Leaf trait networks (LTNs) visualize the intricate linkages reflecting plant trait-functional coordination. Typical karst vegetation, developed from lithological dolomite and limestone, generally exhibits differential communities, possibly due to habitat rock exposure, soil depth, and soil physicochemical properties variations, leading to a shift from plant trait variation to functional linkages. However, how soil and habitat quality affect the differentiation of leaf trait networks remains unclear. LTNs were constructed for typical dolomite and limestone habitats by analyzing twenty-one woody plant leaf traits across fifty-six forest subplots in karst mountains. The differences between dolomite and limestone LTNs were compared using network parameters. The network association of soil and habitat quality was analyzed using redundancy analysis (RDA), Mantle's test, and a random forest model. The limestone LTN exhibited significantly higher edge density with lower diameter and average path length when compared to the dolomite LTN. It indicates LTN differentiation, with the limestone network displaying a more compact architecture and higher connectivity than the dolomite network. The specific leaf phosphorus and leaf nitrogen contents of dolomite LTN, as well as the leaf mass and leaf carbon contents of limestone LTN, significantly contributed to network degree and closeness, serving as crucial node traits regulating LTN connectedness. Additionally, both habitat LTNs significantly correlated with soil nitrogen and phosphorus, stoichiometric ratios, pH, and organic carbon, as well as soil depth and rock exposure rates, with soil depth and rock exposure showing greater relative importance. Soil depth and rock exposure dominate trait network differentiation, with the limestone habitat exhibiting a more compact network architecture than the dolomite habitat.
Ackerly, D.D., 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 164, S165-S184. https://doi.org/10.1086/368401.
Bai, Y., He, Q., Liu, Z., Wu, Z., Xie, S., 2021. Soil nutrient variation impacted by ecological restoration in the different lithological karst area, Shibing, China. Glob. Ecol. Conserv. 25, e01399. https://doi.org/10.1016/j.gecco.2020.e01399.
Bao, S.D., 2000. Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing.
Benavides, R., Carvalho, B., Matesanz, S., Bastias, C.C., Cavers, S., Escudero, A., Fonti, P., Martínez-Sancho, E., Valladares, F., 2021. Phenotypes of Pinus sylvestris are more coordinated under local harsher conditions across Europe. J. Ecol. 109, 2580–2596. https://doi.org/10.1111/1365-2745.13668.
Chen, X., Zhang, Z., Soulsby, C., Cheng, Q., Binley, A., Jiang, R., Tao, M., 2018. Characterizing the heterogeneity of karst critical zone and its hydrological function: an integrated approach. Hydrol. Process. 32, 2932–2946. https://doi.org/10.1002/hyp.13232.
Chen, J., Luo, W., Zeng, G., Wang, Y., Lyu, Y., Cai, X., Zhang, L., Cheng, A., Zhang, X., Wang, S., 2022. Response of surface evaporation and subsurface leakage to precipitation for simulated epikarst with different rock–soil structures. J. Hydrol. 610, 127850. https://doi.org/10.1016/j.jhydrol.2022.127850.
Collins, C.G., Wright, S.J., Wurzburger, N., 2016. Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees. Oecologia 180, 1037–1047. https://doi.org/10.1007/s00442-015-3410-7.
Cornelissen, J.H., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D., Reich, P.B., Ter Steege, H., Morgan, H., Van Der Heijden, M.J.A., Pausas, J.G., Poorter, H., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380. https://doi.org/10.1071/BT02124.
Di, X., Xiao, B., Dong, H., Wang, S., 2019. Implication of different humic acid fractions in soils under karst rocky desertification. Catena 174, 308–315. https://doi.org/10.1016/j.catena.2018.11.028.
Dwyer, J.M., Laughlin, D.C., 2017. Constraints on trait combinations explain climatic drivers of biodiversity: the importance of trait covariance in community assembly. Ecol. Lett. 20, 872–882. https://doi.org/10.1111/ele.12781.
Eichenberg, D., Trogisch, S., Huang, Y., He, J. -S., Bruelheide, H., 2015. Shifts in community leaf functional traits are related to litter decomposition along a secondary forest succession series in subtropical China. J. Plant Ecol. 8, 401–410. https://doi.org/10.1093/jpe/rtu021.
Feng, S., Wu, L., Liang, B., Wang, H., Liu, H., Zhu, C., Li, S., 2021. Forestation does not necessarily reduce soil erosion in a karst watershed in southwestern China. Prog. Phys. Geogr. 45, 82–97. https://doi.org/10.1177/0309133320958613.
