PDF (1.7 MB)
Collect
Research Article | Open Access

Root overlap and allocation of above- and belowground growth of European beech in pure and mixed stands of Douglas fir and Norway spruce

Amani S. Lwilaa()Christian Ammera,bOliver Gailingb,cLudger LeinemanncMartina Mundd
Department of Silviculture & Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
Center for Biodiversity and Sustainable Land-Use, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
Forestry Research and Competence Centre Gotha, Jägerstraße 1, D-99867, Germany
Show Author Information

Abstract

Site conditions and species identity have a combined effect on fine root growth of trees in pure and mixed stands. However, mechanisms that may contribute to this effect are rarely studied, even though they are essential to assess the potential of species to cope with climate change. This study examined fine root overlap and the linkage between fine root and stem growth of European beech (Fagus sylvatica) growing in pure and mixed stands with Douglas fir (Pseudotsuga menziesii) or Norway spruce (Picea abies) at two different study sites in northwestern Germany.

The study sites represented substantially different soil and climate conditions. At each site, three stands, and at each stand, three pairs of trees were studied. In the pure beech stand, the pairs consisted of two beech trees, while in the mixed stands each pair was composed of a beech tree and a conifer. Between each pair, three evenly spaced soil cores were taken monthly throughout the growing season. In the pure beech stands, microsatellite markers were used to assign the fine roots to individual trees. Changes in stem diameter of beech were quantified and then upscaled to aboveground wood productivity with automatic high-resolution circumference dendrometers.

We found that fine root overlap between neighboring trees varied independently of the distance between the paired trees or the stand types (pure versus mixed stands), indicating that there was no territorial competition. Aboveground wood productivity (wood NPP) and fine root productivity (root NPP) showed similar unimodal seasonal patterns, peaking in June. However, this pattern was more distinct for root NPP, and root NPP started earlier and lasted longer than wood NPP. The influence of site conditions on the variation in wood and root NPP of beech was stronger than that of stand type. Wood NPP was, as expected, higher at the richer site than at the poorer site. In contrast, root NPP was higher at the poorer than at the richer site.

We concluded that beech can respond to limited resources not only above- but also belowground and that the negative relationship between above- and belowground growth across the study sites suggests an 'optimal partitioning' of growth under stress.

References

 

Abramoff, R.Z., Finzi, A.C., 2015. Are above- and below-ground phenology in sync? New Phytol. 205 (3), 1054–1061. https://doi.org/10.1111/nph.13111.

 

Aidoo, M.K., Bdolach, E., Fait, A., Lazarovitch, N., Rachmilevitch, S., 2016. Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism. Plant Physiol. Biochem. 106, 73–81. https://doi.org/10.1016/j.plaphy.2016.04.038.

 

Allen, C.D., Breshears, D.D., McDowell, N.G., 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6 (8), art129. https://doi.org/10.1890/ES15-00203.1.

 

Ammer, C., 2019. Diversity and forest productivity in a changing climate. New Phytol. 221 (1), 50–66. https://doi.org/10.1111/nph.15263.

 

Ammer, C., Wagner, S., 2005. An approach for modelling the mean fine-root biomass of Norway spruce stands. Trees (Berl.) 19 (2), 145–153. https://doi.org/10.1007/s00468-004-0373-4.

 

Annighöfer, P., Mund, M., Seidel, D., Ammer, C., Ameztegui, A., Balandier, P., Bebre, I., Coll, L., Collet, C., Hamm, T., Huth, F., Schneider, H., Kuehne, C., Löf, M., Petritan, A.M., Petritan, I.C., Peter, S., Jürgen, B., 2022. Examination of aboveground attributes to predict belowground biomass of young trees. For. Ecol. Manag. 505, 119942.

 

Asuka, Y., Tani, N., Tsumura, Y., Tomaru, N., 2004. Development and characterization of microsatellite markers for Fagus crenata Blume. Mol. Ecol. Notes 4 (1), 101–103. https://doi.org/10.1046/j.1471-8286.2003.00583.x.

 

Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Software 67 (1), 1–48. https://doi.org/10.18637/jss.v067.i01.

 
Billings, W.D., Golley, F., Lange, O.L., Olson, J.S., Boehm, W., 1979. Methods of Studying Root Systems. Springer, Berlin, Heidelberg.
 

