Enhancing forest cover is important for effective climate change mitigation. Studies suggest that drylands are promising areas for expanding forests, but conflicts arise with increased forest area and water consumption. Recent tree mortality in drylands raises concerns about carbon sequestration potential in tree plantations. Using Chinese dryland tree plantations as an example, we compared their growth with natural forests. Our results suggested plantation trees grew 1.6–2.1 times faster in juvenile phases, significantly shortening time to maturity (13.5 vs. 30 years) compared to natural forests, potentially stemming from simple plantation age structures. Different from natural forests, 74% of trees in plantations faced growth decline, indicating a short “prime period” for carbon sequestration and even a short lifespan. Additionally, a negative relationship between evapotranspiration and tree growth was observed in tree plantations since maturity, leading to high sensitivities of trees to vapor pressure deficit and soil water. However, this was not observed in natural forests. To address this, we suggest afforestation in drylands should consider complex age structures, ensuring a longer prime period for carbon sequestration and life expectancy in tree plantations.
Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., Hegewisch, K.C., 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5 (1), 170191. https://doi.org/10.1038/sdata.2017.191.
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.T., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259 (4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001.
Bastin, J.-F., Berrahmouni, N., Grainger, A., Maniatis, D., Mollicone, D., Moore, R., Patriarca, C., Picard, N., Sparrow, B., Abraham, E.M., Aloui, K., Atesoglu, A., Attore, F., Bassüllü, Ç., Bey, A., Garzuglia, M., García-Montero, L.G., Groot, N., Guerin, G., Laestadius, L., Lowe, A.J., Mamane, B., Marchi, G., Patterson, P., Rezende, M., Ricci, S., Salcedo, I., Diaz, A.S.-P., Stolle, F., Surappaeva, V., Castro, R., 2017. The extent of forest in dryland biomes. Science 356 (6338), 635–638. https://doi.org/10.1126/science.aam6527.
Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C.M., Crowther, T.W., 2019. The global tree restoration potential. Science 365 (6448), 76. https://doi.org/10.1126/science.aax0848.
Brienen, R.J.W., Caldwell, L., Duchesne, L., Voelker, S., Barichivich, J., Baliva, M., Ceccantini, G., Di Filippo, A., Helama, S., Locosselli, G.M., Lopez, L., Piovesan, G., Schöngart, J., Villalba, R., Gloor, E., 2020. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Comm. 11 (1), 4241. https://doi.org/10.1038/s41467-020-17966-z.
Büntgen, U., Krusic, P.J., Piermattei, A., Coomes, D.A., Esper, J., Myglan, V.S., Kirdyanov, A.V., Camarero, J.J., Crivellaro, A., Körner, C., 2019. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Comm. 10 (1), 2171. https://doi.org/10.1038/s41467-019-10174-4.
Fang, J., Chen, A., Peng, C., Zhao, S., Ci, L., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292 (5525), 2320–2322. https://doi.org/10.1126/science.1058629.
Farley, K.A., Jobbágy, E.G., Jackson, R.B., 2005. Effects of afforestation on water yield: a global synthesis with implications for policy. Glob. Change Biol. 11 (10), 1565–1576. https://doi.org/10.1111/j.1365-2486.2005.01011.x.
Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lü, Y., Zeng, Y., Li, Y., Jiang, X., Wu, B., 2016. Revegetation in China's Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6 (11), 1019–1022. https://doi.org/10.1038/nclimate3092.
Feng, S., Liu, H., Peng, S., Dai, J., Xu, C., Luo, C., Shi, L., Luo, M., Niu, Y., Liang, B., Liu, F., 2022. Will drought exacerbate the decline in the sustainability of plantation forests relative to natural forests? Land Degrad. Develop. 34 (4), 1067–1079. https://doi.org/10.1002/ldr.4516.
Goulden, M.L., Mcmillan, A.M.S., Winston, G.C., Rocha, A.V., Manies, K.L., Harden, J.W., Bond-Lamberty, B.P., 2011. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob. Change Biol. 17 (2), 855–871. https://doi.org/10.1111/j.1365-2486.2010.02274.x.
Gower, S.T., McMurtrie, R.E., Murty, D., 1996. Aboveground net primary production decline with stand age: potential causes. Trend. Ecol. Evol. 11 (9), 378–382. https://doi.org/10.1016/0169-5347(96)10042-2.
