forest stands development

Kobra Maleki( )Rasmus AstrupNicolas CattaneoWilson Lara HenaoClara Antón-Fernández
Norwegian Institute of Bioeconomy Research, Division of Forestry and Forest Resources, P.O. Box 115, Ås, NO-1431, Norway
Show Author Information

Abstract

Forest management planning often relies on Airborne Laser Scanning (ALS)-based Forest Management Inventories (FMIs) for sustainable and efficient decision-making. Employing the area-based (ABA) approach, these inventories estimate forest characteristics for grid cell areas (pixels), which are then usually summarized at the stand level. Using the ALS-based high-resolution Norwegian Forest Resource Maps (16 ​m ​× ​16 ​m pixel resolution) alongside with stand-level growth and yield models, this study explores the impact of three levels of pixel aggregation (stand-level, stand-level with species strata, and pixel-level) on projected stand development. The results indicate significant differences in the projected outputs based on the aggregation level. Notably, the most substantial difference in estimated volume occurred between stand-level and pixel-level aggregation, ranging from −301 to +253 ​m3·ha−1 for single stands. The differences were, on average, higher for broadleaves than for spruce and pine dominated stands, and for mixed stands and stands with higher variability than for pure and homogenous stands. In conclusion, this research underscores the critical role of input data resolution in forest planning and management, emphasizing the need for improved data collection practices to ensure sustainable forest management.

References

 

Antón-Fernández, C., Hauglin, M., Breidenbach, J., Astrup, R., 2023. Building a high-resolution site index map using boosted regression trees: the Norwegian case. Can. J. For. Res. 53, 416-429. https://doi.org/10.1139/cjfr-2022-0198.

 

Astrup, R., Rahlf, J., Bjørkelo, K., Debella-Gilo, M., Gjertsen, A.-K., Breidenbach, J., 2019. Forest information at multiple scales: development, evaluation and application of the Norwegian forest resources map SR16. Scand. J. Forest Res. 34, 484-496. https://doi.org/10.1080/02827581.2019.1588989.

 

Breidenbach, J., Granhus, A., Hylen, G., Eriksen, R., Astrup, R., 2020. A century of National Forest Inventory in Norway - informing past, present, and future decisions. For. Ecosyst. 7, 46. https://doi.org/10.1186/s40663-020-00261-0.

 

Breidenbach, J., Waser, L.T., Debella-Gilo, M., Schumacher, J., Rahlf, J., Hauglin, M., Puliti, S., Astrup, R., 2020b. National mapping and estimation of forest area by dominant tree species using Sentinel-2 data. Can. J. For. Res. 1-15. https://doi.org/10.1139/cjfr-2020-0170.

 

Dunn, P.K., Smyth, G.K., 2018. Generalized Linear Models with Examples in R. Springer, New York.

 

Eid, T., 2001. Models for prediction of basal area mean diameter and number of trees for forest stands in south-eastern Norway. Scand. J. Forest Res. 16, 467-479. https://doi.org/10.1080/02827580152632865.

 

Eid, T., Hobbelstad, K., 2000. AVVIRK-2000: a large-scale forestry scenario model for long-term investment, income and harvest analyses. Scand. J. Forest Res. 15, 472-482. https://doi.org/10.1080/028275800750172736.

 

Ekö, P.-M., Johansson, U., Petersson, N., Bergqvist, J., Elfving, B., Frisk, J., 2008. Current growth differences of Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and birch (Betula pendula and Betula pubescens) in different regions in Sweden. Scand. J. Forest Res. 23, 307-318. https://doi.org/10.1080/02827580802249126.

 

França, L. CdJ., Júnior, F.W.A., Jarochinski e Silva, C.S., Monti, C.A.U., Ferreira, T.C., Santana, C. JdO., Gomide, L.R., 2022. Forest landscape planning and management: a state-of-the-art review. Trees Forests People 8, 100275. https://doi.org/10.1016/j.tfp.2022.100275.

 
Gadow, K. von, Puumalainen, J., 2000. Scenario planning for sustainable forest management. In: Gadow, K. von, Pukkala, T., Tomé, M. (Eds.), Sustainable Forest Management, vol. 1. Springer, Netherlands, Dordrecht, pp. 319–356.
 

Gobakken, T., Næsset, E., 2002. Spruce diameter growth in young mixed stands of Norway spruce (Picea abies (L.) Karst.) and birch (Betula pendula Roth B. pubescens Ehrh.). Forest Ecol. Manag. 171, 297-308. https://doi.org/10.1016/S0378-1127(01)00790-3.

 

Hauglin, M., Rahlf, J., Schumacher, J., Astrup, R., Breidenbach, J., 2021. Large scale mapping of forest attributes using heterogeneous sets of airborne laser scanning and National Forest Inventory data. For. Ecosyst. 8, 65. https://doi.org/10.1186/s40663-021-00338-4.

 
Hynynen, J., Ojansuu, R., Hökkä, H., Siipilehto, J., Salminen, H., Haapala, P., 2002. Models for predicting stand development in MELA system. http://urn.fi/URN:ISBN:951-40-1815-X. (Accessed 20 January 2024).
 

Kangas, A., Astrup, R., Breidenbach, J., Fridman, J., Gobakken, T., Korhonen, K.T., Maltamo, M., Nilsson, M., Nord-Larsen, T., Næsset, E., Olsson, H., 2018. Remote sensing and forest inventories in Nordic countries – roadmap for the future. Scand. J. Forest Res. 33, 397-412. https://doi.org/10.1080/02827581.2017.1416666.

