PDF (1.5 MB)
Collect
Research Article | Open Access

Differential modulation of crown allometry and stem growth at gap edges in five European tree species by drought conditions

Luke Bohnhorsta()Peter BiberaTorben HilmersaEnno Uhla,bHans Pretzscha
Chair of Forest Growth and Yield Science, TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
Bavarian State Institute of Forestry, Hans-Carl-von-Carlowitz-Platz 1, 85354, Freising, Germany
Show Author Information

Abstract

Background

In Central Europe, forests are increasingly affected by various disturbances, resulting in an increasing gap formation in the canopy. In order to support goal-oriented management, more knowledge is required about the acclimation of the crown and its effects on the basal area growth of trees at the edge of a gap.

Methods

This work compared trees' growth and crown structure at the edge of a transient gap, with a gap size of more than 80 ​m2, with trees in the stand that were at least 30 ​m away from the gap. A total of 249 European beeches (Fagus sylvatica L.), Norway spruces (Picea abies L. Karst), Scots pines (Pinus sylvestris L.), oaks (Quercus spp.; Quercus petraea (Matt.) Liebl., Quercus robur L.), and silver firs (Abies alba Mill.) were examined on long-term experimental plots in southern Germany. Various crown measures were developed and calculated using high-resolution terrestrial laser scanning (TLiDAR) to capture the three-dimensional crown structures. Growth responses to edge conditions were measured based on tree rings. Using linear mixed models, we predict the basal area increment of edge trees relative to trees in the stand under wet and dry soil moisture conditions after the gap formation.

Results

We identified ⅰ) species-specific acclimation of the crown of edge trees after the gap formation, ⅱ) under wet soil moisture conditions a growth increase of 25%–45% for beech, pine, and oak edge trees and growth losses of 5%–60% for spruce and fir and ⅲ) coniferous tree species benefited from the edge position regarding their basal area increment under dry soil moisture conditions and deciduous tree species grew regardless of the soil moisture conditions at the edge of a gap.

Conclusion

Gaps have a species-specific effect on the habitus and growth of edge trees and can have both positive and negative impacts on silviculture.

References

 

Abd Latif, Z., Blackburn, G.A., 2010. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest. Int. J. Biometeorol. 54, 119–129. https://doi.org/10.1007/s00484-009-0260-1.

 

Ackerman, S.A., Ackerman, P.A., Seifert, T., 2013. Effects of irregular stand structure on tree growth, crown extension and branchiness of plantation-grown Pinus patula. South. For. a J. For. Sci. 75, 247–256. https://doi.org/10.2989/20702620.2013.846722.

 

Albiero-Júnior, A., Venegas-González, A., Camargo, J.L.C., Roig, F.A., Tomazello, M., 2021. Amazon forest fragmentation and edge effects temporarily favored understory and midstory tree growth. Trees 35, 2059–2068. https://doi.org/10.1007/s00468-021-02172-1.

 

Amolikondori, A., Abrari Vajari, K., Feizian, M., 2021. Assessing the effects of forest gaps on beech (Fagus orientalis L.) trees traits in the logged temperate broad-leaf forest. Ecol. Indicat. 127, 107689. https://doi.org/10.1016/j.ecolind.2021.107689.

 

Anderegg, W.R.L., Schwalm, C., Biondi, F., Camarero, J.J., Koch, G., Litvak, M., Ogle, K., Shaw, J.D., Shevliakova, E., Williams, A.P., Wolf, A., Ziaco, E., Pacala, S., 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532. https://doi.org/10.1126/science.aab1833.

 

Assmann, E., 1956. Natürlicher Bestockungsgrad und Zuwachs. Forstw. Cbl. 75, 257–265. https://doi.org/10.1007/BF01787732.

 

Barbeito, I., Collet, C., Ningre, F., 2014. Crown responses to neighbor density and species identity in a young mixed deciduous stand. Trees 28, 1751–1765. https://doi.org/10.1007/s00468-014-1082-2.