Griscom, B.W., Adams, J., Ellis, P.W., Houghton, R.A., Lomax, G., Miteva, D.A., Schlesinger, W.H., Shoch, D., Siikamäki, J.V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R.T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M.R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S.M., Minnemeyer, S., Polasky, S., Potapov, P., Putz, F.E., Sanderman, J., Silvius, M., Wollenberg, E., Fargione, J., 2017. Natural climate solutions. Proc. Natl. Acad. Sci. USA 114 (44), 11645–11650. https://doi.org/10.1073/pnas.1710465114.
Guo, Q., Ren, H., 2014. Productivity as related to diversity and age in planted versus natural forests. Global Ecol. Biogeogr. 23 (12), 1461–1471. https://doi.org/10.1111/geb.12238.
Heinrich, V.H.A., Dalagnol, R., Cassol, H.L.G., Rosan, T.M., de Almeida, C.T., Silva Junior, C.H.L., Campanharo, W.A., House, J.I., Sitch, S., Hales, T.C., Adami, M., Anderson, L.O., Aragão, L.E.O.C., 2021. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Comm. 12 (1), 1785. https://doi.org/10.1038/s41467-021-22050-1.
Holmes, R.L., 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78.
Hua, F., Bruijnzeel, L.A., Meli, P., Martin, P.A., Zhang, J., Nakagawa, S., Miao, X., Wang, W., McEvoy, C., Peña-Arancibia, J.L., Brancalion, P.H.S., Smith, P., Edwards, D.P., Balmford, A., 2022. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376 (6595), 839–844. https://doi.org/10.1126/science.abl4649.
Huang, J., Yu, H., Guan, X., Wang, G., Guo, R., 2016. Accelerated dryland expansion under climate change. Nat. Clim. Change 6 (2), 166–171. https://doi.org/10.1038/nclimate2837.
Jackson, R.B., Jobbágy, E.G., Avissar, R., Roy, S.B., Barrett, D.J., Cook, C.W., Farley, K.A., le Maitre, D.C., McCarl, B.A., Murray, B.C., 2005. Trading water for carbon with biological carbon sequestration. Science 310 (5756), 1944–1947. https://doi.org/10.1126/science.1119282.
Ji, Y., Zhou, G., Li, Z., Wang, S., Zhou, H., Song, X., 2020. Triggers of widespread dieback and mortality of poplar (Populus spp.) plantations across northern China. J. Arid Environ. 174, 104076. https://doi.org/10.1016/j.jaridenv.2019.104076.
Jia, G., Chen, L., Yu, X., Liu, Z., 2022. Soil water stress overrides the benefit of water-use efficiency from rising CO2 and temperature in a cold semi-arid poplar plantation. Plant Cell Environ. 45 (4), 1172–1186. https://doi.org/10.1111/pce.14260.
Killick, R., Fearnhead, P., Eckley, I.A., 2012. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107 (500), 1590–1598. https://doi.org/10.1080/01621459.2012.737745.
Kira, T., Shidei, T., 1967. Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Japan. J. Ecol. 17 (2), 70–87.
Laestadius, L., Maginnis, S., Minnemeyer, S., Potapoy, P., Saint-Laurent, C., Sizer, N., 2011. Mapping opportunities for forest landscape restoration. Unasylva 62 (238), 47–48.
Latham, P., Tappeiner, J., 2002. Response of old-growth conifers to reduction in stand density in western Oregon forests. Tree Physiol. 22 (2–3), 137–146. https://doi.org/10.1093/treephys/22.2-3.137.
Lian, X., Piao, S., Chen, A., Huntingford, C., Fu, B., Li, L.Z.X., Huang, J., Sheffield, J., Berg, A.M., Keenan, T.F., McVicar, T.R., Wada, Y., Wang, X., Wang, T., Yang, Y., Roderick, M.L., 2021. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2 (4), 232–250. https://doi.org/10.1038/s43017-021-00144-0.
Liu, H., Williams, P.A., Allen, C.D., Guo, D., Wu, X., Anenkhonov, O.A., Liang, E., Sandanov, D.V., Yin, Y., Qi, Z.H., Badmaeva, N.K., 2013. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Glob. Change Biol. 19 (8), 2500–2510. https://doi.org/10.1111/gcb.12217.
