Increased nitrogen (N) input can potentially lead to secondary phosphorus (P) limitation; however, it remains unclear whether differences in the plant's ability to cope with this P deficiency are related to their growth responses. Using a long-term experiment of N addition in a boreal forest, we explored the potential role of plant nutrient resorption efficiency and its stoichiometry in mediating plant growth responses to increased N input. We recorded the cover and measured the concentration and resorption efficiency of leaf N and P as well as the photosynthesis of a grass Deyeuxia angustifolia and a shrub Vaccinium vitis-idaea. The cover of the grass D. angustifolia increased with increasing N addition, while that of the shrub V. vitis-idaea decreased with N addition rate and almost disappeared from the high-level N addition over time. P resorption efficiency (PRE) increased in D. angustifolia but decreased in V. vitis-idaea with increasing leaf N:P which was increased by N addition for both species. In addition, photosynthesis increased linearly with N resorption efficiency (NRE) and PRE but was better explained by NRE:PRE, changing nonlinearly with the ratio in a hump-shaped trend. Furthermore, the variance (CV) of NRE:PRE for V. vitis-idaea (123%) was considerably higher than that for D. angustifolia (29%), indicating a more stable nutrient resorption stoichiometry of the grass. Taken together, these results highlight that efficient P acquisition and use strategy through nutrient resorption processes could be a pivotal underlying mechanism driving plant growth and community composition shifts under N enrichment.
Aerts, R., 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? J. Ecol. 84 (4), 597–608. https://doi.org/10.2307/2261481.
Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J.W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., De Vries, W., 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20 (1), 30–59. https://doi.org/10.1890/08-1140.1.
Brant, A.N., Chen, H.Y.H., 2015. Patterns and mechanisms of nutrient resorption in plants. Crit. Rev. Plant Sci. 34 (5), 471–486. https://doi.org/10.1080/07352689.2015.1078611.
Chalcraft, D.R., Cox, S.B., Clark, C., Cleland, E.E., Suding, K.N., Weiher, E., Pennington, D., 2008. Scale-dependent responses of plant biodiversity to nitrogen enrichment. Ecology 89 (8), 2165–2171. https://doi.org/10.1890/07-0971.1.
Cheng, Y., Liu, X., Song, Z., Ma, M., Zhou, S., Allan, E., 2023. Divergent trait responses to nitrogen addition in tall and short species. J. Ecol. 111, 1443–1454. https://doi.org/10.1111/1365-2745.14108.
Deng, M., Liu, L., Sun, Z., Piao, S., Ma, Y., Chen, Y., Wang, J., Qiao, C., Wang, X., Li, P., 2016. Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principis-rupprechtiic plantations. New Phytol. 212 (4), 1019–1029. https://doi.org/10.1111/nph.14083.
Deng, M., Liu, L., Jiang, L., Liu, W., Wang, X., Li, S., Yang, S., Wang, B., 2018. Ecosystem scale trade-off in nitrogen acquisition pathways. Nat. Ecol. Evol. 2 (11), 1724–1734. https://doi.org/10.1038/s41559-018-0677-1.
Du, E.Z., 2017. Integrating species composition and leaf nitrogen content to indicate effects of nitrogen deposition. Environ. Pollut. 221, 392–397. https://doi.org/10.1016/j.envpol.2016.12.001.
Du, E.Z., Terrer, C., Pellegrini, A.F.A., Ahlstrom, A., van Lissa, C.J., Zhao, X., Xia, N., Wu, X.H., Jackson, R.B., 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13 (3), 221–228. https://doi.org/10.1038/s41561-019-0530-4.
Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., Ngai, J.T., Seabloom, E.W., Shurin, J.B., Smith, J.E., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10 (12), 1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x.
Eskelinen, A., Harpole, W.S., Jessen, M.T., Virtanen, R., Hautier, Y., 2022. Light competition drives herbivore and nutrient effects on plant diversity. Nature 611 (7935), 301–305. https://doi.org/10.1038/s41586-022-05383-9.
Gilliam, F.S., 2006. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol. 94 (6), 1176–1191. https://doi.org/10.1111/j.1365-2745.2006.01155.x.
Gilliam, F.S., Lyttle, N.L., Thomas, A., Adams, M.B., 2005. Soil variability along a nitrogen mineralization and nitrification gradient in a nitrogen-saturated hardwood forest. Soil Sci. Soc. Am. J. 69, 247–256. https://doi.org/10.2136/sssaj2005.0247a.