Blume-Werry, G., Wilson, S.D., Kreyling, J., Milbau, A., 2016. The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient. New Phytol. 209 (3), 978–986. https://doi.org/10.1111/nph.13655.

 

Bosela, M., Tumajer, J., Cienciala, E., Dobor, L., Kulla, L., Marčiš, P., Popa, I., Sedmák, R., Sedmáková, D., Sitko, R., Šebeň, V., Štepánek, P., Büntgen, U., 2021. Climate warming induced synchronous growth decline in Norway spruce populations across biogeographical gradients since 2000. Sci. Total Environ. 752, 141794. https://doi.org/10.1016/j.scitotenv.2020.141794.

 

Braun, S., Witte, L.C., Hopf, S.E., 2020. Auswirkungen des Trockensommers 2018 auf Flächen der Interkantonalen Walddauerbeobachtung. Schweizerische Zeitschrift fur Forstwesen 171 (5), 270–280. https://doi.org/10.3188/szf.2020.0270.

 

Bruegmann, T., Fladung, M., Schroeder, H., 2022. Flexible DNA isolation procedure for different tree species as a convenient lab routine. Silvae Genet. 71 (1), 20–30. https://doi.org/10.2478/sg-2022-0003.

 

Brunner, I., Ruf, M., Lüscher, P., Sperisen, C., 2004. Molecular markers reveal extensive intraspecific below-ground overlap of silver fir fine roots. Mol. Ecol. 13 (11), 3595–3600. https://doi.org/10.1111/j.1365-294X.2004.02328.x.

 

Čufar, K., Prislan, P., Luis, M., Gričar, J., 2008. Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees (Berl.) 22 (6), 749–758. https://doi.org/10.1007/s00468-008-0235-6.

 

Del Martinez, C.E., Zang, C.S., Buras, A., Hacket-Pain, A., Esper, J., Serrano-Notivoli, R., Hartl, C., Weigel, R., Klesse, S., de Dios, V.R., Scharnweber, T., Dorado-Liñán, I., Van der Maaten-Theunissen, M., van der Maaten, E., Jump, A., Mikac, S., Banzragch, B.E., Beck, W., Cavin, L., Claessens, H., Cada, V., Cufar, K., Dulamsuren, C., Gricar, J., Gil-Pelegrín, E., Janda, P., Kazimirovic, M., Kreyling, J., Latte, N., Leuschner, C., Longares, L.A., Menzel, A., Merela, M., Motta, R., Muffler, L., Nola, P., Petritan, A.M., Petritan, I.C., Prislan, P., Rubio-Cuadrado, A., Rydval, M., Stajic, B., Svoboda, M., Toromani, E., Trotsiuk, V., Wilmking, M., Zlatanov, T., de Luis, M., 2022. Climate-change-driven growth decline of European beech forests. Commun. Biol. 5 (1), 163. https://doi.org/10.1038/s42003-022-03107-3.

 

Di Fillipo, A., Biondi, F., Čufar, K., Luis, M., Grabner, M., Maugeri, M., Saba, E.P., Schirone, B., Piovesan, G., 2007. Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J. Biogeogr. 34 (11), 1873–1892. https://doi.org/10.1111/j.1365-2699.2007.01747.x.

 

Diers, M., Weigel, R., Leuschner, C., 2023. Both climate sensitivity and growth trend of European beech decrease in the North German Lowlands, while Scots pine still thrives, despite growing sensitivity. Trees (Berl.) 37 (2), 523–543. https://doi.org/10.1007/s00468-022-02369-y.

 

Dittmar, C., Zech, W., Elling, W., 2003. Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. For. Ecol. Manag. 173 (1–3), 63–78. https://doi.org/10.1016/S0378-1127(01)00816-7.

 

Dulamsuren, C., Hauck, M., Kopp, G., Ruff, M., Leuschner, C., 2017. European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees (Berl.) 31 (2), 673–686. https://doi.org/10.1007/s00468-016-1499-x.

 

Dybzinski, R., Farrior, C., Wolf, A., Reich, P.B., Pacala, S.W., 2011. Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual-based model and quantitative comparisons to data. Am. Nat. 177 (2), 153–166. https://doi.org/10.1086/657992.

