PDF (3 MB)
Collect
Research Article | Open Access

Stand biomass of Pinus sylvestris var. mongolica plantations benefits from high density monocultures in the boreal zone

Bingming Chena,bShensi Liua,bJinghua Yua,b,c,dYanqing Huanga,cShuai Yua,dHuanchu Liua,bTianyu Zhanga,bXiangdong LiueGuangze Jinf,g,hWei Chena,b,c,d()Xingyuan Hea,b,c,d
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
Liaoning Shenyang Urban Ecosystem National Observation and Research Station, Shenyang 110164, China
College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
Center for Ecological Research, Northeast Forestry University, Harbin, 150040, China
Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, 150040, China
Show Author Information

Abstract

Pinus sylvestris var. mongolica (P. sylvestris) plantations are extensively established in the boreal zone. Increasing stand biomass of these plantations can effectively enhance carbon stock, which is crucial for mitigating climate change. However, the current understanding of optimizing plantation strategies to maximize stand biomass is primarily derived from experiments in tropical and subtropical zones, which is difficult to extend to the boreal due to substantial climatic differences. Based on a comprehensive dataset from 1,076 sample plots of P. sylvestris plantations in the boreal zone of China, we evaluated the effects of tree species richness and stand density on tree height, diameter at breast height (DBH), and stand biomass to investigate the optimal plantation strategy. Furthermore, we examined how these effects changed with stand age and investigated their relative importance. We found that monocultures at a high stand density of 2,000–2,500 ​ha−1 were the optimal plantation strategy to maximize stand biomass (107.5 ​Mg·ha−1), and this held true at almost all stand ages. Unfortunately, this strategy resulted in low species richness and small individual trees (10.6 ​m height and 9.8 ​cm DBH), thus presenting a trade-off. In addition, as stand age increased, the effect of tree species richness on stand biomass shifted from positive to negative, but the effect of stand density was always positive. Overall, stand age had the greatest effect on stand biomass, followed by stand density and then tree species richness. Our findings reveal a distinct plantation strategy for optimizing stand biomass of P. sylvestris plantations in the boreal zone. More importantly, this study highlights that (1) maximizing stand biomass in the boreal zone may compromise tree species richness; (2) net effects of tree species richness on stand biomass are not always positive, as negative selection effects offset positive complementary effects.

References

 

Abbasi, U.A., Gilani, H., Hussain, K., Ali, A., 2023. Increasing stand stature weakens the positive effects of tree richness and structural imbalance on aboveground biomass in temperate forests: the stand stature hypothesis. For. Ecol. Manag. 539, 121040. https://doi.org/10.1016/j.foreco.2023.121040.

 

Ahmad, B., Wang, Y., Hao, J., Liu, Y., Bohnett, E., Zhang, K., 2021. Variation of carbon density components with overstory structure of larch plantations in northwest China and its implication for optimal forest management. For. Ecol. Manag. 496, 119399. https://doi.org/10.1016/j.foreco.2021.119399.

 

Barrufol, M., Schmid, B., Bruelheide, H., Chi, X., Hector, A., Ma, K., Michalski, S., Tang, Z., Niklaus, P.A., 2013. Biodiversity promotes tree growth during succession in subtropical forest. PLoS One 8, e81246. https://doi.org/10.1371/journal.pone.0081246.

 

Bartelink, H.H., 1998. Radiation interception by forest trees: a simulation study on effects of stand density and foliage clustering on absorption and transmission. Ecol. Model. 105, 213–225. https://doi.org/10.1016/S0304-3800(97)00165-8.

 

Blanco, J.A., Lo, Y.H., 2012. Forest Ecosystems - More than Just Trees. IntechOpen. https://doi.org/10.5772/1127.

 

Borcard, D., Legendre, P., Drapeau, P., 1992. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055. https://doi.org/10.2307/1940179.

 

Bukoski, J.J., Cook-Patton, S.C., Melikov, C., Ban, H., Chen, J.L., Goldman, E.D., Harris, N.L., Potts, M.D., 2022. Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. Nat. Commun. 13, 4206. https://doi.org/10.1038/s41467-022-31380-7.

 
Burkhart, H., Tomé, M., 2012. Modeling Forest Trees and Stands. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3170-9.
 

