PDF (1.5 MB)
Collect
Research Article | Open Access

Linking nutrient resorption stoichiometry with plant growth under long-term nitrogen addition

Aijun XingaHaihua Shena,b()Longchao Xua,dMengying ZhaoaZhengbing YanaJingyun Fanga,c
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
College of Ecology, Taiyuan University of Technology, Shanxi, 030024, China
Show Author Information

Abstract

Increased nitrogen (N) input can potentially lead to secondary phosphorus (P) limitation; however, it remains unclear whether differences in the plant's ability to cope with this P deficiency are related to their growth responses. Using a long-term experiment of N addition in a boreal forest, we explored the potential role of plant nutrient resorption efficiency and its stoichiometry in mediating plant growth responses to increased N input. We recorded the cover and measured the concentration and resorption efficiency of leaf N and P as well as the photosynthesis of a grass Deyeuxia angustifolia and a shrub Vaccinium vitis-idaea. The cover of the grass D. angustifolia increased with increasing N addition, while that of the shrub V. vitis-idaea decreased with N addition rate and almost disappeared from the high-level N addition over time. P resorption efficiency (PRE) increased in D. angustifolia but decreased in V. vitis-idaea with increasing leaf N:P which was increased by N addition for both species. In addition, photosynthesis increased linearly with N resorption efficiency (NRE) and PRE but was better explained by NRE:PRE, changing nonlinearly with the ratio in a hump-shaped trend. Furthermore, the variance (CV) of NRE:PRE for V. vitis-idaea (123%) was considerably higher than that for D. angustifolia (29%), indicating a more stable nutrient resorption stoichiometry of the grass. Taken together, these results highlight that efficient P acquisition and use strategy through nutrient resorption processes could be a pivotal underlying mechanism driving plant growth and community composition shifts under N enrichment.

References

 

Aerts, R., 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? J. Ecol. 84 (4), 597–608. https://doi.org/10.2307/2261481.

 

Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J.W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., De Vries, W., 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20 (1), 30–59. https://doi.org/10.1890/08-1140.1.

 

Brant, A.N., Chen, H.Y.H., 2015. Patterns and mechanisms of nutrient resorption in plants. Crit. Rev. Plant Sci. 34 (5), 471–486. https://doi.org/10.1080/07352689.2015.1078611.

 

Chalcraft, D.R., Cox, S.B., Clark, C., Cleland, E.E., Suding, K.N., Weiher, E., Pennington, D., 2008. Scale-dependent responses of plant biodiversity to nitrogen enrichment. Ecology 89 (8), 2165–2171. https://doi.org/10.1890/07-0971.1.

 

Cheng, Y., Liu, X., Song, Z., Ma, M., Zhou, S., Allan, E., 2023. Divergent trait responses to nitrogen addition in tall and short species. J. Ecol. 111, 1443–1454. https://doi.org/10.1111/1365-2745.14108.

 
Coreteam, R., 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
 

Deng, M., Liu, L., Sun, Z., Piao, S., Ma, Y., Chen, Y., Wang, J., Qiao, C., Wang, X., Li, P., 2016. Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principis-rupprechtiic plantations. New Phytol. 212 (4), 1019–1029. https://doi.org/10.1111/nph.14083.

 

Deng, M., Liu, L., Jiang, L., Liu, W., Wang, X., Li, S., Yang, S., Wang, B., 2018. Ecosystem scale trade-off in nitrogen acquisition pathways. Nat. Ecol. Evol. 2 (11), 1724–1734. https://doi.org/10.1038/s41559-018-0677-1.

 

Du, E.Z., 2017. Integrating species composition and leaf nitrogen content to indicate effects of nitrogen deposition. Environ. Pollut. 221, 392–397. https://doi.org/10.1016/j.envpol.2016.12.001.