 
Ellenberg, H., Leuschner, C., 2010. Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht., vol. 8104. UTB, Stuttgart. ISBN: 9783825281045.
 

Fahey, T.J., Hughes, J.W., 1994. Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. J. Ecol. 82 (3), 533. https://doi.org/10.2307/2261262.

 
Fairley, R.I., Alexander, I.J., 1985. Methods of calculation fine root production in forests. In: Fitter, A.H., Atkinson, D., Read, D.J. (Eds.), Ecological Interactions in Soil: Plants, Microbes and Animals. Blackwell Scientific Publications, Oxford, UK, pp. 23–36.
 

Farrior, C.E., Dybzinski, R., Levin, S.A., Pacala, S.W., 2013. Competition for water and light in closed-canopy forests: a tractable model of carbon allocation with implications for carbon sinks. Am. Nat. 181 (3), 314–330. https://doi.org/10.1086/669153.

 

Finér, L., Domisch, T., Dawud, S.M., Raulund-Rasmussen, K., Vesterdal, L., Bouriaud, O., Bruelheide, H., Jaroszewicz, B., Selvi, F., Valladares, F., 2017. Conifer proportion explains fine root biomass more than tree species diversity and site factors in major European forest types. For. Ecol. Manag. 406 (5), 330–350. https://doi.org/10.1016/j.foreco.2017.09.017.

 

Finér, L., Helmisaari, H.S., Lõhmus, K., Majdi, H., Brunner, I., Børja, I., Eldhuset, T., Godbold, D., Grebenc, T., Konôpka, B., Kraigher, H., Möttönen, M.R., Ohashi, M., Oleksyn, J., Ostonen, Uri, V., Vanguelova, E., 2007. Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst. 141 (3), 394–405. https://doi.org/10.1080/11263500701625897.

 

Fisk, M.C., Yanai, R.D., Fierer, N., 2010. A molecular approach to quantify root community composition in a northern hardwood forest — testing effects of root species, relative abundance, and diameter. Can. J. For. Res. 40 (4), 836–841. https://doi.org/10.1139/X10-022.

 

Foltran, E.C., Ammer, C., Lamersdorf, N., 2023. Do admixed conifers change soil nutrient conditions of European beech stands? Soil Res. 61 (7), 647–662. https://doi.org/10.1071/SR22218.

 

Forzieri, G., Girardello, M., Ceccherini, G., Spinoni, J., Feyen, L., Hartmann, H., Beck, P.S.A., Camps-Valls, G., Chirici, G., Mauri, A., Cescatti, A., 2021. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12 (1), 1081. https://doi.org/10.1038/s41467-021-21399-7.

 

Friedrichs, D.A., Trouet, V., Büntgen, U., Frank, D.C., Esper, J., Neuwirth, B., Löffler, J., 2009. Species-specific climate sensitivity of tree growth in Central-West Germany. Trees (Berl.) 23 (4), 729–739. https://doi.org/10.1007/s00468-009-0315-2.

 

Gabadinho, A., Ritschard, G., Müller, N.S., Studer, M., 2011. Analyzing and visualizing state sequences in R with TraMineR. J. Stat. Software 40 (4), 1–37. https://doi.org/10.18637/jss.v040.i04.

 

Hacket-Pain, A.J., Ascoli, D., Vacchiano, G., Biondi, F., Cavin, L., Conedera, M., Drobyshev, I., Liñán, I.D., Friend, A.D., Grabner, M., Hartl, C., Kreyling, J., Lebourgeois, F., Levanic, T., Menzel, A., van der Maaten, E., van der Maaten-Theunissen, M., Muffler, L., Motta, R., Roibu, C.C., Popa, I., Scharnweber, T., Weigel, R., Wilmking, M., Zang, C.S., 2018. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21 (12), 1833–1844. https://doi.org/10.1111/ele.13158.

 

Haling, R.E., Simpson, R.J., McKay, A.C., Hartley, D., Lambers, H., Ophel-Keller, K., Wiebkin, S., Herdina, Riley, I.T., Richardson, A.E., 2011. Direct measurement of roots in soil for single and mixed species using a quantitative DNA-based method. Plant Soil 348 (1–2), 123–137. https://doi.org/10.1007/s11104-011-0846-3.