Chiang, J.M., Spasojevic, M.J., Muller-Landau, H.C., Sun, I.F., Lin, Y., Su, S.H., Chen, Z.S., Chen, C.T., Swenson, N.G., McEwan, R.W., 2016. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840. https://doi.org/10.1007/s00442-016-3717-z.

 

Civitello, D.J., Cohen, J., Fatima, H., Halstead, N.T., Liriano, J., McMahon, T.A., Ortega, C.N., Sauer, E.L., Sehgal, T., Young, S., Rohr, J.R., 2015. Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc. Natl. Acad. Sci. U.S.A. 112, 8667–8671. https://doi.org/10.1073/pnas.1506279112.

 

Dyola, N., Sigdel, S.R., Liang, E., Babst, F., Camarero, J.J., Aryal, S., Chettri, N., Gao, S., Lu, X., Sun, J., Wang, T., Zhang, G., Zhu, H., Piao, S., Peñuelas, J., 2022. Species richness is a strong driver of forest biomass along broad bioclimatic gradients in the Himalayas. Ecosphere 13, e4107. https://doi.org/10.1002/ecs2.4107.

 

Fang, J., Guo, Z., Hu, H., Kato, T., Muraoka, H., Son, Y., 2014. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Global Change Biol. 20, 2019–2030. https://doi.org/10.1111/gcb.12512.

 

Feng, H., Xue, L., 2019. Competition-density effect of tree organs in Acacia auriculiformis stands. J. For. Res. 30, 891–898. https://doi.org/10.1007/s11676-018-0662-1.

 

Feng, Y., Schmid, B., Loreau, M., Forrester, D.I., Fei, S., Zhu, J., Tang, Z., Zhu, J., Hong, P., Ji, C., Shi, Y., Su, H., Xiong, X., Xiao, J., Wang, S., Fang, J., 2022. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376, 865–868. https://doi.org/10.1126/science.abm6363.

 

Fichtner, A., Härdtle, W., Bruelheide, H., Kunz, M., Li, Y., von Oheimb, G., 2018. Neighbourhood interactions drive overyielding in mixed-species tree communities. Nat. Commun. 9, 1144. https://doi.org/10.1038/s41467-018-03529-w.

 

Foster, J.R., Finley, A.O., D'Amato, A.W., Bradford, J.B., Banerjee, S., 2016. Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition, or climate response most important? Global Change Biol. 22, 2138–2151. https://doi.org/10.1111/gcb.13208.

 

Godoy, O., Gómez-Aparicio, L., Matías, L., Pérez-Ramos, I.M., Allan, E., 2020. An excess of niche differences maximizes ecosystem functioning. Nat. Commun. 11, 4180. https://doi.org/10.1038/s41467-020-17960-5.

 

Hakamada, R.E., Hubbard, R.M., Moreira, G.G., Stape, J.L., Campoe, O., Ferraz, S.F. de B., 2020. Influence of stand density on growth and water use efficiency in Eucalyptus clones. For. Ecol. Manag. 466, 118125. https://doi.org/10.1016/j.foreco.2020.118125.

 

Halifu, S., Deng, X., Song, X., An, Y., Song, R., 2019. Effects of sphaeropsis blight on rhizosphere soil bacterial community structure and soil physicochemical properties of Pinus sylvestris var. mongolica in Zhanggutai, China. Forests 10, 954. https://doi.org/10.3390/f10110954.

 

Hebert, F., Krause, C., Plourde, P.Y., Achim, A., Pregent, G., Menetrier, J., 2016. Effect of tree spacing on tree level volume growth, morphology, and wood properties in a 25-year-old Pinus banksiana plantation in the boreal forest of Quebec. Forests 7, 276. https://doi.org/10.3390/f7110276.

 

Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A.J., Vandermeer, J., Wardle, D.A., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35. https://doi.org/10.1890/04-0922.

 

Huang, Y., Schuldt, A., Hönig, L., Yang, B., Liu, X., Bruelheide, H., Ma, K., Schmid, B., Niklaus, P.A., 2022. Effects of enemy exclusion on biodiversity–productivity relationships in a subtropical forest experiment. J. Ecol. 110, 2167–2178. https://doi.org/10.1111/1365-2745.13940.

 
IUSS, 2015. World Reference Base for Soil Resources 2014. World Soil Resources Reports No. 106. FAO, Rome, Italy.
 