Gilliam, F.S., Billmyer, J.H., Walter, C.A., Peterjohn, W.T., 2016. Effects of excess nitrogen on biogeochemistry of a temperate hardwood forest: evidence of nutrient redistribution by a forest understory species. Atmos. Environ. 146, 261–270. https://doi.org/10.1016/j.atmosenv.2016.04.007.
Gress, S.E., Nichols, T.D., Northcraft, C.C., Peterjohn, W.T., 2007. Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation? Ecology 88, 119–130. https://doi.org/10.1890/0012-9658.
Güswell, S., 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266. https://doi.org/10.1111/j.1469-8137.2004.01192.x.
Han, Y., Feng, J., Han, M., Zhu, B., 2020. Responses of arbuscular mycorrhizal fungi to nitrogen addition: a meta-analysis. Global Change Biol. 26 (12), 7229–7241. https://doi.org/10.1111/gcb.15369.
Harpole, W.S., Ngai, J.T., Cleland, E.E., Seabloom, E.W., Borer, E.T., Bracken, M.E.S., Elser, J.J., Gruner, D.S., Hillebrand, H., Shurin, J.B., Smith, J.E., 2011. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14 (9), 852–862. https://doi.org/10.1111/j.1461-0248.2011.01651.x.
Harpole, W.S., Sullivan, L.L., Lind, E.M., Firn, J., Adler, P.B., Borer, E.T., Chase, J., Fay, P.A., Hautier, Y., Hillebrand, H., MacDougallm, A.S., Seabloom, E.W., Williams, R., Bakker, J.D., Cadotte, M.W., Chaneton, E.J., Chu, C.J., Cleland, E.E., D'Antonio, C., Davies, K.F., Gruner, D.S., Hagenah, N., Kirkman, K., Knops, J.M.H., La Pierre, K.J., McCulley, R.L., Moore, J.L., Morgan, J.W., Prober, S.M., Risch, A.C., Schuetz, M., Stevens, C.J., Wragg, P.D., 2016. Addition of multiple limiting resources reduces grassland diversity. Nature 537 (7618), 93–96. https://doi.org/10.1038/nature19324.
Harrington, R.A., Fownes, J.H., Vitousek, P.M., 2001. Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4, 646–657. https://doi.org/10.1007/s10021-001-0034-z.
Hautier, Y., Niklaus, P.A., Hector, A., 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324 (5927), 636–638. https://doi.org/10.1126/science.1169640.
Hautier, Y., Seabloom, E.W., Borer, E.T., Adler, P.B., Harpole, W.S., Hillebrand, H., Lind, E.M., MacDougall, A.S., Stevens, C.J., Bakker, J.D., Buckley, Y.M., Chu, C.J., Collins, S.L., Daleo, P., Damschen, E.I., Davies, K.F., Fay, P.A., Firn, J., Gruner, D.S., Jin, V.L., Klein, J.A., Knops, J.M.H., La Pierre, K.J., Li, W., McCulley, R.L., Melbourne, B.A., Moore, J.L., O'Halloran, L.R., Prober, S.M., Risch, A.C., Sankaran, M., Schuetz, M., Hector, A., 2014. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508 (7497), 521–525. https://doi.org/10.1038/nature13014.
Hu, W., Yuan, Z., Shi, X., Lock, T.R., Kallenbach, R.L., 2022. A global meta-analysis reveals that nitrogen addition alters plant nutrient concentration and resorption in grassland Ecosystems. J. Soil Sci. Plant Nutr. 22, 4960–4971. https://doi.org/10.1007/s42729-022-00973-y.
Ladouceur, E., Blowes, S.A., Chase, J.M., Clark, A.T., Garbowski, M., Alberti, J., Arnillas, C.A., Bakker, J.D., Barrio, I.C., Bharath, S., Borer, E.T., Brudvig, L.A., Cadotte, M.W., Chen, Q.Q., Collins, S.L., Dickman, C.R., Donohue, I., Du, G.Z., Ebeling, A., Eisenhauer, N., Fay, P.A., Hagenah, N., Hautier, Y., Jentsch, A., Jónsdóttir, I.S., Komatsu, K., MacDougall, A., Martina, J.P., Moore, J.L., Morgan, J.W., Peri, P.L., Power, S.A., Ren, Z.W., Risch, A.C., Roscher, C., Schuchardt, M.A., Seabloom, E.W., Stevens, C.J., Veen, G.F., Virtanen, R., Wardle, G.M., Wilfahrt, P.A., Harpole, W.S., 2022. Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecol. Lett. 25 (12), 2699–2712. https://doi.org/10.1111/ele.14126.
Li, Y., Niu, S., Yu, G., 2016. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Global Change Biol. 22 (2), 934–943. https://doi.org/10.1111/gcb.13125.