 

Barbeito, I., Dassot, M., Bayer, D., Collet, C., Drössler, L., Löf, M., del Rio, M., Ruiz-Peinado, R., Forrester, D.I., Bravo-Oviedo, A., Pretzsch, H., 2017. Terrestrial laser scanning reveals differences in crown structure of Fagus sylvatica in mixed vs. pure European forests. For. Ecol. Manag. 405, 381–390. https://doi.org/10.1016/j.foreco.2017.09.043.

 
Bauhus, J., Bartsch, N., 1995. Mechanisms for carbon and nutrient release and retention in beech forest gaps. In: Nilsson, L.O., Hüttl, R.F., Johansson, U.T. (Eds.), Nutrient Uptake and Cycling in Forest Ecosystems: Proceedings of the CEC/IUFRO Symposium Nutrient Uptake and Cycling in Forest Ecosystems Halmstad. Springer, Netherlands, Dordrecht, pp. 579–584. Sweden, June, 7–10, 1993.
 

Bayer, D., Pretzsch, H., 2017. Reactions to gap emergence: Norway spruce increases growth while European beech features horizontal space occupation – evidence by repeated 3D TLS measurements. Silva Fenn. 51. https://doi.org/10.14214/sf.7748.

 

Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrol. Sci. Bull. 24, 43–69. https://doi.org/10.1080/02626667909491834.

 

Biber, P., Pretzsch, H., 2022. Tree growth at gap edges. Insights from long term research plots in mixed mountain forests. For. Ecol. Manag. 520, 120383. https://doi.org/10.1016/j.foreco.2022.120383.

 

Bottero, A., D'Amato, A.W., Palik, B.J., et al., 2017. Density-dependent vulnerability of forest ecosystems to drought. J. Appl. Ecol. 54, 1605–1614. https://doi.org/10.1111/1365-2664.12847.

 

Bréda, N., Granier, A., Aussenac, G., 1995. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol. 15, 295–306. https://doi.org/10.1093/treephys/15.5.295.

 

Bugmann, H., 2001. A review of forest gap models. Clim. Change 51, 259–305. https://doi.org/10.1023/A:1012525626267.

 

Bunn, A.G., 2010. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258. https://doi.org/10.1016/j.dendro.2009.12.001.

 

Bunn, A.G., 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124. https://doi.org/10.1016/j.dendro.2008.01.002.

 
Bunn, A.G., Korpela, M., Biondi, F., et al., 2023. dplR: dendrochronology program library in R. R package version 1.7.6. https://CRAN.R-project.org/package=dplR.
 

Buras, A., Schunk, C., Zeiträg, C., Herrmann, C., Kaiser, L., Lemme, H., Straub, C., Taeger, S., Gösswein, S., Klemmt, H.J., Menzel, A., 2018. Are Scots pine forest edges particularly prone to drought-induced mortality? Environ. Res. Lett. 13, 025001. https://doi.org/10.1088/1748-9326/aaa0b4.

 

Calders, K., Adams, J., Armston, J., Bartholomeus, H., Bauwens, S., Bentley, L.P., Chave, J., Danson, F.M., Demol, M., Disney, M., Gaulton, R., Moorthy, S.M.K., Levick, S.R., Saarinen, N., Schaaf, C., Stovall, A., Terryn, L., Wilkes, P., Verbeeck, H., 2020. Terrestrial laser scanning in forest ecology: expanding the horizon. Remote Sen. Environ. 251, 112102. https://doi.org/10.1016/j.rse.2020.112102.

 

Coates, K.D., 2000. Conifer seedling response to northern temperate forest gaps. For. Ecol. Manag. 127, 249–269. https://doi.org/10.1016/S0378-1127(99)00135-8.

 

Dalsgaard, L., 2007. Above and below ground gaps: the effects of a small canopy opening on throughfall, soil moisture and tree transpiration in Suserup Skov, Denmark. Ecol. Bull., 81–102.