Jagodziński, A.M., Dyderski, M.K., Gęsikiewicz, K., Horodecki, P., Cysewska, A., Wierczyńska, S., Maciejczyk, K., 2018. How do tree stand parameters affect young Scots pine biomass? – Allometric equations and biomass conversion and expansion factors. For. Ecol. Manag. 409, 74–83. https://doi.org/10.1016/j.foreco.2017.11.001.

 

Jones, M.C., Harden, J., O'Donnell, J., Manies, K., Jorgenson, T., Treat, C., Ewing, S., 2017. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Global Change Biol. 23, 1109–1127. https://doi.org/10.1111/gcb.13403.

 

Kim, H.S., Palmroth, S., Thérézien, M., Stenberg, P., Oren, R., Niinemets, Ü., 2011. Analysis of the sensitivity of absorbed light and incident light profile to various canopy architecture and stand conditions. Tree Physiol. 31, 30–47. https://doi.org/10.1093/treephys/tpq098.

 

Lefcheck, J.S., 2016. piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579. https://doi.org/10.1111/2041-210X.12512.

 

Li, S., Lang, X., Liu, W., Ou, G., Xu, H., Su, J., 2018. The relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, southwestern China. PLoS One 13, e0191140. https://doi.org/10.1371/journal.pone.0191140.

 

Liu, Y.Y., Wang, A.Y., An, Y.N., Lian, P.Y., Wu, D.D., Zhu, J.J., Meinzer, F.C., Hao, G.Y., 2018. Hydraulics play an important role in causing low growth rate and dieback of aging Pinus sylvestris var. mongolica trees in plantations of Northeast China. Plant Cell Environ. 41, 1500–1511. https://doi.org/10.1111/pce.13160.

 

Long, J.N., Vacchiano, G., 2014. A comprehensive framework of forest stand property–density relationships: perspectives for plant population ecology and forest management. Ann. For. Sci. 71, 325–335. https://doi.org/10.1007/s13595-013-0351-3.

 

Loreau, M., Hector, A., 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76. https://doi.org/10.1038/35083573.

 

Molina-Valero, J.A., Camarero, J.J., Álvarez-González, J.G., Cerioni, M., Hevia, A., Sánchez-Salguero, R., Martin-Benito, D., Pérez-Cruzado, C., 2021. Mature forests hold maximum live biomass stocks. For. Ecol. Manag. 480, 118635. https://doi.org/10.1016/j.foreco.2020.118635.

 

Ouyang, S., Xiang, W., Wang, X., Xiao, W., Chen, L., Li, S., Sun, H., Deng, X., Forrester, D.I., Zeng, L., Lei, P., Lei, X., Gou, M., Peng, C., 2019. Effects of stand age, richness and density on productivity in subtropical forests in China. J. Ecol. 107, 2266–2277. https://doi.org/10.1111/1365-2745.13194.

 

Pimm, S., Roulet, N., Weaver, A., 2009. Boreal forests' carbon stores need better management. Nature 462 276–276. https://doi.org/10.1038/462276a.

 

Polley, H.W., Wilsey, B.J., Derner, J.D., 2003. Do species evenness and plant density influence the magnitude of selection and complementarity effects in annual plant species mixtures? Ecol. Lett. 6, 248–256. https://doi.org/10.1046/j.1461-0248.2003.00422.x.

 

Postma, J.A., Hecht, V.L., Hikosaka, K., Nord, E.A., Pons, T.L., Poorter, H., 2021. Dividing the pie: a quantitative review on plant density responses. Plant Cell Environ. 44, 1072–1094. https://doi.org/10.1111/pce.13968.

 

Pretzsch, H., Steckel, M., Heym, M., Biber, P., Ammer, C., Ehbrecht, M., Bielak, K., Bravo, F., Ordonez, C., Collet, C., Vast, F., Drossler, L., Brazaitis, G., Godvod, K., Jansons, A., de-Dios-Garcia, J., Lof, M., Aldea, J., Korboulewsky, N., Reventlow, D.O.J., Nothdurft, A., Enge, M., Pach, M., Skrzyszewski, J., Pardos, M., Ponette, Q., Sitko, R., Fabrika, M., Svoboda, M., Cerny, J., Wolff, B., Ruiz-Peinado, R., del Rio, M., 2020. Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea (Matt.) Liebl.) analysed along a productivity gradient through Europe. Eur. J. For. Res. 139, 349–367. https://doi.org/10.1007/s10342-019-01233-y.