Flores-Moreno, H., Fazayeli, F., Banerjee, A., Datta, A., Kattge, J., Butler, E.E., Atkin, O.K., Wythers, K., Chen, M., Anand, M., Bahn, M., Byun, C., Cornelissen, J.H.C., Craine, J., Gonzalez-Melo, A., Hattingh, W.N., Jansen, S., Kraft, N.J.B., Kramer, K., Laughlin, D.C., Minden, V., Niinemets, Ü., Onipchenko, V., Peñuelas, J., Soudzilovskaia, N.A., Dalrymple, R.L., Reich, P.B., 2019. Robustness of trait connections across environmental gradients and growth forms. Global Ecol. Biogeogr. 28, 1806–1826. https://doi.org/10.1111/geb.12996.
Gao, D., Wang, S., Wei, F., Wu, X., Zhou, S., Wang, L., Li, Z., Chen, P., Fu, B. -J., 2022. The vulnerability of ecosystem structure in the semi-arid area revealed by the functional trait networks. Ecol. Indicat. 139, 108894. https://doi.org/10.1016/j.ecolind.2022.108894.
Garnier, E., Laurent, G., Bellmann, A., Debain, S., Berthelier, P., Ducout, B., Roumet, C., Navas, M. -L., 2001. Consistency of species ranking based on functional leaf traits. New Phytol. 152, 69–83. https://doi.org/10.1046/j.0028-646x.2001.00239.x.
Gong, H., Cui, Q., Gao, J., 2020. Latitudinal, soil and climate effects on key leaf traits in northeastern China. Glob. Ecol. Conserv. 22, e00904. https://doi.org/10.1016/j.gecco.2020.e00904.
Guo, F., Jiang, G., Yuan, D., Polk, J.S., 2013. Evolution of major environmental geological problems in karst areas of Southwestern China. Environ. Earth Sci. 69, 2427–2435. https://doi.org/10.1007/s12665-012-2070-8.
Güsewell, S., 2004. N : P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266. https://doi.org/10.1111/j.1469-8137.2004.01192.x.
Hamm, M., Drossel, B., 2017. Habitat heterogeneity hypothesis and edge effects in model metacommunities. J. Theor. Biol. 426, 40–48. https://doi.org/10.1016/j.jtbi.2017.05.022.
Hartmann, J., Moosdorf, N., 2012. The new global lithological map database GLiM: a representation of rock properties at the Earth surface. G-cubed 13, Q12004. https://doi.org/10.1029/2012GC004370.
Hartvigsen, G., 2011. Using R to build and assess network models in biology. Math. Model. Nat. Pheno. 6, 61–75. https://doi.org/10.1051/mmnp/20116604.
He, N., Li, Y., Liu, C., Xu, L., Li, M., Zhang, J., He, J., Tang, Z., Han, X., Ye, Q., 2020. Plant trait networks: improved resolution of the dimensionality of adaptation. Trends Ecol. Evol. 35, 908–918. https://doi.org/10.1016/j.tree.2020.06.003.
Homeier, J., Seeler, T., Pierick, K., Leuschner, C., 2021. Leaf trait variation in species-rich tropical Andean forests. Sci. Rep. 11, 9993. https://doi.org/10.1038/s41598-021-89190-8.
Huang, X., Zhang, Z., Zhou, Y., Wang, X., Zhang, J., Zhou, X., 2021. Characteristics of soil organic carbon under different karst landforms. Carbonates Evaporites 36, 40. https://doi.org/10.1007/s13146-021-00711-y.
Jager, M.M., Richardson, S.J., Bellingham, P.J., Clearwater, M.J., Laughlin, D.C., 2015. Soil fertility induces coordinated responses of multiple independent functional traits. J. Ecol. 103, 374–385. https://doi.org/10.1111/1365-2745.12366.
Kleyer, M., Trinogga, J., Cebrián-Piqueras, M.A., Trenkamp, A., Fløjgaard, C., Ejrnæs, R., Bouma, T.J., Minden, V., Maier, M., Mantilla-Contreras, J., 2019. Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants. J. Ecol. 107, 829–842. https://doi.org/10.1111/1365-2745.13066.
Lavorel, S., Garnier, E., 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x.
Li, Y., Shao, J., Yang, H., Bai, X., 2009. The relations between land use and karst rocky desertification in a typical karst area, China. Environ. Geol. 57, 621–627. https://doi.org/10.1007/s00254-008-1331-z.