 

Hendricks, J.J., Hendrick, R.L., Wilson, C.A., Mitchell, R.J., Pecot, S.D., Guo, D.L., 2006. Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J. Ecol. 94 (1), 40–57. https://doi.org/10.1111/j.1365-2745.2005.01067.x.

 

Hertel, D., Leuschner, C., 2002. A comparison of four different fine root production estimates with ecosystem carbon balance data in a Fagus–Quercus mixed forest. Plant Soil 239 (2), 237–251. https://doi.org/10.1023/A:1015030320845.

 

Hertel, D., Strecker, T., Müller-Haubold, H., Leuschner, C., 2013. Fine root biomass and dynamics in beech forests across a precipitation gradient - is optimal resource partitioning theory applicable to water-limited mature trees? J. Ecol. 101 (5), 1183–1200. https://doi.org/10.1111/1365-2745.12124.

 

Hiiesalu, I., Opik, M., Metsis, M., Lilje, L., Davison, J., Vasar, M., Moora, M., Zobel, M., Wilson, S.D., Pärtel, M., 2012. Plant species richness belowground: higher richness and new patterns revealed by next-generation sequencing. Mol. Ecol. 21 (8), 2004–2016. https://doi.org/10.1111/j.1365-294X.2011.05390.x.

 

Hölscher, D., Hertel, D., Leuschner, D., Hottkowitz, M., 2002. Tree species diversity and soil patchiness in a temperate broad-leaved forest with limited rooting space. Flora 197 (2), 118–125. https://doi.org/10.1078/0367-2530-00021.

 

Hothorn, T., Bretz, F., Westfall, P., 2008. Simultaneous inference in general parametric models. Biom. J. 50 (3), 346–363. https://doi.org/10.1002/bimj.200810425.

 
Hutchings, M.J., John, E.A., 2010. Distribution of roots in soil, and root foraging activity. In: de Kroon, H., Visser, E.J.W. (Eds.), Ecological Studies, 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09784-7_2.
 

Jacob, A., Hertel, D., Leuschner, C., 2013. On the significance of belowground overyielding in temperate mixed forests: separating species identity and species diversity effects. Oikos 122 (3), 463–473. https://doi.org/10.1111/j.1600-0706.2012.20476.x.

 

Jones, F.A., Erickson, D.L., Bernal, M.A., Bermingham, E., Kress, W.J., Herre, E.A., Muller-Landau, H.C., Turner, B.L., 2011. The roots of diversity: below ground species richness and rooting distributions in a tropical forest revealed by DNA barcodes and inverse modeling. PLoS One 6 (9), e24506. https://doi.org/10.1371/journal.pone.0024506.

 

Lang, C., Dolynska, A., Finkeldey, R., Polle, A., 2010. Are beech (Fagus sylvatica) roots territorial? For. Ecol. Manag. 260 (7), 1212–1217. https://doi.org/10.1016/j.foreco.2010.07.014.

 

Lebourgeois, F., Bréda, N., Ulrich, E., Granier, A., 2005. Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (RENECOFOR). Trees (Berl.) 19 (4), 385–401. https://doi.org/10.1007/s00468-004-0397-9.

 

Leuschner, C., 2020. Drought response of European beech (Fagus sylvatica L.)—a review. Perspect. Plant Ecol. Evol. Systemat. 47, 125576. https://doi.org/10.1016/j.ppees.2020.125576.

 

Leuschner, C., Backes, K., Hertel, D., Schipka, F., Schmitt, U., Terborg, O., Runge, M., 2001. Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For. Ecol. Manag. 149 (1–3), 33–46. https://doi.org/10.1016/S0378-1127(00)00543-0.

 

Leuschner, C., Hertel, D., Coners, H., Büttner, V., 2001. Root competition between beech and oak: a hypothesis. Oecologia 126 (2), 276–284. https://doi.org/10.1007/s004420000507.

 

Leuschner, C., Jungkunst, H.F., Fleck, S., 2009. Functional role of forest diversity: pros and cons of synthetic stands and across-site comparisons in established forests. Basic Appl. Ecol. 10 (1), 1-9 https://doi.org/10.1016/j.baae.2008.06.001.