 

D'Amato, A.W., Bradford, J.B., Fraver, S., Palik, B.J., 2013. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecol. Appl. 23, 1735–1742. https://doi.org/10.1890/13-0677.1.

 

Diaconu, D., Kahle, H. -P., Spiecker, H., 2017. Thinning increases drought tolerance of European beech: a case study on two forested slopes on opposite sides of a valley. Eur. J. For. Res. 136, 319–328. https://doi.org/10.1007/s10342-017-1033-8.

 

Disney, M., 2019. Terrestrial LiDAR: a three-dimensional revolution in how we look at trees. New Phytol. 222, 1736–1741. https://doi.org/10.1111/nph.15517.

 

Dobrowolska, D., Bončina, A., Klumpp, R., 2017. Ecology and silviculture of silver fir (Abies alba Mill.): a review. J. For. Res. 22, 326–335. https://doi.org/10.1080/13416979.2017.1386021.

 
Durrant, T.H., De Rigo, D., Caudullo, G., 2016. Pinus Sylvestris in Europe: distribution, habitat, usage and threats. European Atlas of Forest Tree Species. Publication Office of the European Union, Luxembourg, pp. 845–846.
 

Dusan, R., Stjepan, M., Igor, A., Jurij, D., 2007. Gap regeneration patterns in relationship to light heterogeneity in two old-growth beech–fir forest reserves in South East Europe. Forestry. 80, 431–443. https://doi.org/10.1093/forestry/cpm037.

 

Fernández-Sarría, A., Velázquez-Martí, B., Sajdak, M., Martínez, L., Estornell, J., 2013. Residual biomass calculation from individual tree architecture using terrestrial laser scanner and ground-level measurements. Comput. Electron. Agric. 93, 90–97. https://doi.org/10.1016/j.compag.2013.01.012.

 

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086.

 

Finér, L., Helmisaari, H. -S., Lõhmus, K., Majdi, H., Brunner, I., Borja, I., Eldhuset, T., Godbold, D., Grebenc, T., Konôpka, B., Kraigher, H., Möttönen, M.R., Ohashi, M., Oleksyn, J., Ostonen, I., Uri, V., Vanguelova, E., 2007. Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141, 394–405. https://doi.org/10.1080/11263500701625897.

 

Fleck, S., Mölder, I., Jacob, M., Gebauer, T., Jungkunst, H.F., Leuschner, C., 2011. Comparison of conventional eight-point crown projections with LIDAR-based virtual crown projections in a temperate old-growth forest. Ann. For. Sci. 68, 1173–1185. https://doi.org/10.1007/s13595-011-0067-1.

 

Gaudio, N., Gendre, X., Saudreau, M., Seigner, V., Balandier, P., 2017. Impact of tree canopy on thermal and radiative microclimates in a mixed temperate forest: a new statistical method to analyse hourly temporal dynamics. Agric. For. Meteorol. 237–238, 71–79. https://doi.org/10.1016/j.agrformet.2017.02.010.

 

Gebhardt, T., Häberle, K. -H., Matyssek, R., Schulz, C., Ammer, C., 2014. The more, the better? Water relations of Norway spruce stands after progressive thinning. Agric. For. Meteorol. 197, 235–243. https://doi.org/10.1016/j.agrformet.2014.05.013.

 

Gray, A.N., Spies, T.A., Pabst, R.J., 2012. Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest. For. Ecol. Manag. 281, 111–120. https://doi.org/10.1016/j.foreco.2012.06.035.

 

Gromke, C., Ruck, B., 2018. On wind Forces in the forest-edge region during Extreme-Gust Passages and their implications for damage patterns. Bound. -Layer Meteorol. 168, 269–288. https://doi.org/10.1007/s10546-018-0348-4.

 
IPCC, 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability: Contribution of Working Group Ⅱ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg2/?trk=article-ssr-frontend-pulse_little-text-block. (Accessed 10 April 2024).
 