 

Du, E.Z., Terrer, C., Pellegrini, A.F.A., Ahlstrom, A., van Lissa, C.J., Zhao, X., Xia, N., Wu, X.H., Jackson, R.B., 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13 (3), 221–228. https://doi.org/10.1038/s41561-019-0530-4.

 

Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., Ngai, J.T., Seabloom, E.W., Shurin, J.B., Smith, J.E., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10 (12), 1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x.

 

Eskelinen, A., Harpole, W.S., Jessen, M.T., Virtanen, R., Hautier, Y., 2022. Light competition drives herbivore and nutrient effects on plant diversity. Nature 611 (7935), 301–305. https://doi.org/10.1038/s41586-022-05383-9.

 

Gilliam, F.S., 2006. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol. 94 (6), 1176–1191. https://doi.org/10.1111/j.1365-2745.2006.01155.x.

 

Gilliam, F.S., Lyttle, N.L., Thomas, A., Adams, M.B., 2005. Soil variability along a nitrogen mineralization and nitrification gradient in a nitrogen-saturated hardwood forest. Soil Sci. Soc. Am. J. 69, 247–256. https://doi.org/10.2136/sssaj2005.0247a.

 

Gilliam, F.S., Billmyer, J.H., Walter, C.A., Peterjohn, W.T., 2016. Effects of excess nitrogen on biogeochemistry of a temperate hardwood forest: evidence of nutrient redistribution by a forest understory species. Atmos. Environ. 146, 261–270. https://doi.org/10.1016/j.atmosenv.2016.04.007.

 

Gress, S.E., Nichols, T.D., Northcraft, C.C., Peterjohn, W.T., 2007. Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation? Ecology 88, 119–130. https://doi.org/10.1890/0012-9658.

 

Güswell, S., 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266. https://doi.org/10.1111/j.1469-8137.2004.01192.x.

 

Han, Y., Feng, J., Han, M., Zhu, B., 2020. Responses of arbuscular mycorrhizal fungi to nitrogen addition: a meta-analysis. Global Change Biol. 26 (12), 7229–7241. https://doi.org/10.1111/gcb.15369.

 

Harpole, W.S., Ngai, J.T., Cleland, E.E., Seabloom, E.W., Borer, E.T., Bracken, M.E.S., Elser, J.J., Gruner, D.S., Hillebrand, H., Shurin, J.B., Smith, J.E., 2011. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14 (9), 852–862. https://doi.org/10.1111/j.1461-0248.2011.01651.x.

 

Harpole, W.S., Sullivan, L.L., Lind, E.M., Firn, J., Adler, P.B., Borer, E.T., Chase, J., Fay, P.A., Hautier, Y., Hillebrand, H., MacDougallm, A.S., Seabloom, E.W., Williams, R., Bakker, J.D., Cadotte, M.W., Chaneton, E.J., Chu, C.J., Cleland, E.E., D'Antonio, C., Davies, K.F., Gruner, D.S., Hagenah, N., Kirkman, K., Knops, J.M.H., La Pierre, K.J., McCulley, R.L., Moore, J.L., Morgan, J.W., Prober, S.M., Risch, A.C., Schuetz, M., Stevens, C.J., Wragg, P.D., 2016. Addition of multiple limiting resources reduces grassland diversity. Nature 537 (7618), 93–96. https://doi.org/10.1038/nature19324.

 

Harrington, R.A., Fownes, J.H., Vitousek, P.M., 2001. Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4, 646–657. https://doi.org/10.1007/s10021-001-0034-z.

 

Hautier, Y., Niklaus, P.A., Hector, A., 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324 (5927), 636–638. https://doi.org/10.1126/science.1169640.