Liang, X., Zhang, T., Lu, X., Ellsworth, D.S., BassiriRad, H., You, C., Wang, D., He, P.C., Deng, Q., Liu, H., Mo, J.M., Ye, Q., 2020. Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis. Global Change Biol. 26 (6), 3585–3600. https://doi.org/10.1111/gcb.15071.
Liu, X.Y., Hu, Y.K., 2020. C: N:P stoichiometry of leaves and fine roots in typical forest swamps of the Greater Hinggan Mountains, China. Chin. J. Appl. Ecol. 31 (10), 3385–3394. https://doi.org/10.13287/j.1001-9332.202010.007(inChinese).
Luo, M., Moorhead, D.L., Ochoa-Hueso, R., Mueller, C.W., Ying, S.C., Chen, J., 2022. Nitrogen loading enhances phosphorus limitation in terrestrial ecosystems with implications for soil carbon cycling. Funct. Ecol. 36 (11), 2845–2858. https://doi.org/10.1111/1365-2435.14178.
Maskell, L.C., Smart, S.M., Bullock, J.M., Thompson, K., Stevens, C.J., 2010. Nitrogen deposition causes widespread loss of species richness in British habitats. Global Change Biol. 16 (2), 671–679. https://doi.org/10.1111/j.1365-2486.2009.02022.x.
Maxwell, K., Johnson, G.N., 2000. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51, 659–668. https://doi.org/10.1093/jexbot/51.345.659.
May, J.D., Burdette, S.B., Gilliam, F.S., Adams, M.B., 2005. Interspecific divergence in foliar nutrient dynamics and stem growth in a temperate forest in response to chronic nitrogen inputs. Can. J. For. Res. 35, 1023–1030. https://doi.org/10.1139/x05-036.
Nordin, A., Strengbom, J., Forsum, A., Ericson, L., 2009. Complex biotic interactions drive long-term vegetation change in a nitrogen enriched boreal forest. Ecosystems 12 (7), 1204–1211. https://doi.org/10.1007/s10021-009-9287-8.
Phillips, R.P., Brzostek, E., Midgley, M.G., 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol. 199, 41–51. https://doi.org/10.1111/nph.12221.
Seabloom, E.W., Adler, P.B., Alberti, J., Biederman, L., Buckley, Y.M., Cadotte, M.W., Collins, S.L., Dee, L., Fay, P.A., Firn, J., Hagenah, N., Harpole, W.S., Hautier, Y., Hector, A., Hobbie, S.E., Isbell, F., Knops, J.M.H., Komatsu, K.J., Laungani, R., MacDougall, A., McCulley, R.L., Moore, J.L., Morgan, J.W., Ohlert, T., Prober, S.M., Risch, A.C., Schuetz, M., Stevens, C.J., Borer, E.T., 2021. Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology 102 (2), e03218. https://doi.org/10.1002/ecy.3218.
Simkin, S.M., Allen, E.B., Bowman, W.D., Clark, C.M., Belnap, J., Brooks, M.L., Cade, B.S., Collins, S.L., Geiser, L.H., Gilliam, F.S., Jovan, S.E., Pardo, L.H., Schulz, B.K., Stevens, C.J., Suding, K.N., Throop, H.L., Waller, D.M., 2016. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl. Acad. Sci. USA 113 (15), 4086–4091. https://doi.org/10.1073/pnas.1515241113.
Smith, S.E., Smith, F.A., Jakobsen, I., 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 162 (2), 511–524. https://doi.org/10.1111/j.1469-8137.2004.01039.x.
Strengbom, J., Nordin, A., 2012. Physical disturbance determines effects from nitrogen addition on ground vegetation in boreal coniferous forests. J. Veg. Sci. 23 (2), 361–371. https://doi.org/10.1111/j.1654-1103.2011.01359.x.
Strengbom, J., Nordin, A., Nasholm, T., Ericson, L., 2002. Parasitic fungus mediates change in nitrogen-exposed boreal forest vegetation. J. Ecol. 90 (1), 61–67. https://doi.org/10.1046/j.0022-0477.2001.00629.x.
Su, Y., Ma, X., Le, J., Li, K., Han, W., Liu, X., 2021. Decoupling of nitrogen and phosphorus in dominant grass species in response to long-term nitrogen addition in an alpine grassland in central Asia. Plant Ecol. 222, 261–274. https://doi.org/10.1007/s11258-020-01103-3.
Sullivan, B.W., Alvarez-Clare, S., Castle, S.C., Porder, S., Reed, S.C., Schreeg, L., Townsend, A.R., Cleveland, C.C., 2014. Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments. Ecology 95, 668–681. https://doi.org/10.1890/13-0825.1.