Jacobs, M., Hilmers, T., Leroy, B.M.L., Lemme, H., Kienlein, S., Muller, J., Weisser, W.W., Pretzsch, H., 2022. Assessment of defoliation and subsequent growth losses caused by Lymantria dispar using terrestrial laser scanning (TLS). Trees 36, 819–834. https://doi.org/10.1007/s00468-021-02255-z.

 

Jacobs, M., Rais, A., Pretzsch, H., 2021. How drought stress becomes visible upon detecting tree shape using terrestrial laser scanning (TLS). For. Ecol. Manag. 489, 118975. https://doi.org/10.1016/j.foreco.2021.118975.

 

Jankovska, I., Brūmelis, G., Nikodemus, O., Kasparinskis, R., Amatniece, V., Straupmanis, G., 2015. Tree species establishment in urban forest in relation to vegetation Composition, tree canopy gap area and soil Factors. Forests 6, 4451–4461. https://doi.org/10.3390/f6124379.

 

Keane, R.E., Austin, M., Field, C., et al., 2001. Tree mortality in gap models: application to climate change. Clim. Change 51, 509–540. https://doi.org/10.1023/A:1012539409854.

 

Kohler, M., Sohn, J., Nägele, G., Bauhus, J., 2010. Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? Eur. J. For. Res. 129, 1109–1118. https://doi.org/10.1007/s10342-010-0397-9.

 

Kubínová, Z., Janáček, J., Lhotáková, Z., Sprtová, M., Kubínová, L., Albrechtová, J., 2018. Norway spruce needle size and cross section shape variability induced by irradiance on a macro- and microscale and CO2 concentration. Trees 32, 231–244. https://doi.org/10.1007/s00468-017-1626-3.

 

Kucbel, S., Jaloviar, P., Saniga, M., Vencurik, J., Klimas, V., 2010. Canopy gaps in an old-growth fir-beech forest remnant of Western Carpathians. Eur. J. For. Res. 129, 249–259. https://doi.org/10.1007/s10342-009-0322-2.

 
Kumar, R., 2010. Distributed Hydrologic Model Parameterization: Application in Mesoscale River Basin. Friedrich-Schiller Universität, Jena.
 

Laurance, W.F., Williamson, G.B., Delamônica, P., Oliveira, A., Lovejoy, T.E., Gascon, C., Pohl, L., 2001. Effects of a strong drought on Amazonian forest fragments and edges. J. Trop. Ecol. 17, 771–785. https://doi.org/10.1017/S0266467401001596.

 

Laurent, M., Antoine, N., Joël, G., 2003. Effects of different thinning intensities on drought response in Norway spruce (Picea abies (L.) Karst.). For. Ecol. Manag. 183, 47–60. https://doi.org/10.1016/S0378-1127(03)00098-7.

 

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 259, 698–709. https://doi.org/10.1016/j.foreco.2009.09.023.

 

Longuetaud, F., Seifert, T., Leban, J. -M., Pretzsch, H., 2008. Analysis of long-term dynamics of crowns of sessile oaks at the stand level by means of spatial statistics. For. Ecol. Manag. 255, 2007–2019. https://doi.org/10.1016/j.foreco.2008.01.003.

 

Mäkinen, H., Isomäki, A., 2004. Thinning intensity and long-term changes in increment and stem form of Scots pine trees. For. Ecol. Manag. 203, 21–34. https://doi.org/10.1016/j.foreco.2004.07.028.

 

Martín-Benito, D., Del Río, M., Heinrich, I., Helle, G., Cañellas, I., 2010. Response of climate-growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. For. Ecol. Manag. 259, 967–975. https://doi.org/10.1016/j.foreco.2009.12.001.

 

Martin-Ducup, O., Schneider, R., Richard, A.F., 2016. Response of sugar maple (Acer saccharum, Marsh.) tree crown structure to competition in pure versus mixed stands. For. Ecol. Manag. 374, 20–32. https://doi.org/10.1016/j.foreco.2016.04.047.