 

Hautier, Y., Seabloom, E.W., Borer, E.T., Adler, P.B., Harpole, W.S., Hillebrand, H., Lind, E.M., MacDougall, A.S., Stevens, C.J., Bakker, J.D., Buckley, Y.M., Chu, C.J., Collins, S.L., Daleo, P., Damschen, E.I., Davies, K.F., Fay, P.A., Firn, J., Gruner, D.S., Jin, V.L., Klein, J.A., Knops, J.M.H., La Pierre, K.J., Li, W., McCulley, R.L., Melbourne, B.A., Moore, J.L., O'Halloran, L.R., Prober, S.M., Risch, A.C., Sankaran, M., Schuetz, M., Hector, A., 2014. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508 (7497), 521–525. https://doi.org/10.1038/nature13014.

 

Hu, W., Yuan, Z., Shi, X., Lock, T.R., Kallenbach, R.L., 2022. A global meta-analysis reveals that nitrogen addition alters plant nutrient concentration and resorption in grassland Ecosystems. J. Soil Sci. Plant Nutr. 22, 4960–4971. https://doi.org/10.1007/s42729-022-00973-y.

 

Ladouceur, E., Blowes, S.A., Chase, J.M., Clark, A.T., Garbowski, M., Alberti, J., Arnillas, C.A., Bakker, J.D., Barrio, I.C., Bharath, S., Borer, E.T., Brudvig, L.A., Cadotte, M.W., Chen, Q.Q., Collins, S.L., Dickman, C.R., Donohue, I., Du, G.Z., Ebeling, A., Eisenhauer, N., Fay, P.A., Hagenah, N., Hautier, Y., Jentsch, A., Jónsdóttir, I.S., Komatsu, K., MacDougall, A., Martina, J.P., Moore, J.L., Morgan, J.W., Peri, P.L., Power, S.A., Ren, Z.W., Risch, A.C., Roscher, C., Schuchardt, M.A., Seabloom, E.W., Stevens, C.J., Veen, G.F., Virtanen, R., Wardle, G.M., Wilfahrt, P.A., Harpole, W.S., 2022. Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecol. Lett. 25 (12), 2699–2712. https://doi.org/10.1111/ele.14126.

 
Lambers, H., Oliveira, R.S., 2019. Plant Physiological Ecology, third ed. Springer, Switzerland.
 

Li, Y., Niu, S., Yu, G., 2016. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Global Change Biol. 22 (2), 934–943. https://doi.org/10.1111/gcb.13125.

 

Liang, X., Zhang, T., Lu, X., Ellsworth, D.S., BassiriRad, H., You, C., Wang, D., He, P.C., Deng, Q., Liu, H., Mo, J.M., Ye, Q., 2020. Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis. Global Change Biol. 26 (6), 3585–3600. https://doi.org/10.1111/gcb.15071.

 

Liu, X.Y., Hu, Y.K., 2020. C: N:P stoichiometry of leaves and fine roots in typical forest swamps of the Greater Hinggan Mountains, China. Chin. J. Appl. Ecol. 31 (10), 3385–3394. https://doi.org/10.13287/j.1001-9332.202010.007(inChinese).

 

Luo, M., Moorhead, D.L., Ochoa-Hueso, R., Mueller, C.W., Ying, S.C., Chen, J., 2022. Nitrogen loading enhances phosphorus limitation in terrestrial ecosystems with implications for soil carbon cycling. Funct. Ecol. 36 (11), 2845–2858. https://doi.org/10.1111/1365-2435.14178.

 

Maskell, L.C., Smart, S.M., Bullock, J.M., Thompson, K., Stevens, C.J., 2010. Nitrogen deposition causes widespread loss of species richness in British habitats. Global Change Biol. 16 (2), 671–679. https://doi.org/10.1111/j.1365-2486.2009.02022.x.

 

Maxwell, K., Johnson, G.N., 2000. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51, 659–668. https://doi.org/10.1093/jexbot/51.345.659.

 

May, J.D., Burdette, S.B., Gilliam, F.S., Adams, M.B., 2005. Interspecific divergence in foliar nutrient dynamics and stem growth in a temperate forest in response to chronic nitrogen inputs. Can. J. For. Res. 35, 1023–1030. https://doi.org/10.1139/x05-036.