Liu, H., Xu, C., Allen, C.D., Hartmann, H., Wei, X., Yakir, D., Wu, X., Yu, P., 2022. Nature-based framework for sustainable afforestation in global drylands under changing climate. Glob. Change Biol. 28 (7), 2202–2220. https://doi.org/10.1111/gcb.16059.
Lu, W., Yu, X., Jia, G., 2020. Retrospective analysis of tree decline based on intrinsic water-use efficiency in semi-arid areas of North China. Atmosphere 11 (6), 577.
McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178 (4), 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x.
Monserud, R.A., Sterba, H., 1996. A basal area increment model for individual trees growing in even-and uneven-aged forest stands in Austria. For. Ecol. Manag. 80, 57–80.
Navarro-Cerrillo, R.M., Rodriguez-Vallejo, C., Silveiro, E., Hortal, A., Palacios-Rodríguez, G., Duque-Lazo, J., Camarero, J.J., 2018. Cumulative drought stress leads to a loss of growth resilience and explains higher mortality in planted than in naturally regenerated Pinus pinaster stands. Forests 9 (6). https://doi.org/10.3390/f9060358.
Pei, Y., Huang, L., Shao, M.a., Zhang, Y., Pan, Y., 2023. Water use pattern and transpiration of Mongolian pine plantations in relation to stand age on northern Loess Plateau of China. Agr. For. Meteorol. 330, 109320. https://doi.org/10.1016/j.agrformet.2023.109320.
Peng, S., Ding, Y., Liu, W., Li, Z., 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 11 (4), 1931–1946. https://doi.org/10.5194/essd-11-1931-2019.
Qi, Z., Liu, H., Wu, X., Hao, Q., 2014. Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China. Glob. Change Biol. 21 (2), 816–826. https://doi.org/10.1111/gcb.12703.
Sang, Y., Gao, P., Kang, X., Zhang, P., 2021. Effect of initial planting density on growth traits and wood properties of triploid Chinese white poplar (Populus tometosa) plantation. Forests 12 (12), 1676. https://doi.org/10.3390/f12121676.
Scott, A.J., Knott, M., 1974. A cluster analysis method for grouping means in the analysis of variance. Biometrics 30, 507–512.
Xiao, Y., Xiao, Q., Sun, X., 2020. Ecological risks arising from the impact of large-scale afforestation on the regional water supply balance in Southwest China. Sci. Rep. 10 (1), 4150. https://doi.org/10.1038/s41598-020-61108-w.
Xu, C., Liu, H., 2022. Hydraulic adaptability promotes tree life spans under climate dryness. Glob. Ecol. Biogeogr. 31 (1), 51–61, 10.1111/geb.13410.
Yu, G., Chen, Z., Piao, S., Peng, C., Ciais, P., Wang, Q., Li, X., Zhu, X., 2014. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 111 (13), 4910–4915. https://doi.org/10.1073/pnas.1317065111.
Yu, Z., Liu, S., Wang, J., Wei, X., Schuler, J., Sun, P., Harper, R., Zegre, N., 2019. Natural forests exhibit higher carbon sequestration and lower water consumption than planted forests in China. Glob. Change Biol. 25 (1), 68–77. https://doi.org/10.1111/gcb.14484.
Zaehle, S., Sitch, S., Prentice, I.C., Liski, J., Cramer, W., Erhard, M., Hickler, T., Smith, B., 2006. The importance of age-related decline in forest NPP for modelling regional carbon balances. Ecol. Appl. 16 (4), 1555–1574. https://doi.org/10.1890/1051-0761(2006)016[1555:TIOADI]2.0.CO;2.
Zeide, B., 2004. Optimal stand density: a solution. Can. J. For. Res. 34 (4), 846–854. https://doi.org/10.1139/x03-258.
Zhong, Z., He, B., Chen, Y., Yuan, W., Huang, L., Guo, L., Zhang, Y., Xie, X., 2021. Higher sensitivity of planted forests' productivity than natural forests to droughts in China. J. Geophys. Res. Biogeosci. 126 (10), e2021JG006306. https://doi.org/10.1029/2021JG006306.