 
R Core Team, 2022. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
 

Repo, A., Rajala, T., Henttonen, H.M., Lehtonen, A., Peltoniemi, M., Heikkinen, J., 2021. Age-dependence of stand biomass in managed boreal forests based on the Finnish National Forest Inventory data. For. Ecol. Manag. 498, 119507. https://doi.org/10.1016/j.foreco.2021.119507.

 

Reynolds, J.H., Ford, E.D., 2005. Improving competition representation in theoretical models of self-thinning: a critical review. J. Ecol. 93, 362–372. https://doi.org/10.1111/j.1365-2745.2005.00976.x.

 

Schmid, B., Niklaus, P.A., 2017. Biodiversity: complementary canopies. Nat. Ecol. Evol. 1, 1–2. https://doi.org/10.1038/s41559-017-0104.

 

Steckel, M., Heym, M., Wolff, B., Reventlow, D.O.J., Pretzsch, H., 2019. Transgressive overyielding in mixed compared with monospecific Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.) stands – productivity gains increase with annual water supply. For. Ecol. Manag. 439, 81–96. https://doi.org/10.1016/j.foreco.2019.02.038.

 

Trogisch, S., Liu, X., Rutten, G., Xue, K., Bauhus, J., Brose, U., Bu, W., Cesarz, S., Chesters, D., Connolly, J., Cui, X., Eisenhauer, N., Guo, L., Haider, S., Härdtle, W., Kunz, M., Liu, L., Ma, Z., Neumann, S., Sang, W., Schuldt, A., Tang, Z., van Dam, N.M., von Oheimb, G., Wang, M.Q., Wang, S., Weinhold, A., Wirth, C., Wubet, T., Xu, X., Yang, B., Zhang, N., Zhu, C.D., Ma, K., Wang, Y., Bruelheide, H., 2021. The significance of tree-tree interactions for forest ecosystem functioning. Basic Appl. Ecol. 55, 33–52. https://doi.org/10.1016/j.baae.2021.02.003.

 

Vospernik, S., Sterba, H., 2015. Do competition-density rule and self-thinning rule agree? Ann. For. Sci 72. https://doi.org/10.1007/s13595-014-0433-x.

 

Wade, R.K., 2018. Models for plant self-thinning. Ecosphere 9, e02219. https://doi.org/10.1002/ecs2.2219.

 

Wang, S., Isbell, F., Deng, W., Hong, P., Dee, L.E., Thompson, P., Loreau, M., 2021. How complementarity and selection affect the relationship between ecosystem functioning and stability. Ecology 102, e03347. https://doi.org/10.1002/ecy.3347.

 

Wegiel, A., Polowy, K., 2020. Aboveground carbon content and storage in mature Scots Pine stands of different densities. Forests 11, 240. https://doi.org/10.3390/f11020240.

 

Williams, L.J., Paquette, A., Cavender-Bares, J., Messier, C., Reich, P.B., 2017. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 1, 1–7. https://doi.org/10.1038/s41559-016-0063.

 

Yu, Z., You, W., Agathokleous, E., Zhou, G., Liu, S., 2021. Forest management required for consistent carbon sink in China's forest plantations. Forest Ecosyst 8, 54. https://doi.org/10.1186/s40663-021-00335-7.

 

Zeller, L., Ammer, Ch, Annighöfer, P., Biber, P., Marshall, J., Schütze, G., del Río Gaztelurrutia, M., Pretzsch, H., 2017. Tree ring wood density of Scots pine and European beech lower in mixed-species stands compared with monocultures. For. Ecol. Manag. 400, 363–374. https://doi.org/10.1016/j.foreco.2017.06.018.

 

Zhang, Y., Chen, H.Y.H., 2015. Individual size inequality links forest diversity and above-ground biomass. J. Ecol. 103, 1245–1252. https://doi.org/10.1111/1365-2745.12425.

Forest Ecosystems
Article number: 100222
Cite this article:
Chen B, Liu S, Yu J, et al. Stand biomass of Pinus sylvestris var. mongolica plantations benefits from high density monocultures in the boreal zone. Forest Ecosystems, 2024, 11(5): 100222. https://doi.org/10.1016/j.fecs.2024.100222
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return