 
Marx, A. (Ed.), 2017. Klimaanpassung in Forschung und Politik. Springer, Fachmedien Wiesbaden, Wiesbaden.
 

Mathes, T., Seidel, D., Klemmt, H. -J., Thom, D., Annighöfer, P., 2024. The effect of forest structure on drought stress in beech forests (Fagus sylvatica L.). For. Ecol. Manag. 554, 121667. https://doi.org/10.1016/j.foreco.2023.121667.

 

Mauri, A., Strona, G., San-Miguel-Ayanz, J., 2017. EU-Forest, a high-resolution tree occurrence dataset for Europe. Sci. Data 4, 160123. https://doi.org/10.1038/sdata.2016.123.

 

McDowell, N.G., Allen, C.D., Anderson-Teixeira, K., Aukema, B.H., Bond-Lamberty, B., Chini, L., Clark, J.S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G.C., Jackson, R.B., Johnson, D.J., Kueppers, L., Lichstein, J.W., Ogle, K., Poulter, B., Pugh, T.A.M., Seidl, R., Turner, M.G., Uriarte, M., Walker, A.P., Xu, C.G., 2020. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463. https://doi.org/10.1126/science.aaz9463.

 

Mickovski, S.B., Ennos, R.A., 2002. A morphological and mechanical study of the root systems of suppressed crown Scots pine Pinus sylvestris. Trees 16, 274–280. https://doi.org/10.1007/s00468-002-0177-3.

 

Muscolo, A., Bagnato, S., Sidari, M., Mercurio, R., 2014. A review of the roles of forest canopy gaps. J. For. Res. 25, 725–736. https://doi.org/10.1007/s11676-014-0521-7.

 

Muscolo, A., Sidari, M., Bagnato, S., et al., 2010. Gap size effects on above- and below-ground processes in a silver fir stand. Eur. J. For. Res. 129, 355–365. https://doi.org/10.1007/s10342-009-0341-z.

 

Muth, C.C., Bazzaz, F.A., 2002. Tree canopy displacement at forest gap edges. Can. J. Res. 32, 247–254. https://doi.org/10.1139/x01-196.

 

Olano, J.M., Sangüesa-Barreda, G., García-López, M.A., García-Hidalgo, M., Rozas, V., García-Cervigón, A.I., Delgado-Huertas, A., Hernández-Alonso, H., 2023. Water use efficiency and climate legacies dominate beech growth at its rear edge. J. Ecol. 111, 2160–2171. https://doi.org/10.1111/1365-2745.14164.

 

Palahí, M., Valbuena, R., Senf, C., Acil, N., Pugh, T.A.M., Sadler, J., Seidl, R., Potapov, P., Gardiner, B., Hetemäki, L., Chirici, G., Francini, S., Hlásny, T., Lerink, B.J.W., Olsson, H., Olabarria, J.R.G., Ascoli, D., Asikainen, A., Bauhus, J., Berndes, G., Donis, J., Fridman, J., Hanewinkel, M., Jactel, H., Lindner, M., Marchetti, M., Marušák, R., Sheil, D., Tomé, M., Trasobares, A., Verkerk, P.J., Korhonen, M., Nabuurs, G. -J., 2021. Concerns about reported harvests in European forests. Nature 592, E15-E17. https://doi.org/10.1038/s41586-021-03292-x.

 

Pedersen, B.S., Howard, J.L., 2004. The influence of canopy gaps on overstory tree and forest growth rates in a mature mixed-age, mixed-species forest. For. Ecol. Manag. 196, 351–366. https://doi.org/10.1016/j.foreco.2004.03.031.

 

Petriţan, A.M., von Lüpke, B., Petriţan, I.C., 2009. Influence of light availability on growth, leaf morphology and plant architecture of beech (Fagus sylvatica L.), maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings. Eur. J. For. Res. 128, 61–74. https://doi.org/10.1007/s10342-008-0239-1.