 

Nordin, A., Strengbom, J., Forsum, A., Ericson, L., 2009. Complex biotic interactions drive long-term vegetation change in a nitrogen enriched boreal forest. Ecosystems 12 (7), 1204–1211. https://doi.org/10.1007/s10021-009-9287-8.

 

Phillips, R.P., Brzostek, E., Midgley, M.G., 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol. 199, 41–51. https://doi.org/10.1111/nph.12221.

 

Seabloom, E.W., Adler, P.B., Alberti, J., Biederman, L., Buckley, Y.M., Cadotte, M.W., Collins, S.L., Dee, L., Fay, P.A., Firn, J., Hagenah, N., Harpole, W.S., Hautier, Y., Hector, A., Hobbie, S.E., Isbell, F., Knops, J.M.H., Komatsu, K.J., Laungani, R., MacDougall, A., McCulley, R.L., Moore, J.L., Morgan, J.W., Ohlert, T., Prober, S.M., Risch, A.C., Schuetz, M., Stevens, C.J., Borer, E.T., 2021. Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology 102 (2), e03218. https://doi.org/10.1002/ecy.3218.

 

Simkin, S.M., Allen, E.B., Bowman, W.D., Clark, C.M., Belnap, J., Brooks, M.L., Cade, B.S., Collins, S.L., Geiser, L.H., Gilliam, F.S., Jovan, S.E., Pardo, L.H., Schulz, B.K., Stevens, C.J., Suding, K.N., Throop, H.L., Waller, D.M., 2016. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl. Acad. Sci. USA 113 (15), 4086–4091. https://doi.org/10.1073/pnas.1515241113.

 

Smith, S.E., Smith, F.A., Jakobsen, I., 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 162 (2), 511–524. https://doi.org/10.1111/j.1469-8137.2004.01039.x.

 

Strengbom, J., Nordin, A., 2012. Physical disturbance determines effects from nitrogen addition on ground vegetation in boreal coniferous forests. J. Veg. Sci. 23 (2), 361–371. https://doi.org/10.1111/j.1654-1103.2011.01359.x.

 

Strengbom, J., Nordin, A., Nasholm, T., Ericson, L., 2002. Parasitic fungus mediates change in nitrogen-exposed boreal forest vegetation. J. Ecol. 90 (1), 61–67. https://doi.org/10.1046/j.0022-0477.2001.00629.x.

 

Su, Y., Ma, X., Le, J., Li, K., Han, W., Liu, X., 2021. Decoupling of nitrogen and phosphorus in dominant grass species in response to long-term nitrogen addition in an alpine grassland in central Asia. Plant Ecol. 222, 261–274. https://doi.org/10.1007/s11258-020-01103-3.

 

Sullivan, B.W., Alvarez-Clare, S., Castle, S.C., Porder, S., Reed, S.C., Schreeg, L., Townsend, A.R., Cleveland, C.C., 2014. Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments. Ecology 95, 668–681. https://doi.org/10.1890/13-0825.1.

 

Tedersoo, L., Bahram, M., Zobel, M., 2020. How mycorrhizal associations drive plant population and community biology. Science 367 (6480), eaba1223. https://doi.org/10.1126/science.aba1223.

 

Tian, D., Du, E.Z., Jiang, L., Ma, S.H., Zeng, W.J., Zou, A.L., Feng, C.Y., Xu, L.C., Xing, A.J., Wang, W., Zheng, C.Y., Ji, C.J., Shen, H.H., Fang, J.Y., 2018. Responses of forest ecosystems to increasing N deposition in China: a critical review. Environ. Pollut. 243, 75–86. https://doi.org/10.1016/j.envpol.2018.08.010.

 

Tian, D.S., Reich, P.B., Chen, H.Y.H., Xiang, Y.Z., Luo, Y.Q., Shen, Y., Meng, C., Han, W.X., Niu, S.L., 2019. Global changes alter plant multi-element stoichiometric coupling. New Phytol. 221 (2), 807–817. https://doi.org/10.1111/nph.15428.

