PDF (4.6 MB)
Collect
Research Article | Open Access

Leading directions and effective distance of larch offspring dispersal at the upper treeline in the Northern and Polar Urals, Russia

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, 620144, Russia
Center for Genetics and Life Science, Sirius University of Science and Technology, 354340, Sochi, Russia
Show Author Information

Abstract

Climate has changed sufficiently over the last 150 years and forced out upper treeline advance at the most studied sites around the world. The rate of advance has been extremely variable – from tens to hundreds meters in altitude. This is because the degree at which tree frontal populations respond to climate change depends on the complex interaction of biological and physical factors. The resulting stand pattern is the consequence of the interaction between dispersal and survival functions. A few publications have addressed the question of how this pattern is generated. In order to understand how the spatial structure of tree stands was formed at the upper limit of their distribution in the Ural Mountains, we assessed the distance and direction of dispersal of offspring from maternal individuals. We found that in frontal Larix sibirica Ledeb. populations, 'effective' dispersal of offspring ranges from 3 to 758 ​m (with a median of 20–33 ​m in open forest and 219 ​m in single-tree tundra in the Polar Urals and 107 ​m in open forest in the Northern Urals). We revealed that most of the offspring effectively dispersed not only in the direction of the prevailing winds, but also in the opposite direction up the slope, and the distance can reach 500–760 ​m. The data obtained can be used to develop an individual-based model which is capable of simulating in detail the dynamics of tree stands at the upper limit of their growth and reliably predicting the future position and pattern of treeline ecotone as growth conditions continue to improve in the face of observed climate change.

References

 

Ashley, M.V., 2010. Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape. Crit. Rev. Plant Sci. 29, 148–161. https://doi.org/10.1080/07352689.2010.481167.

 

Auffret, A.G., Rico, Y., Bullock, J.M., Hooftman, D.A.P., Pakeman, R.J., Soons, M.B., Suárez-Esteban, A., Traveset, A., Wagner, H.H., Cousins, S.A.O., 2017. Plant functional connectivity – integrating landscape structure and effective dispersal. J. Ecol. 105, 1648–1656. https://doi.org/10.1111/1365-2745.12742.

 

Bacles, C.F.E., Lowe, A.J., Ennos, R.A., 2006. Effective seed dispersal across a fragmented landscape. Science 311 (628). https://doi.org/10.1126/science.1121543.

 
Barredo, J.I., Mauri, A., Caudullo, G., 2020. Impacts of Climate Change in European Mountains-Alpine Tundra Habitat Loss and Treeline Shifts under Future Global Warming. Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/653658.
 

Bayly, M.J., Angert, A.L., 2019. Niche models do not predict experimental demography but both suggest dispersal limitation across the northern range limit of the scarlet monkeyflower (Erythranthe cardinalis). J. Biogeogr. 46, 1316–1328. https://doi.org/10.1111/jbi.13609.

 

Benson, G., 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580.

 

Braeker, O.U., 1981. Der Alterstrend bei Jahrringdichten und Jahrringbreiten von Nadelhölzern und sein Ausgleich. Mitteilungen Forstl. Bundes-Versuchsanstalt Wien 142, 75–102.

 

Brown, K.R., Zobel, D.B., Zasada, J.C., 1988. Seed dispersal, seedling emergence, and early survival of Larix laricina (DuRoi) K. Koch in the Tanana Valley, Alaska. Can. J. For. Res. 18, 306–314. https://doi.org/10.1139/x88-047.

 

Bullock, J.M., Clarke, R.T., 2000. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124, 506–521. https://doi.org/10.1007/PL00008876.

 

Chen, Q., Baldocchi, D., Gong, P., Kelly, M., 2006. Isolating individual trees in a savanna woodland using small footprint lidar data. Photogramm. Eng. Rem. Sens. 72, 923–932. https://doi.org/10.14358/PERS.72.8.923.

 

Clark, J.S., 1998. Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. Am. Nat. 152, 204. https://doi.org/10.2307/2463485.