 
Leuschner, C., Sutcliffe, L., Ellenberg, H., 2017. Vegetation ecology of central Europe. Volume 1, ecology of central European forests. In: Revised and Extended Version of the 6th German Edition/Translated by Laura Sutcliffe. Springer, Cham, Switzerland.
 

Leuschner, C., Weithmann, G., Bat-Enerel, B., Weigel, R., 2023. The future of European beech in Northern Germany—climate change vulnerability and adaptation potential. Forests 14 (7), 1448 https://doi.org/10.3390/f14071448.

 

Lwila, A.S., Mund, M., Ammer, C., Glatthorn, J., 2021. Site conditions more than species identity drive fine root biomass, morphology and spatial distribution in temperate pure and mixed forests. For. Ecol. Manag. 499 (3), 119581. https://doi.org/10.1016/j.foreco.2021.119581.

 

Lwila, A.S., Post-Leon, A., Ammer, C., Mund, M., 2023. Site properties, species identity, and species mixture affect fine root production, mortality, and turnover rate in pure and mixed forests of European Beech, Norway spruce, and Douglas-fir. Ecol. Indicat. 147, 109975. https://doi.org/10.1016/j.ecolind.2023.109975.

 

Martínez-Sancho, E., Slámová, L., Morganti, S., Grefen, C., Carvalho, B., Dauphin, B., Rellstab, C., Gugerli, F., Opgenoorth, L., Heer, K., Knutzen, F., von Arx, G., Valladares, F., Cavers, S., Fady, B., Alía, R., Aravanopoulos, F., Avanzi, C., Bagnoli, F., Barbas, E., Bastien, C., Benavides, R., Bernier, F., Bodineau, G., Bastias, C.C., Charpentier, J.P., Climent, J.M., Corréard, M., Courdier, F., Danusevicius, D., Farsakoglou, A.M., del Barrio, J.M.G., Gilg, O., González-Martínez, S.C., Gray, A., Hartleitner, C., Hurel, A., Jouineau, A., Kärkkäinen, K., Kujala, S.T., Labriola, M., Lascoux, M., Lefebvre, M., Lejeune, V., Liesebach, M., Malliarou, E., Mariotte, N., Matesanz, S., Myking, T., Notivol, E., Pakull, B., Piotti, A., Pringarbe, M., Pyhäjärvi, T., Raffin, A., Ramírez-Valiente, J.A., Ramskogler, K., Robledo-Arnuncio, J.J., Savolainen, O., Schueler, S., Semerikov, V., Spanu, I., Thévenet, J., Mette Tollefsrud, M., Turion, N., Veisse, D., Vendramin, G.G., Villar, M., Westin, J., Fonti, P., 2020. The GenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe. Sci. Data 7 (1), 1. https://doi.org/10.1038/s41597-019-0340-y.

 

Mathes, T., Seidel, D., Annighöfer, P., 2023. Response to extreme events: do morphological differences affect the ability of beech (Fagus sylvatica L.) to resist drought stress? Forestry 96 (3), 355-371.

 

Mccarthy, M.C., Enquist, B.J., 2007. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 21 (4), 713–720. https://doi.org/10.1111/j.1365-2435.2007.01276.x.

 

McConnaughay, K.D.M., Coleman, J.S., 1999. Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80 (8), 2581–2593. https://doi.org/10.1890/0012-9658(1999)080[2581:BAIPOO]2.0.CO,2.

 

Meier, I.C., Knutzen, F., Eder, L.M., Müller-Haubold, H., Goebel, M., Bachmann, J., Hertel, D., Leuschner, C., 2018. The deep root system of Fagus sylvatica on sandy soil: structure and variation across a precipitation gradient. Ecosystems 21 (2), 280–296. https://doi.org/10.1007/s10021-017-0148-6.

 

Meier, I.C., Leuschner, C., 2008. Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob. Chang. Biol. 14 (9), 2081–2095. https://doi.org/10.1111/j.1365-2486.2008.01634.x.

 

Meinen, C., Hertel, D., Leuschner, C., 2009. Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity. Is there evidence of below-ground overyielding? Oecologia 161 (1), 99–111. https://doi.org/10.1007/s00442-009-1352-7.

 
Mendiburu, F., 2009. Una herramienta de analisis estadistico para la investigacion agricola. Universidad Nacional de Ingenieria (UNI-PERU), Tesis.
 