 

Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F., Jackson, R.B., 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82 (2), 205–220. https://doi.org/10.1890/11-0416.1.

 

Vitousek, P.M., Porder, S., Houlton, B.Z., Chadwick, O.A., 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15. https://doi.org/10.1890/08-0127.1.

 

Wang, R.Z., Yang, J.J., Liu, H.Y., Sardans, J., Zhang, Y.H., Wang, X.B., Wei, C.Z., Lv, X.T., Dijkstra, F.A., Jiang, Y., Han, X.G., Peñuelas, J., 2022. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology 103, e3616. https://doi.org/10.1002/ecy.3616.

 

Xing, A.J., Xu, L.C., Shen, H.H., Du, E.Z., Liu, X.J., Fang, J.Y., 2019. Long term effect of nitrogen addition on understory community in a Chinese boreal forest. Sci. Total Environ. 646, 989–995. https://doi.org/10.1016/j.scitotenv.2018.07.350.

 

Yan, Z.B., Tian, D., Han, W.X., Tang, Z.Y., Fang, J.Y., 2017. An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Ann. Bot. 120, 937–942. https://doi.org/10.1093/aob/mcx106.

 

Yang, T., Long, M., Smith, M.D., Gu, Q., Yang, Y.D., He, N.P., Xu, C., Wu, H.H., Vilonen, L., Zhao, J.L., Jentsch, A., Yu, Q., 2021. Changes in species abundances with short-term and long-term nitrogen addition are mediated by stoichiometric homeostasis. Plant Soil 469, 39–48. https://doi.org/10.1007/s11104-021-05141-2.

 

You, C.M., Wu, F.Z., Gan, Y.M., Yang, W.Q., Hu, Z.M., Xu, Z.F., Tan, B., Liu, L., Ni, X.Y., 2017. Grass and forbs respond differently to nitrogen addition: a meta-analysis of global grassland ecosystems. Sci. Rep. 7, 1563. https://doi.org/10.1038/s41598-017-01728-x.

 

You, C.M., Wu, F.Z., Yang, W.Q., Xu, Z.F., Tan, B., Yue, K., Ni, X.Y., 2018. Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: a global meta-analysis. Environ. Pollut. 241, 740–749. https://doi.org/10.1016/j.envpol.2018.06.018.

 

Yuan, Z.Y., Chen, H.Y.H., 2015. Negative effects of fertilization on plant nutrient resorption. Ecology 96 (2), 373–380. https://doi.org/10.1890/14-0140.1.

 

Zhang, J.L., Zhang, S.B., Chen, Y.J., Zhang, Y.P., Poorter, L., Bonser, S., 2015. Nutrient resorption is associated with leaf vein density and growth performance of dipterocarp tree species. J. Ecol. 103, 541–549. https://doi.org/10.1111/1365-2745.12392.

 

Zhang, J., Tang, Z., Wang, W., Zhang, H., Liu, Y., Xin, Y., Zhao, L., Li, H., 2022. Nutrient resorption responses of plant life forms to nitrogen addition in temperate shrublands. Ecosphere 13, e4143. https://doi.org/10.1002/ecs2.4143.

 

Zong, S., Jin, Y., Xu, J., Wu, Z., He, H., Du, H., Wang, L., 2016. Nitrogen deposition but not climate warming promotes Deyeuxia angustifolia encroachment in alpine tundra of the Changbai Mountains, Northeast China. Sci. Total Environ. 544, 85–93. https://doi.org/10.1016/j.scitotenv.2015.11.144.

Forest Ecosystems
Article number: 100221
Cite this article:
Xing A, Shen H, Xu L, et al. Linking nutrient resorption stoichiometry with plant growth under long-term nitrogen addition. Forest Ecosystems, 2024, 11(5): 100221. https://doi.org/10.1016/j.fecs.2024.100221
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return