 

Petritan, A.M., Von Lüpke, B., Petritan, I.C., 2007. Effects of shade on growth and mortality of maple (Acer pseudoplatanus), ash (Fraxinus excelsior) and beech (Fagus sylvatica) saplings. Forestry 80, 397–412. https://doi.org/10.1093/forestry/cpm030.

 
Pfennigbauer, M., Ullrich, A., 2010. Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement. In: Turner, M.D., Kamerman, G.W. (Eds.), Laser Radar Technology and Applications XV. SPIE, p. 76841F.
 

Pretzsch, H., 2014. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For. Ecol. Manag. 327, 251–264. https://doi.org/10.1016/j.foreco.2014.04.027.

 
Pretzsch, H., 2019. Grundlagen der Waldwachstumsforschung. Springer, Berlin Heidelberg.
 

Pretzsch, H., Ahmed, S., Jacobs, M., Schmied, G., Hilmers, T., 2022. Linking crown structure with tree ring pattern: methodological considerations and proof of concept. Trees, 1–19. https://doi.org/10.1007/s00468-022-02297-x.

 

Pretzsch, H., Ahmed, S., Rötzer, T., Schmied, G., Hilmers, T., 2023. Structural and compositional acclimation of forests to extended drought: results of the KROOF throughfall exclusion experiment in Norway spruce and European beech. Trees 37, 1443–1463. https://doi.org/10.1007/s00468-023-02435-z.

 

Pretzsch, H., Biber, P., Uhl, E., Dahlhausen, J., Rötzer, T., Caldentey, J., Koike, T., van Con, T., Chavanne, A., Seifert, T., du Toit, B., Farnden, C., Pauleit, S., 2015. Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban For. Urban Green. 14, 466–479. https://doi.org/10.1016/j.ufug.2015.04.006.

 

Pretzsch, H., Rais, A., 2016. Wood quality in complex forests versus even-aged monocultures: review and perspectives. Wood Sci. Technol. 50, 845–880. https://doi.org/10.1007/s00226-016-0827-z.

 

Pretzsch, H., Schütze, G., Biber, P., 2018. Drought can favour the growth of small in relation to tall trees in mature stands of Norway spruce and European beech. For. Ecosyst. 5, 1–19. https://doi.org/10.1186/s40663-018-0139-x.

 
R Core Team, 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
 

Reich, K.F., Kunz, M., von Oheimb, G., 2021. A new index of forest structural heterogeneity using tree architectural attributes measured by terrestrial laser scanning. Ecol. Indicat. 133, 108412. https://doi.org/10.1016/j.ecolind.2021.108412.

 
Reich, P.B., Koike, T., Gower, S.T., Schoettle, A.W., 1995. Causes and Consequences of Variation in Conifer Leaf Life-Span. Academic Press, Inc., San Diego, CA (United States).
 

Reich, P.B., Oleksyn, J., Modrzynski, J., Tjoelker, M.G., 1996. Evidence that longer needle retention of spruce and pine populations at high elevations and high latitudes is largely a phenotypic response. Tree Physiol. 16, 643–647. https://doi.org/10.1093/treephys/16.7.643.

 

Richards, J.D., Hart, J.L., 2011. Canopy gap dynamics and development patterns in secondary Quercus stands on the Cumberland Plateau, Alabama, USA. For. Ecol. Manag. 262, 2229–2239. https://doi.org/10.1016/j.foreco.2011.08.015.

 
RIEGL, 2022. RIEGL VZ-400i Data Sheet. http://www.riegl.com/nc/products/terrestrial-scanning/produktdetail/product/scanner/48/. (Accessed 10 April 2024).
 

Ritter, E., Dalsgaard, L., Einhorn, K.S., 2005. Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark. For. Ecol. Manag. 206, 15–33. https://doi.org/10.1016/j.foreco.2004.08.011.

 

Ritter, E., Vesterdal, L., 2006. Gap formation in Danish beech (Fagus sylvatica) forests of low management intensity: soil moisture and nitrate in soil solution. Eur. J. For. Res. 125, 139–150. https://doi.org/10.1007/s10342-005-0077-3.