 

Damschen, E.I., Baker, D.V., Bohrer, G., Nathan, R., Orrock, J.L., Turner, J.R., Brudvig, L.A., Haddad, N.M., Levey, D.J., Tewksbury, J.J., 2014. How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proc. Natl. Acad. Sci. U.S.A. 111, 3484–3489. https://doi.org/10.1073/pnas.1308968111.

 

Davis, M.B., Shaw, R.G., 2001. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679. https://doi.org/10.1126/science.292.5517.673.

 

Devey, M.E., Beil, J.C., Smith, D.N., Neale, D.B., Moran, G.F., 1996. A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor. Appl. Genet. 92, 673–679. https://doi.org/10.1007/BF00226088.

 

Devi, N., Hagedorn, F., Moiseev, P., Bugmann, H., Shiyatov, S., Mazepa, V., Rigling, A., 2008. Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Global Change Biol. 14. https://doi.org/10.1111/j.1365-2486.2008.01583.x.

 

Dullinger, S., Dirnböck, T., Grabherr, G., 2004. Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J. Ecol. 92, 241–252. https://doi.org/10.1111/j.0022-0477.2004.00872.x.

 

Duncan, D.P., 1954. A study of some of the factors affecting the natural regeneration of tamarack (Larix Laricina) in Minnesota. Ecology 35, 498–521.

 

Freeman, B.G., Lee-Yaw, J.A., Sunday, J.M., Hargreaves, A.L., 2018. Expanding, shifting and shrinking: the impact of global warming on species' elevational distributions. Global Ecol. Biogeogr. 27, 1268–1276. https://doi.org/10.1111/geb.12774.

 

Greene, D.F., Johnson, E.A., 1996. Wind dispersal of seeds from a forest into a clearing. Ecology 77, 595–609. https://doi.org/10.2307/2265633.

 

Greene, D.F., Canham, C.D., Coates, K.D., Lepage, P.T., 2004. An evaluation of alternative dispersal functions for trees. J. Ecol. 92, 758–766. https://doi.org/10.1111/j.0022-0477.2004.00921.x.

 

Greenwood, S., Jump, A.S., 2014. Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arctic Antarct. Alpine Res. 46, 829–840. https://doi.org/10.1111/bjd.14995.

 

Greenwood, S., Chen, J.C., Chen, C.T., Jump, A.S., 2016. Community change and species richness reductions in rapidly advancing tree lines. J. Biogeogr. 43, 2274–2284. https://doi.org/10.1111/jbi.12776.

 

Grigorieva, A.V., Moiseev, P.A., 2018. Peculiarities and determinants of regeneration of siberian larch on the upper limit of its growth in the Urals. Contemp. Probl. Ecol. 11. https://doi.org/10.1134/S1995425518010031.

 

Grosser, M.R., Sites, S.K., Murata, M.M., Lopez, Y., Chamusco, K.C., Love Harriage, K., Grosser, J.W., Graham, J.H., Gmitter, F.G., Chase, C.D., 2023. Plant mitochondrial introns as genetic markers - conservation and variation. Front. Plant Sci. 14, 1–15. https://doi.org/10.3389/fpls.2023.1116851.

 

Hagedorn, F., Shiyatov, S.G., Mazepa, V.S., Devi, N.M., Grigor′ev, A.A., Bartysh, A.A., Fomin, V.V., Kapralov, D.S., Terent'ev, M., Bugman, H., Rigling, A., Moiseev, P.A., 2014. Treeline advances along the Ural mountain range – driven by improved winter conditions? Glob. Chang. Biol. 20, 3530–3543. https://doi.org/10.1111/gcb.12613.

 

Hagedorn, F., Dawes, M.A., Bubnov, M.O., Devi, N.M., Grigoriev, A.A., Mazepa, V.S., Nagimov, Z.Y., Shiyatov, S.G., Moiseev, P.A., 2020. Latitudinal decline in stand biomass and productivity at the elevational treeline in the Ural mountains despite a common thermal growth limit. J. Biogeogr., 1827–1842. https://doi.org/10.1111/jbi.13867.