Li, D., Wen, L., Yang, L., Luo, P., Xiao, K., Chen, H., Zhang, W., He, X., Chen, H., Wang, K., 2017. Dynamics of soil organic carbon and nitrogen following agricultural abandonment in a karst region. J. Geophys. Res. Biogeo. 122, 230–242. https://doi.org/10.1002/2016JG003683.
Li, S., Hamani, A.K.M., Zhang, Y., Liang, Y., Gao, Y., Duan, A., 2021. Coordination of leaf hydraulic, anatomical, and economical traits in tomato seedlings acclimation to long-term drought. BMC Plant Biol. 21, 536. https://doi.org/10.1186/s12870-021-03304-y.
Li, Y., He, W., Wu, J., Zhao, P., Chen, T., Zhu, L., Ouyang, L., Ni, G., Hölscher, D., 2021. Leaf stoichiometry is synergistically-driven by climate, site, soil characteristics and phylogeny in karst areas, Southwest China. Biogeochemistry 155, 283–301. https://doi.org/10.1007/s10533-021-00826-3.
Li, Y., Liu, C., Xu, L., Li, M., Zhang, J., He, N., 2021. Leaf trait networks based on global data: representing variation and adaptation in plants. Front. Plant Sci. 12, 710530. https://doi.org/10.3389/fpls.2021.710530.
Li, Y., Liu, C., Sack, L., Xu, L., Li, M., Zhang, J., He, N., 2022. Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecol. Lett. 25, 1442–1457. https://doi.org/10.1111/ele.14009.
Lira-Martins, D., Nascimento, D.L., Abrahão, A., de Britto Costa, P., D'Angioli, A.M., Valézio, E., Rowland, L., Oliveira, R.S., 2022. Soil properties and geomorphic processes influence vegetation composition, structure, and function in the Cerrado Domain. Plant Soil 476, 549–588. https://doi.org/10.1007/s11104-022-05517-y.
Liu, H., Jiang, Z., Dai, J., Wu, X., Peng, J., Wang, H., Meersmans, J., Green, S.M., Quine, T.A., 2019a. Rock crevices determine woody and herbaceous plant cover in the karst critical zone. Sci. China Earth Sci. 62, 1756–1763. https://doi.org/10.1007/s11430-018-9328-3.
Liu, C., Li, Y., He, N., 2022. Differential adaptation of lianas and trees in wet and dry forests revealed by trait correlation networks. Ecol. Indicat. 135, 108564. https://doi.org/10.1016/j.ecolind.2022.108564.
Liu, L., Hu, J., Chen, X., Xu, X., Yang, Y., Ni, J., 2022. Adaptation strategy of karst forests: evidence from the community-weighted mean of plant functional traits. Ecol. Evol. 12, e8680. https://doi.org/10.1002/ece3.8680.
Maire, V., Wright, I.J., Prentice, I.C., Batjes, N.H., Bhaskar, R., van Bodegom, P.M., Cornwell, W.K., Ellsworth, D., Niinemets, Ü., Ordonez, A., 2015. Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecol. Biogeogr. 24, 706–717. https://doi.org/10.1111/geb.12296.
Meng, Q., Wang, S., Fu, Z., Deng, Y., Chen, H., 2022. Soil types determine vegetation communities along a toposequence in a dolomite peak-cluster depression catchment. Plant Soil 475, 5–22. https://doi.org/10.1007/s11104-022-05308-5.
Messier, J., Lechowicz, M.J., McGill, B.J., Violle, C., Enquist, B.J., 2017. Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network. J. Ecol. 105, 1775–1790. https://doi.org/10.1111/1365-2745.12755.
Molina-Venegas, R., Aparicio, A., Lavergne, S., Arroyo, J., 2018. Soil conditions drive changes in a key leaf functional trait through environmental filtering and facilitative interactions. Acta Oecol. 86, 1–8. https://doi.org/10.1016/j.actao.2017.11.008.
Nageswara Rao, R.C., Talwar, H.S., Wright, G.C., 2001. Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using a chlorophyll meter. J. Agron. Crop Sci. 186, 175–182. https://doi.org/10.1046/j.1439-037X.2001.00472.x.
Neina, D., 2019. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 5794869. https://doi.org/10.1155/2019/5794869.