Tedersoo, L., Bahram, M., Zobel, M., 2020. How mycorrhizal associations drive plant population and community biology. Science 367 (6480), eaba1223. https://doi.org/10.1126/science.aba1223.
Tian, D., Du, E.Z., Jiang, L., Ma, S.H., Zeng, W.J., Zou, A.L., Feng, C.Y., Xu, L.C., Xing, A.J., Wang, W., Zheng, C.Y., Ji, C.J., Shen, H.H., Fang, J.Y., 2018. Responses of forest ecosystems to increasing N deposition in China: a critical review. Environ. Pollut. 243, 75–86. https://doi.org/10.1016/j.envpol.2018.08.010.
Tian, D.S., Reich, P.B., Chen, H.Y.H., Xiang, Y.Z., Luo, Y.Q., Shen, Y., Meng, C., Han, W.X., Niu, S.L., 2019. Global changes alter plant multi-element stoichiometric coupling. New Phytol. 221 (2), 807–817. https://doi.org/10.1111/nph.15428.
Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F., Jackson, R.B., 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82 (2), 205–220. https://doi.org/10.1890/11-0416.1.
Vitousek, P.M., Porder, S., Houlton, B.Z., Chadwick, O.A., 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15. https://doi.org/10.1890/08-0127.1.
Wang, R.Z., Yang, J.J., Liu, H.Y., Sardans, J., Zhang, Y.H., Wang, X.B., Wei, C.Z., Lv, X.T., Dijkstra, F.A., Jiang, Y., Han, X.G., Peñuelas, J., 2022. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology 103, e3616. https://doi.org/10.1002/ecy.3616.
Xing, A.J., Xu, L.C., Shen, H.H., Du, E.Z., Liu, X.J., Fang, J.Y., 2019. Long term effect of nitrogen addition on understory community in a Chinese boreal forest. Sci. Total Environ. 646, 989–995. https://doi.org/10.1016/j.scitotenv.2018.07.350.
Yan, Z.B., Tian, D., Han, W.X., Tang, Z.Y., Fang, J.Y., 2017. An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Ann. Bot. 120, 937–942. https://doi.org/10.1093/aob/mcx106.
Yang, T., Long, M., Smith, M.D., Gu, Q., Yang, Y.D., He, N.P., Xu, C., Wu, H.H., Vilonen, L., Zhao, J.L., Jentsch, A., Yu, Q., 2021. Changes in species abundances with short-term and long-term nitrogen addition are mediated by stoichiometric homeostasis. Plant Soil 469, 39–48. https://doi.org/10.1007/s11104-021-05141-2.
You, C.M., Wu, F.Z., Gan, Y.M., Yang, W.Q., Hu, Z.M., Xu, Z.F., Tan, B., Liu, L., Ni, X.Y., 2017. Grass and forbs respond differently to nitrogen addition: a meta-analysis of global grassland ecosystems. Sci. Rep. 7, 1563. https://doi.org/10.1038/s41598-017-01728-x.
You, C.M., Wu, F.Z., Yang, W.Q., Xu, Z.F., Tan, B., Yue, K., Ni, X.Y., 2018. Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: a global meta-analysis. Environ. Pollut. 241, 740–749. https://doi.org/10.1016/j.envpol.2018.06.018.
Yuan, Z.Y., Chen, H.Y.H., 2015. Negative effects of fertilization on plant nutrient resorption. Ecology 96 (2), 373–380. https://doi.org/10.1890/14-0140.1.
Zhang, J.L., Zhang, S.B., Chen, Y.J., Zhang, Y.P., Poorter, L., Bonser, S., 2015. Nutrient resorption is associated with leaf vein density and growth performance of dipterocarp tree species. J. Ecol. 103, 541–549. https://doi.org/10.1111/1365-2745.12392.
Zhang, J., Tang, Z., Wang, W., Zhang, H., Liu, Y., Xin, Y., Zhao, L., Li, H., 2022. Nutrient resorption responses of plant life forms to nitrogen addition in temperate shrublands. Ecosphere 13, e4143. https://doi.org/10.1002/ecs2.4143.
Zong, S., Jin, Y., Xu, J., Wu, Z., He, H., Du, H., Wang, L., 2016. Nitrogen deposition but not climate warming promotes Deyeuxia angustifolia encroachment in alpine tundra of the Changbai Mountains, Northeast China. Sci. Total Environ. 544, 85–93. https://doi.org/10.1016/j.scitotenv.2015.11.144.