Meyer, P., Spînu, A.P., Mölder, A., Bauhus, J., 2022. Management alters drought-induced mortality patterns in European beech (Fagus sylvatica L.) forests. Plant Biol. 24 (7), 1157-1170.

 

Mund, M., Kutsch, W.L., Wirth, C., Kahl, T., Knohl, A., Skomarkova, M.V., Schulze, E. -D., 2010. The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol. 30, 689-704 https://doi.org/10.1093/treephys/tpq027.

 

O'Brien, M.J., Engelbrecht, B.M.J., Joswig, J., Pereyra, G., Schuldt, B., Jansen, S., Kattge, J., Landhäusser, S.M., Levick, S.R., Preisler, Y., Väänänen, P., Macinnis-Ng, C., 2017. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J. Appl. Ecol. 54 (6), 1669–1686. https://doi.org/10.1111/1365-2664.12874.

 

Piovesan, G., Biondi, F., Di Filippo, A., Alessandrini, A., Maugeri, M., 2008. Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob. Chang. Biol. 14 (6), 1265–1281. https://doi.org/10.1111/j.1365-2486.2008.01570.x.

 

Pregitzer, K.S., DeForest, J.L., Burton, A.J., Allen, M.F., Ruess, R.W., Hendrick, R.L., 2002. Fine root architecture of nine North American trees. Ecol. Monogr. 72 (2), 293. https://doi.org/10.2307/3100029.

 

Prescott, C.E., Grayston, S.J., Helmisaari, H.S., Kaštovská, E., Körner, C., Lambers, H., Meier, I.C., Millard, P., Ostonen, I., 2020. Surplus carbon drives allocation and plant-soil interactions. Trends Ecol. Evol. 35, 1110–1118. https://doi.org/10.1016/j.tree.2020.08.007.

 

Pretzsch, H., Schütze, G., Biber, P., 2018. Drought can favour the growth of small in relation to tall trees in mature stands of Norway spruce and European beech. For. Ecosyst. 5 (1), 227. https://doi.org/10.1186/s40663-018-0139-x.

 
R Core Team, 2018. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://scholar.google.com/citations?user=yvs1queaaaaj&hl=de&oi=sra. (Accessed 13 January 2024).
 

Rewald, B., Leuschner, C., 2009. Belowground competition in a broad-leaved temperate mixed forest. Pattern analysis and experiments in a four-species stand. Eur. J. For. Res. 128 (4), 387–398. https://doi.org/10.1007/s10342-009-0276-4.

 

Rukh, S., Sanders, T.G.M., Krüger, I., Schad, T., Bolte, A., 2023. Distinct responses of European Beech (Fagus sylvatica L.) to drought intensity and length—a review of the impacts of the 2003 and 2018–2019 drought events in Central Europe. Forests 14 (2), 248. https://doi.org/10.3390/f14020248.

 

Schall, P., Lödige, C., Beck, M., Ammer, C., 2012. Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings. For. Ecol. Manag. 266, 246–253. https://doi.org/10.1016/j.foreco.2011.11.017.

 

Scharnweber, T., Manthey, M., Criegee, C., Bauwe, A., Schröder, C., Wilmking, M., 2011. Drought matters – declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For. Ecol. Manag. 262 (6), 947–961. https://doi.org/10.1016/j.foreco.2011.05.026.

 

Schenk, H.J., 2006. Root competition. Beyond resource depletion. J. Ecol. 94 (4), 725–739. https://doi.org/10.1111/j.1365-2745.2006.01124.x.

 

Schenk, H.J., Callaway, R.M., Mahall, B.E., 1999. Spatial root segregation: are plants territorial? Adv. Ecol. Res. 28, 145–180. https://doi.org/10.1016/S0065-2504(08)60032-X.

 

Schimel, J.P., Bennett, J., 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85 (3), 591–602. https://doi.org/10.1890/03-8002.

 

Schnabel, F., Purrucker, S., Schmitt, L., Engelmann, R.A., Kahl, A., Richter, R., Seele-Dilbat, C., Skiadaresis, G., Wirth, C., 2022. Cumulative growth and stress responses to the 2018-2019 drought in a European floodplain forest. Glob. Chang. Biol. 28 (5), 1870–1883. https://doi.org/10.1111/gcb.16028.