Ordoñez, J.C., Van Bodegom, P.M., Witte, J.P.M., Wright, I.J., Reich, P.B., Aerts, R., 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecol. Biogeogr. 18, 137–149. https://doi.org/10.1111/j.1466-8238.2008.00441.x.
Pastore, G., Weig, A.R., Vazquez, E., Spohn, M., 2022. Weathering of calcareous bedrocks is strongly affected by the activity of soil microorganisms. Geoderma 405, 115408. https://doi.org/10.1016/j.geoderma.2021.115408.
Poorter, L., Bongers, F., 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743. https://doi.org/10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2.
Price, J.N., Gazol, A., Tamme, R., Hiiesalu, I., Pärtel, M., 2014. The functional assembly of experimental grasslands in relation to fertility and resource heterogeneity. Funct. Ecol. 28, 509–519. https://doi.org/10.1111/1365-2435.12186.
Qi, D., Wieneke, X., Zhou, X., Jiang, X., Xue, P., 2017. Succession of plant community composition and leaf functional traits in responding to karst rocky desertification in the Wushan County in Chongqing, China. Community Ecol. 18, 157–168. https://doi.org/10.1556/168.2017.18.2.5.
Rao, Q., Chen, J., Chou, Q., Ren, W., Cao, T., Zhang, M., Xiao, H., Liu, Z., Chen, J., Su, H., Xie, P., 2023. Linking trait network parameters with plant growth across light gradients and Seasons. Funct. Ecol. 37, 1732–1746. https://doi.org/10.1111/1365-2435.14327.
Reich, P.B., Wright, I.J., Cavender-Bares, J., Craine, J.M., Oleksyn, J., Westoby, M., Walters, M.B., 2003. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, S143-S164. https://doi.org/10.1086/374368.
Sánchez-Bermejo, P.C., Davrinche, A., Matesanz, S., Harpole, W.S., Haider, S., 2023. Within-individual leaf trait variation increases with phenotypic integration in a subtropical tree diversity experiment. New Phytol. 240, 1390–1404. https://doi.org/10.1111/nph.19250.
Shen, Y., Umaña, M.N., Li, W., Fang, M., Chen, Y., Lu, H., Yu, S., 2019. Coordination of leaf, stem and root traits in determining seedling mortality in a subtropical forest. For. Ecol. Manag. 446, 285–292. https://doi.org/10.1016/j.foreco.2019.05.032.
Sohrt, J., Ries, F., Sauter, M., Lange, J., 2014. Significance of preferential flow at the rock soil interface in a semi-arid karst environment. Catena 123, 1–10. https://doi.org/10.1016/j.catena.2014.07.003.
Stevens, J.J., Blanchar, R.W., 1992. Soil pH gradients near calcite and dolomite particles. Soil Sci. Soc. Am. J. 56, 967–972. https://doi.org/10.2136/sssaj1992.03615995005600030047x.
Tang, Y., Lian, B., 2012. Diversity of endolithic fungal communities in dolomite and limestone rocks from Nanjiang Canyon in Guizhou karst area, China. Can. J. Microbiol. 58, 685–693. https://doi.org/10.1139/w2012-042.
Tao, Y., Zhou, X.B., Li, Y.G., Liu, H.L., Zhang, Y.M., 2022. Short-term N and P additions differentially alter the multiple functional traits and trait associations of a desert ephemeral plant in China. Environ. Exp. Bot. 200, 104932. https://doi.org/10.1016/j.envexpbot.2022.104932.
Tian, D., Yan, Z., Ma, S., Ding, Y., Luo, Y., Chen, Y., Du, E., Han, W., Kovacs, E.D., Shen, H., 2019. Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants. Sci. China Life Sci. 62, 1047–1057. https://doi.org/10.1007/s11427-019-9584-1.
Touré, D., Ge, J., 2014. The response of plant species diversity to the interrelationships between soil and environmental factors in the limestone forests of Southwest China. J. Environ. Earth Sci. 4, 105–122.
Valverde, J., Sanchez-Jimenez, P., Pérez-Maqueda, L.A., 2015. Ca-looping for postcombustion CO2 capture: a comparative analysis on the performances of dolomite and limestone. Appl. Energy 138, 202–215. https://doi.org/10.1016/j.apenergy.2014.10.087.
Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let the concept of trait be functional. Oikos 116, 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x.
Wang, S., Ji, H., Ouyang, Z., Zhou, D., Zhen, L., Li, T., 1999. Preliminary study on weathering and pedogenesis of carbonate rock. Sci. China, Ser. A D 42, 572–581. https://doi.org/10.1007/BF02877784.