 
Rittershofer, F., 1994. Waldpflege und Waldbau: für Studierende und Praktiker: mit 33 Tab, 1. Aufl. Rittershofer, Freising.
 

Roberts, S.D., Harrington, C.A., 2008. Individual tree growth response to variable-density thinning in coastal Pacific Northwest forests. For. Ecol. Manag. 255, 2771–2781. https://doi.org/10.1016/j.foreco.2008.01.043.

 

Samaniego, L., Kumar, R., Attinger, S., 2010. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 46. https://doi.org/10.1029/2008WR007327.

 

Samaniego, L., Kumar, R., Zink, M., 2013. Implications of parameter uncertainty on soil moisture drought analysis in Germany. J. Hydrometeorol. 14, 47–68. https://doi.org/10.1175/JHM-D-12-075.1.

 

Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Sheffield, J., Wood, E.F., Marx, A., 2018. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426. https://doi.org/10.1038/s41558-018-0138-5.

 

Sandoval, S., Cancino, J., 2008. Modeling the edge effect in even-aged Monterrey pine (Pinus radiata D. Don) stands incorporating a competition index. For. Ecol. Manag. 256, 78–87. https://doi.org/10.1016/j.foreco.2008.03.053.

 

Sankey, T., Tatum, J., 2022. Thinning increases forest resiliency during unprecedented drought. Sci. Rep. 12, 9041. https://doi.org/10.1038/s41598-022-12982-z.

 

Scharenbroch, B.C., Bockheim, J.G., 2007. Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. Plant Soil 294, 219–233. https://doi.org/10.1007/s11104-007-9248-y.

 

Schliemann, S.A., Bockheim, J.G., 2011. Methods for studying treefall gaps: a review. For. Ecol. Manag. 261, 1143–1151. https://doi.org/10.1016/j.foreco.2011.01.011.

 

Seidel, D., Schall, P., Gille, M., Ammer, C., 2015. Relationship between tree growth and physical dimensions of Fagus sylvatica crowns assessed from terrestrial laser scanning. iForest 8, 735–742. https://doi.org/10.3832/ifor1566-008.

 

Seidl, R., Albrich, K., Thom, D., Rammer, W., 2018. Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems. J. Environ. Manag. 209, 46–56. https://doi.org/10.1016/j.jenvman.2017.12.014.

 

Seidl, R., Schelhaas, M. -J., Rammer, W., Verkerk, P.J., 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810. https://doi.org/10.1038/nclimate2318.

 
Seifert, T., 2003. Integration von Holzqualität und Holzsortierung in behandlungssensitive Waldwachstumsmodelle. Technische Universität München.
 

Senf, C., Seidl, R., 2021. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70. https://doi.org/10.1038/s41893-020-00609-y.

 

Silva, C.A., Valbuena, R., Pinagé, E.R., Mohan, M., de Almeida, D.R.A., Broadbent, E.N., Wan Mohd Jaafar, W.S., de Almeida Papa, D., Cardil, A., Klauberg, C., 2019. ForestGapR: an r Package for forest gap analysis from canopy height models. Methods Ecol. Evol. 10, 1347–1356. https://doi.org/10.1111/2041-210X.13211.

 

Sohn, J.A., Hartig, F., Kohler, M., Huss, J., Bauhus, J., 2016. Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests. Ecol. Appl. 26, 2190–2205. https://doi.org/10.1002/eap.1373.

 
Speer, J.H., 2010. Fundamentals of Tree-Ring Research. University of Arizona, Tucson.
 

Stenberg, P., Kuuluvainen, T., Kellomäki, S., Grace, J.C., Jokela, E.J., Gholz, H.L., 1994. Crown structure, light interception and productivity of pine trees and stands. Ecol. Bull., 20–34.

 

Stokes, M.A., Smiley, T.L., 1968. An Introduction to Tree-Ring Dating. University of Chicago Press, Chicago.