 

Hampe, A., 2011. Plants on the move: the role of seed dispersal and initial population establishment for climate-driven range expansions. Acta Oecol. 37, 666–673. https://doi.org/10.1016/j.actao.2011.05.001.

 

Hansson, A., Dargusch, P., Shulmeister, J., 2021. A review of modern treeline migration, the factors controlling it and the implications for carbon storage. J. Mt. Sci. 18, 291–306. https://doi.org/10.1007/s11629-020-6221-1.

 

Hantemirov, R.M., Shiyatov, S.G., 2002. A continuous-multimillennial ring-width chronology in Yamal, northwestern Siberia. Holocene 12, 717–726. https://doi.org/10.1191/0959683602hl585rp.

 

Harsch, M.A., Hulme, P.E., McGlone, M.S., Duncan, R.P., 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x.

 
Holmes, R.L., 1995. Dendrochronological Program Library (Computer Program). University of Arizona, Tuscon, Arizona, USA. Laboratory of Tree Ring Research.
 
Holtmeier, F. -K., 2009. Mountain Timberlines: Ecology, Patchiness, and Dynamics. Springer Berlin Heidelberg, Berlin.
 

Holtmeier, F.K., Broll, G., 2007. Treeline advance - driving processes and adverse factors. Landsc. Online 1, 1–33. https://doi.org/10.3097/LO.200701.

 

Howe, F., Smallwood, J., 1982. Ecology of seed dispersal. Annu. Rev. Ecol. Systemat. 13, 201–228. https://doi.org/10.1146/annurev.es.13.110182.001221.

 
IPCC, 2021. Climate change 2021: the physical science basis. Summary for policymakers. Working Group Ⅰ Contribut. Sixth Assess. Rep. Intergov. Panel on Climate Change 31. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf. (Accessed 20 March 2024).
 

Johnson, J.S., Gaddis, K.D., Cairns, D.M., Krutovsky, K.V., 2017. Seed dispersal at alpine treeline: an assessment of seed movement within the alpine treeline ecotone. Ecosphere 8. https://doi.org/10.1002/ecs2.1649.

 

Jump, A.S., Mátyás, C., Peñuelas, J., 2009. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 24, 694–701. https://doi.org/10.1016/j.tree.2009.06.007.

 
Kapper, O.G., 1954. Coniferous Species. Goslesbumizdat, Moskow-Leningrad.
 
Körner, C., 2012. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. Springe Basel, Basel. https://doi.org/10.1007/978-3-0348-0396-0.
 

Koshkina, N.B., Moiseev, P.A., Goryaeva, A.V., 2008. Reproduction of the siberian spruce in the timberline ecotone of the iremel' Massif. Russ. J. Ecol. 39. https://doi.org/10.1007/s11184-008-2002-8.

 

Kruse, S., Wieczorek, M., Jeltsch, F., Herzschuh, U., 2016. Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix. Ecol. Model. 338, 101–121. https://doi.org/10.1016/j.ecolmodel.2016.08.003.

 

Kruse, S., Gerdes, A., Kath, N.J., Epp, L.S., Stoof-Leichsenring, K.R., Pestryakova, L.A., Herzschuh, U., 2019. Dispersal distances and migration rates at the arctic treeline in Siberia-a genetic and simulation-based study. Biogeosciences 16, 1211–1224. https://doi.org/10.5194/bg-16-1211-2019.

 

Liang, X., Kukko, A., Hyyppä, J., Lehtomäki, M., Pyörälä, J., Yu, X., Kaartinen, H., Jaakkola, A., Wang, Y., 2018. In-situ measurements from mobile platforms: an emerging approach to address the old challenges associated with forest inventories. ISPRS J. Photogramm. Remote Sens. 143, 97–107. https://doi.org/10.1016/j.isprsjprs.2018.04.019.