Wang, S.J., Liu, Q.M., Zhang, D.F., 2004. Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation. Land Degrad. Dev. 15, 115–121. https://doi.org/10.1002/ldr.592.
Wang, M., Chen, H., Zhang, W., Wang, K., 2018. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area, southwest China. Sci. Total Environ. 619, 1299–1307. https://doi.org/10.1016/j.scitotenv.2017.11.175.
Wang, Y., Zhang, L., Chen, J., Feng, L., Li, F., Yu, L., 2022. Study on the relationship between functional characteristics and environmental factors in karst plant communities. Ecol. Evol. 12, e9335. https://doi.org/10.1002/ece3.9335.
Wang, X., Ji, M., Zhang, Y., Zhang, L., Akram, M.A., Dong, L., Hu, W., Xiong, J., Sun, Y., Li, H., Degen, A.A., Ran, J., Deng, J., 2023. Plant trait networks reveal adaptation strategies in the drylands of China. BMC Plant Biol. 23, 266. https://doi.org/10.1186/s12870-023-04273-0.
Wright, I.J., Westoby, M., Reich, P.B., 2002. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J. Ecol. 90, 534–543. https://doi.org/10.1046/j.1365-2745.2002.00689.x.
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821–827. https://doi.org/10.1038/nature02403.
Xie, J., Wang, Z., Li, Y., 2022. Stomatal opening ratio mediates trait coordinating network adaptation to environmental gradients. New Phytol. 235, 907–922. https://doi.org/10.1111/nph.18189.
Xing, K., Niinemets, Ü., Rengel, Z., Onoda, Y., Xia, J., Chen, H.Y.H., Zhao, M., Han, W., Li, H., 2021. Global patterns of leaf construction traits and their covariation along climate and soil environmental gradients. New Phytol. 232, 1648–1660. https://doi.org/10.1111/nph.17686.
Yan, J., He, Y., Jiao, M., Guo, Y., Xie, P., Chen, D., Liu, Q., Liu, Y., Wu, P., 2024. Leaf trait network variations with woody species diversity and habitat heterogeneity in degraded karst forests. Ecol. Indicat. 160, 111896. https://doi.org/10.1016/j.ecolind.2024.111896.
Zhan, J., Li, X., Christie, P., Wu, L., 2021. A review of soil potentially toxic element contamination in typical karst regions in southwest China. Curr. Opin. Environ. Sci. Health 23, 100284. https://doi.org/10.1016/j.coesh.2021.100284.
Zhang, W., Zhao, J., Pan, F., Li, D., Chen, H., Wang, K., 2015. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China. Plant Soil 391, 77–91. https://doi.org/10.1007/s11104-015-2406-8.
Zhang, S., Zhang, Y., Xiong, K., Yu, Y., Min, X., 2020. Changes of leaf functional traits in karst rocky desertification ecological environment and the driving factors. Glob. Ecol. Conserv. 24, e01381. https://doi.org/10.1016/j.gecco.2020.e01381.
Zhang, Z., Huang, X., Zhang, J., 2020. Soil thickness and affecting factors in forestland in a karst basin in Southwest China. Trop. Ecol. 61, 267–277. https://doi.org/10.1007/s42965-020-00087-5.
Zhong, F., Xu, X., Li, Z., Zeng, X., Yi, R., Luo, W., Zhang, Y., Xu, C., 2022. Relationships between lithology, topography, soil, and vegetation, and their implications for karst vegetation restoration. Catena 209, 105831. https://doi.org/10.1016/j.catena.2021.105831.
Zhou, H., Xu, X., Jiang, X., Ding, B., Wu, P., Ding, F., 2022. Plant functional trait responses to dolomite and limestone karst forests in Southwest China. Forests 13, 2187. https://doi.org/10.3390/f13122187.
Zhu, J., Zhu, H., Cao, Y., Li, J., Zhu, Q., Yao, J., Xu, C., 2020. Effect of simulated warming on leaf functional traits of urban greening plants. BMC Plant Biol. 20, 139. https://doi.org/10.1186/s12870-020-02359-7.
Zou, Z., Zeng, F., Zeng, Z., Liao, J., Du, H., Zhang, H., 2020. Article variation and tradeoff of leaf traits of karst shrub in Southwest China. Res. Square. https://doi.org/10.21203/rs.3.rs-38026/v1.