 

Szejner, P., Belmecheri, S., Ehleringer, J.R., Monson, R.K., 2020. Recent increases in drought frequency cause observed multi-year drought legacies in the tree rings of semi-arid forests. Oecologia 192, 241–259. https://doi.org/10.1007/s00442-019-04550-6.

 

Szwagrzyk, J., Szewczyk, J., Maciejewski, Z., 2012. Shade-tolerant tree species from temperate forests differ in their competitive abilities: a case study from Roztocze, south-eastern Poland. For. Ecol. Manag. 282, 28–35. https://doi.org/10.1016/j.foreco.2012.06.031.

 

Turner, M.G., 2010. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849. https://doi.org/10.1890/10-0097.1.

 

Vepakomma, U., St-Onge, B., Kneeshaw, D., 2011. Response of a boreal forest to canopy opening: assessing vertical and lateral tree growth with multi-temporal lidar data. Ecol. Appl. 21, 99–121. https://doi.org/10.1890/09-0896.1.

 

Vilhar, U., Roženbergar, D., Simončič, P., Diaci, J., 2015. Variation in irradiance, soil features and regeneration patterns in experimental forest canopy gaps. Ann. For. Sci. 72, 253–266. https://doi.org/10.1007/s13595-014-0424-y.

 

Vilhar, U., Simončič, P., 2012. Water status and drought stress in experimental gaps in managed and semi-natural silver fir--beech forests. Eur. J. For. Res. 131, 1381–1397. https://doi.org/10.1007/s10342-012-0605-x.

 

Wallentin, C., Nilsson, U., 2014. Storm and snow damage in a Norway spruce thinning experiment in southern Sweden. Forestry 87, 229–238. https://doi.org/10.1093/forestry/cpt046.

 

Weithmann, G., Schuldt, B., Link, R.M., Heil, D., Hoeber, S., John, H., Müller-Haubold, H., Schüller, L.-M., Schumann, K., Leuschner, C., 2022. Leaf trait modification in European beech trees in response to climatic and edaphic drought. Plant Biol 24, 1272–1286. https://doi.org/10.1111/plb.13366.

 
Wimalasekera, R., 2019. Effect of light intensity on photosynthesis. In: Ahmad, P., Ahanger, M.A., Alyemeni, M.N., Alam, P. (Eds.), Photosynthesis, Productivity and Environmental Stress. John Wiley & Sons, Ltd, pp. 65–73.
 

Wu, X., Liu, H., Li, X., Ciais, P., Babst, F., Guo, W., Zhang, C., Magliulo, V., Pavelka, M., Liu, S., Huang, Y., Wang, P., Shi, C., Ma, Y., 2018. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Global Change Biol 24, 504–516. https://doi.org/10.1111/gcb.13920.

 

Yaffee, S.L., 1999. Three Faces of Ecosystem management. Conserv. Biol. 13, 713–725. https://doi.org/10.1046/j.1523-1739.1999.98127.x.

 

Zhu, J., Thimonier, A., Etzold, S., Meusburger, K., Waldner, P., Schmitt, M., Schleppi, P., Schaub, M., Thormann, J.-J., Lehmann, M.M., 2022. Variation in leaf morphological traits of European beech and Norway spruce over two decades in Switzerland. Front. For. Global Chang 4 https://doi.org/10.3389/ffgc.2021.778351.

 

Zink, M., Samaniego, L., Kumar, R., Thober, S., Mai, J., Schäfer, D., Marx, A., 2016. The German drought monitor. Environ. Res. Lett. 11, 074002. https://doi.org/10.1088/1748-9326/11/7/074002.

Forest Ecosystems
Article number: 100219
Cite this article:
Bohnhorst L, Biber P, Hilmers T, et al. Differential modulation of crown allometry and stem growth at gap edges in five European tree species by drought conditions. Forest Ecosystems, 2024, 11(5): 100219. https://doi.org/10.1016/j.fecs.2024.100219
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return