 

MaCdonald, G.M., 1993. Fossil pollen analysis and the reconstruction of plant invasions. Adv. Ecol. Res. https://doi.org/10.1016/S0065-2504(08)60041-0.

 

Mamantov, M.A., Gibson-Reinemer, D.K., Linck, E.B., Sheldon, K.S., 2021. Climate-driven range shifts of montane species vary with elevation. Global Ecol. Biogeogr. 30, 784–794. https://doi.org/10.1111/geb.13246.

 

Mamet, S.D., Brown, C.D., Trant, A.J., Laroque, C.P., 2019. Shifting global Larix distributions: northern expansion and southern retraction as species respond to changing climate. J. Biogeogr. 46, 30–44. https://doi.org/10.1111/jbi.13465.

 

Matlack, G.R., 1987. Diaspore size, shape, and fall behavior in wind-dispersed plant species. Am. J. Bot. 74, 1150–1160. https://doi.org/10.1002/j.1537-2197.1987.tb08729.x.

 

Mayor, J.R., Sanders, N.J., Classen, A.T., Bardgett, R.D., Clément, J.C., Fajardo, A., Lavorel, S., Sundqvist, M.K., Bahn, M., Chisholm, C., Cieraad, E., Gedalof, Z., Grigulis, K., Kudo, G., Oberski, D.L., Wardle, D.A., 2017. Elevation alters ecosystem properties across temperate treelines globally. Nature 542, 91–95. https://doi.org/10.1038/nature21027.

 

Mazepa, V.S., 2005. Stand density in the last millennium at the upper tree-line ecotone in the Polar Ural Mountains. Can. J. For. Res. 35, 2082–2091. https://doi.org/10.1139/x05-111.

 

Milbau, A., Graae, B.J., Shevtsova, A., Nijs, I., 2009. Effects of a warmer climate on seed germination in the subarctic. Ann. Bot. 104, 287–296. https://doi.org/10.1093/aob/mcp117.

 

Miller, T.E.X., Angert, A.L., Brown, C.D., Lee-Yaw, J.A., Lewis, M., Lutscher, F., Marculis, N.G., Melbourne, B.A., Shaw, A.K., Szűcs, M., Tabares, O., Usui, T., Weiss-Lehman, C., Williams, J.L., 2020. Eco-evolutionary dynamics of range expansion. Ecology 101, 1–14. https://doi.org/10.1002/ecy.3139.

 

Moiseev, P.A., Bartysh, A.A., Nagimov, Z.Y., 2010. Climate changes and tree stand dynamics at the upper limit of their growth in the North Ural mountains. Russ. J. Ecol. 41. https://doi.org/10.1134/S1067413610060056.

 

Moiseev, P.A., Hagedorn, F., Balakin, D.S., Bubnov, M.O., Devi, N.M., Kukarskih, V.V., Mazepa, V.S., Viyukhin, S.O., Viyukhina, A.A., Grigoriev, A.A., 2022. Stand biomass at treeline ecotone in Russian subarctic mountains is primarily related to species composition but its dynamics driven by improvement of climatic conditions. Forests 13, 1–22. https://doi.org/10.3390/f13020254.

 

Nathan, R., 2006. Long-distance dispersal of plants. Science 313, 786–788. https://doi.org/10.1126/science.1124975.

 

Nathan, R., Katul, G.G., 2005. Foliage shedding in deciduous forests lifts up long-distance seed dispersal by wind. Proc. Natl. Acad. Sci. U.S.A. 102, 8251–8256. https://doi.org/10.1073/pnas.0503048102.

 

Nathan, R., Muller-Landau, H.C., 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 15, 278–285. https://doi.org/10.1016/S0169-5347(00)01874-7.

 

Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100.

 

Pauli, H., Gottfried, M., Reiter, K., Klettner, C., Grabherr, G., 2007. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biol. 13, 147–156. https://doi.org/10.1111/j.1365-2486.2006.01282.x.