 

Linkevičius, E., Borges, J.G., Doyle, M., Pülzl, H., Nordström, E.-M., Vacik, H., Brukas, V., Biber, P., Teder, M., Kaimre, P., Synek, M., Garcia-Gonzalo, J., 2019. Linking forest policy issues and decision support tools in Europe. Forest Policy Econ 103, 4-16. https://doi.org/10.1016/j.forpol.2018.05.014.

 

Luther, J.E., Fournier, R.A., van Lier, O.R., Bujold, M., 2019. Extending ALS-based mapping of forest attributes with medium resolution satellite and environmental data. Remote Sens. 11, 1092. https://doi.org/10.3390/rs11091092.

 

Maleki, K., Kiviste, A., 2015. Effect of sample plot size and shape on estimates of structural indices: a case study in mature silver birch (Betula pendula Roth) dominating stand in Järvselja. For. Stud. 63, 130-150. https://doi.org/10.1515/fsmu-2015-0013.

 

Maleki, K., Astrup, R., Kuehne, C., McLean, J.P., Antón-Fernández, C., 2022. Stand-level growth models for long-term projections of the main species groups in Norway. Scand. J. Forest Res. 37, 130-143. https://doi.org/10.1080/02827581.2022.2056632.

 

Maltamo, M., 2014. Forestry Applications of Airborne Laser Scanning: Concepts and Case Studies, vol. 27. Springer, New York.

 
McDill, M.E., 2014. An overview of forest management planning and information management. In: Borges, J.G., Diaz-Balteiro, L., McDill, M.E., Rodriguez, L.C. (Eds.), The Management of Industrial Forest Plantations, vol. 33. Springer, Netherlands, Dordrecht, pp. 27–59.
 

Næsset, E., 2002. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 80, 88-99. https://doi.org/10.1016/S0034-4257(01)00290-5.

 

Næsset, E., Bollandsås, O.M., Gobakken, T., Solberg, S., McRoberts, R.E., 2015. The effects of field plot size on model-assisted estimation of aboveground biomass change using multitemporal interferometric SAR and airborne laser scanning data. Remote Sens. Environ. 168, 252-264. https://doi.org/10.1016/j.rse.2015.07.002.

 

Nguyen, D., Henderson, E., Wei, Y., 2022. PRISM: a decision support system for forest planning. Environ. Model. Software 157, 105515. https://doi.org/10.1016/j.envsoft.2022.105515.

 

Nilsson, M., Nordkvist, K., Jonzén, J., Lindgren, N., Axensten, P., Wallerman, J., Egberth, M., Larsson, S., Nilsson, L., Eriksson, J., Olsson, H., 2017. A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory. Remote Sens. Environ. 194, 447-454. https://doi.org/10.1016/j.rse.2016.10.022.

 
Nilsson, O., 2020. Establishment and Growth of Scots Pine and Norway Spruce: a Comparison between Species. Swedish University of Agricultural Sciences. Doctoral Thesis No. 2020: 71, Faculty of Forest Sciences.
 

Nord-Larsen, T., Schumacher, J., 2012. Estimation of forest resources from a country wide laser scanning survey and national forest inventory data. Remote Sens. Environ. 119, 148-157. https://doi.org/10.1016/j.rse.2011.12.022.

 

Packalen, P., Strunk, J., Packalen, T., Maltamo, M., Mehtätalo, L., 2019. Resolution dependence in an area-based approach to forest inventory with airborne laser scanning. Remote Sens. Environ. 224, 192-201. https://doi.org/10.1016/j.rse.2019.01.022.

 

Puettmann, K., Messier, C., Coates, K., 2009. A Critique of silviculture: Managing for complexity. Bibliovault OAI Repository. The University of Chicago Press.

 
Pukkala, T., Miina, J., 2006. STAND: a decision support system for the management of even-aged stands in Finland. In: Hasenauer, H. (Ed.), Sustainable Forest Management: Growth Models for Europe. Springer, Berlin, Heidelberg, pp. 85–91.
 

Rastetter, E.B., King, A.W., Cosby, B.J., Hornberger, G.M., O'Neill, R.V., Hobbie, J.E., 1992. Aggregating Fine-scale ecological knowledge to model Coarser-scale attributes of Ecosystems. Ecol. Appl. 2, 55-70. https://doi.org/10.2307/1941889.

 

Schumacher, J., Hauglin, M., Astrup, R., Breidenbach, J., 2020. Mapping forest age using National Forest Inventory, airborne laser scanning, and Sentinel-2 data. For. Ecosyst. 7. https://doi.org/10.1186/s40663-020-00274-9.

 

Sharma, M., Smith, M., Burkhart, H.E., Amateis, R.L., 2006. Modeling the impact of thinning on height development of dominant and codominant loblolly pine trees. Ann. For. Sci. 63, 349-354. https://doi.org/10.1051/forest:2006015.

 

Weiskittel, A.R., Hann, D.W., Kershaw, J.A., Vanclay, J.K., 2011. Forest Growth and Yield Modeling: Vanclay/Forest Growth and Yield Modeling. John Wiley & Sons, Ltd, Chichester, UK.

 

Welsh, A.H., Peterson, A.T., Altmann, S.A., 1988. The fallacy of averages. Am. Nat. 132: 277-288.

 

Zenner, E.K., 2005. Investigating scale-dependent stand heterogeneity with structure-area-curves. Forest Ecol. Manag. 209, 87-100. https://doi.org/10.1016/j.foreco.2005.01.004.

Forest Ecosystems
Article number: 100199
Cite this article:
Maleki K, Astrup R, Cattaneo N, et al. The effects of data aggregation on long-term projections of forest stands development. Forest Ecosystems, 2024, 11(3): 100199. https://doi.org/10.1016/j.fecs.2024.100199

53

Views

0

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 29 January 2024
Revised: 19 April 2024
Accepted: 24 April 2024
Published: 29 April 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return