 

Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T.E.E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D.B., Rammig, A., Rigling, A., Rose, L., Ruehr, N.K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C.S., Kahmen, A., 2020. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103. https://doi.org/10.1016/j.baae.2020.04.003.

 

Stolz, J., van der Maaten, E., Kalanke, H., Martin, J., Wilmking, M., van der Maaten-Theunissen, M., 2021. Increasing climate sensitivity of beech and pine is not mediated by adaptation and soil characteristics along a precipitation gradient in northeastern Germany. Dendrochronologia 67, 125834. https://doi.org/10.1016/j.dendro.2021.125834.

 

Valverde-Barrantes, O.J., Smemo, K.A., Feinstein, L.M., Kershner, M.W., Blackwood, C.B., 2015. Aggregated and complementary: symmetric proliferation, overyielding, and mass effects explain fine-root biomass in soil patches in a diverse temperate deciduous forest landscape. New Phytol. 205 (2), 731–742. https://doi.org/10.1111/nph.13179.

 

Weemstra, M., Sterck, F.J., Visser, E.J.W., Kuyper, T.W., Goudzaard, L., Mommer, L., 2017. Fine-root trait plasticity of beech (Fagus sylvatica) and spruce (Picea abies) forests on two contrasting soils. Plant Soil 415 (1), 175–188. https://doi.org/10.1007/s11104-016-3148-y.

 

Weigel, R., Bat-Enerel, B., Dulamsuren, C., Muffler, L., Weithmann, G., Leuschner, C., 2023. Summer drought exposure, stand structure, and soil properties jointly control the growth of European beech along a steep precipitation gradient in northern Germany. Glob. Chang. Biol. 29 (3), 763–779. https://doi.org/10.1111/gcb.16506.

 

Wijesinghe, D.K., John, E.A., Hutchings, M.J., 2005. Does pattern of soil resource heterogeneity determine plant community structure? An experimental investigation. J. Ecol. 93 (1), 99-112.

 

Wutzler, T., Wirth, C., Schumacher, J., 2008. Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe: predictions and components of uncertainty. Can. J. For. Res. 38 (6), 1661–1675. https://doi.org/10.1139/X07-194.

 

Yuan, Z.Y., Chen, H.Y.H., 2013. Simplifying the decision matrix for estimating fine root production by the sequential soil coring approach. Acta Oecol. 48, 54–61. https://doi.org/10.1016/j.actao.2013.01.009.

 

Zang, U., Goisser, M., Häberle, K., Matyssek, R., Matzner, E., Borken, W., 2014. Effects of drought stress on photosynthesis, rhizosphere respiration, and fine-root characteristics of beech saplings: a rhizotron field study. Z. Pflanzenernaehr. Bodenk. 177 (2), 168–177. https://doi.org/10.1002/jpln.201300196.

 

Zeng, W., Xiang, W., Zhou, B., Ouyang, S., Zeng, Y., Chen, L., Freschet, G.T., Valverde-Barrantes, O.J., Milcu, A., 2021. Positive tree diversity effect on fine root biomass: via density dependence rather than spatial root partitioning. Oikos 130 (1), 1-14.

 

Zimmermann, J., Hauck, M., Dulamsuren, C., Leuschner, C., 2015. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 18 (4), 560–572. https://doi.org/10.1007/s10021-015-9849-x.

 

Zwetsloot, M.J., Goebel, M., Paya, A., Grams, T.E., Bauerle, T.L., 2019. Specific spatio-temporal dynamics of absorptive fine roots in response to neighbor species identity in a mixed beech–spruce forest. Tree Physiol. 39 (11), 1867-1879.

 

Zwetsloot, M.J., Bauerle, T.L., 2021. Repetitive seasonal drought causes substantial species-specific shifts in fine-root longevity and spatio-temporal production patterns in mature temperate forest trees. New Phytol. 231 (3), 974–986. https://doi.org/10.1111/nph.17432.

Forest Ecosystems
Article number: 100217
Cite this article:
Lwila AS, Ammer C, Gailing O, et al. Root overlap and allocation of above- and belowground growth of European beech in pure and mixed stands of Douglas fir and Norway spruce. Forest Ecosystems, 2024, 11(5): 100217. https://doi.org/10.1016/j.fecs.2024.100217
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return