 

Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J.L.B., Coldea, G., Dick, J., Erschbamer, B., Calzado, R.F., Ghosn, D., Holten, J.I., Kanka, R., Kazakis, G., Kollár, J., Larsson, P., Moiseev, P., Moiseev, D., Molau, U., Mesa, J.M., Nagy, L., Pelino, G., Puşcaş, M., Rossi, G., Stanisci, A., Syverhuset, A.O., Theurillat, J. -P., Tomaselli, M., Unterluggauer, P., Villar, L., Vittoz, P., Grabherr, G., 2012. Recent plant diversity changes on Europe's mountain summits. Science 336. https://doi.org/10.1126/science.1219033.

 

Payette, S., Deshaye, J., Gilbert, H., 1982. Tree seed populations at the treeline in rivière aux feuilles area, northern Quebec, Canada. Arctic Alpine Res. 14, 215–221.

 

Piotti, A., Leonardi, S., Piovani, P., Scalfi, M., Menozzi, P., 2009. Spruce colonization at treeline: where do those seeds come from. Heredity 103, 136–145. https://doi.org/10.1038/hdy.2009.42.

 

Pitelka, L.F., 1997. Plant migration and climate change. Am. Sci. 85, 1–9.

 

Pluess, A.R., 2011. Pursuing glacier retreat: genetic structure of a rapidly expanding Larix decidua population. Mol. Ecol. 20, 473–485. https://doi.org/10.1111/j.1365-294X.2010.04972.x.

 

Putintseva, Y.A., Bondar, E.I., Simonov, E.P., Sharov, V.V., Oreshkova, N.V., Kuzmin, D.A., Konstantinov, Y.M., Shmakov, V.N., Belkov, V.I., Sadovsky, M.G., Keech, O., Krutovsky, K.V., 2020. Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome. BMC Genom. 21, 654. https://doi.org/10.1186/s12864-020-07061-4.

 

Rasouli, K., Pomeroy, J.W., Whitfield, P.H., 2019. Are the effects of vegetation and soil changes as important as climate change impacts on hydrological processes? Hydrol. Earth Syst. Sci. 23, 4933–4954. https://doi.org/10.5194/hess-23-4933-2019.

 
Rinn, F., 1998. TSAP V 3.5: Computer Program for Tree-Ring Analysis and Presentation. RinnTech, Heidelberg, Germany.
 

Robledo-Arnuncio, J.J., García, C., 2007. Estimation of the seed dispersal kernel from exact identification of source plants. Mol. Ecol. 16, 5098–5109. https://doi.org/10.1111/j.1365-294X.2007.03427.x.

 

Schlotterer, C., 2000. Evolutionary dynamics of microsatellite DNA. Chromosoma 109, 365–371. https://doi.org/10.1007/s004120000089.

 

Sexton, J.P., McIntyre, P.J., Angert, A.L., Rice, K.J., 2009. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436. https://doi.org/10.1146/annurev.ecolsys.110308.120317.

 

Shay, J.E., Pennington, L.K., Mandussi Montiel-Molina, J.A., Toews, D.J., Hendrickson, B.T., Sexton, J.P., 2021. Rules of plant species ranges: applications for conservation strategies. Front. Ecol. Evol. 9. https://doi.org/10.3389/fevo.2021.700962.

 
Shiyatov, S.G., 1965. Age structure and formation of larch open forests in the upper timberline in the Sob' River Basin (the Polar Urals). Geografiya i Dinamika Rastitel'nogo Pokrova: Trudy Instituta Biologii Ural'skogo Filiala Akademii Nauk SSSR. Sverdlovsk, Russia 81–96.
 

Shiyatov, S.G., Mazepa, V.S., 2011. Climate-driven dynamics of the forest-tundra vegetation in the polar ural mountains. Contemp. Probl. Ecol. 4, 758–768. https://doi.org/10.1134/S1995425511070071.

 

Steinitz, O., Troupin, D., Vendramin, G.G., Nathan, R., 2011. Genetic evidence for a Janzen-Connell recruitment pattern in reproductive offspring of Pinus halepensis trees. Mol. Ecol. 20, 4152–4164. https://doi.org/10.1111/j.1365-294X.2011.05203.x.

 

Sullivan, L.L., Li, B., Miller, T.E.X., Neubert, M.G., Shaw, A.K., 2017. Density dependence in demography and dispersal generates fluctuating invasion speeds. Proc. Natl. Acad. Sci. U.S.A. 114, 5053–5058. https://doi.org/10.1073/pnas.1618744114.

 

Svenning, J.C., Normand, S., Skov, F., 2008. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31, 316–326. https://doi.org/10.1111/j.0906-7590.2008.05206.x.

 

Svenning, J.C., Gravel, D., Holt, R.D., Schurr, F.M., Thuiller, W., Münkemüller, T., Schiffers, K.H., Dullinger, S., Edwards, T.C., Hickler, T., Higgins, S.I., Nabel, J.E.M.S., Pagel, J., Normand, S., 2014. The influence of interspecific interactions on species range expansion rates. Ecography 37, 1198–1209. https://doi.org/10.1111/j.1600-0587.2013.00574.x.

 

Trakhtenbrotl, A., Nathan, R., Perry, G., Richardson, D.M., 2005. The importance of long-distance dispersal in biodiversity conservation. Divers. Distrib. 11, 173–181.

 

Truong, C., Palmé, A.E., Felber, F., 2007. Recent invasion of the mountain birch Betula pubescens ssp. tortuosa above the treeline due to climate change: genetic and ecological study in northern Sweden. J. Evol. Biol. 20, 369–380. https://doi.org/10.1111/j.1420-9101.2006.01190.x.

 

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., Rozen, S.G., 2012. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40, 1–12. https://doi.org/10.1093/nar/gks596.

 

Väliranta, M., Kaakinen, A., Kuhry, P., Kultti, S., Salonen, J.S., Seppä, H., 2011. Scattered late-glacial and early Holocene tree populations as dispersal nuclei for forest development in north-eastern European Russia. J. Biogeogr. 38, 922–932. https://doi.org/10.1111/j.1365-2699.2010.02448.x.

 

Walther, G., Post, E., Convey, P., Menzel, A., Parmesank, C., Beebee, T.J.C., Fromentin, J., I, O.H., Bairlein, F., 2002. Ecological responses to recent climate change. Nature 416, 389–395. https://doi.org/10.1016/j.agwat.2008.09.024.

 

Wang, B.C., Smith, T.B., 2002. Closing the seed dispersal loop. Trends Ecol. Evol. 17, 379–386. https://doi.org/10.1016/S0169-5347(02)02541-7.

 

Wieczorek, M., Kruse, S., Epp, L.S., Kolmogorov, A., Nikolaev, A.N., Heinrich, I., Jeltsch, F., Pestryakova, L.A., Zibulski, R., Herzschuh, U., 2017. Dissimilar responses of larch stands in northern Siberia to increasing temperatures—a field and simulation based study. Ecology 98, 2343–2355. https://doi.org/10.1002/ecy.1887.

 

Zhangurov, E.V., Korolev, M.A., Dubrovskiy, Y.A., Shamrikova, E.V., 2023. Soils of the Ray-Iz Massif, Polar Urals. Eur. Soil Sci. 56, 405–418. https://doi.org/10.1134/S1064229322602578.

 

Zu, K., Wang, Z., Zhu, X., Lenoir, J., Shrestha, N., Lyu, T., Luo, A., Li, Y., Ji, C., Peng, S., Meng, J., Zhou, J., 2021. Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Sci. Total Environ. 783, 146896. https://doi.org/10.1016/j.scitotenv.2021.146896.

Forest Ecosystems
Article number: 100218
Cite this article:
Moiseev P, Semerikov V, Semerikova T, et al. Leading directions and effective distance of larch offspring dispersal at the upper treeline in the Northern and Polar Urals, Russia. Forest Ecosystems, 2024, 11(5): 100218. https://doi.org/10.1016/j.fecs.2024.100218
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return