PDF (1.4 MB)
Collect
Research Article | Open Access

Fire and retention island remnants have similar deadwood carbon stock a decade after disturbances in boreal forests of Alberta

Richard OseiaLance P. MooreaRosanise A. OdellaMarcel SchneideraTanvir Ahmed Shovona,bCharles A. Nocka()
Department of Renewable Resources, University of Alberta, Edmonton, Canada
Institut des Sciences de La Forêt Tempérée, Université Du Québec en Outaouais, 58 Rue Principale, Ripon, J0V 1V0, QC, Canada
Show Author Information

Abstract

In an attempt to reconcile wood extraction and forest biodiversity in managed boreal forests, ecosystem-based forest management (EBM) has become the de facto management approach. Retention forestry represents one prominent way that EBM is implemented in many parts of the world. Retention patches commonly left after harvesting serve as analogues of fire island remnants, which are patches of unburned forests in the burned forest matrix. Although the persistence of retention patches has been questioned, few studies have attempted to quantitatively compare forest attributes in both burned and harvested forests. As part of a larger program examining multiple aspects of ecosystem function in fire and harvest island remnants, we investigated the impact of disturbance type (fire/harvest) and forest edges on C stock in snags and coarse woody debris (CWD) found in island remnants in mixedwood boreal forests of Alberta, Canada. Total C stock (in snags and CWD) was similar between the two disturbance types and edge plots had similar total deadwood C stocks to interiors. The edges of island remnants had about two-fold more snag C stock than their interiors in both disturbance types, but C stock in CWD was unaffected by edge effects and disturbance type. Our results suggest that deadwood C dynamics in island remnants in fire and harvest disturbed boreal forests were similar, thus lending support for the continued implementation of retention forestry in Alberta.

References

 
Alberta Agriculture and Forestry, 2015. Minimum Standards and Suggested Protocol and Priorities for Establishing and Measuring Permanent Sample Plots in Alberta. Provincial Growth and Yield Initiative, Alberta Agriculture and Forestry, Canada.
 
Alberta Biodiversity Monitoring Institute, 2014. Terrestrial Field Data Collection Protocols Abridged Version 2014-03-21. Alberta Biodiversity Monitoring Institute, Alberta, Canada.
 

Angers, V.A., Bergeron, Y., Drapeau, P., 2012. Morphological attributes and snag classification of four North American boreal tree species: relationships with time since death and wood density. For. Ecol. Manag. 263, 138–147. https://doi.org/10.1016/j.foreco.2011.09.004.

 

Aszalós, R., Thom, D., Aakala, T., Angelstam, P., Brūmelis, G., Gálhidy, L., Gratzer, G., Hlásny, T., Katzensteiner, K., Kovács, B., Knoke, T., Larrieu, L., Motta, R., Müller, J., Ódor, P., Roženbergar, D., Paillet, Y., Pitar, D., Standovár, T., Svoboda, M., Szwagrzyk, J., Toscani, P., Keeton, W.S., 2022. Natural disturbance regimes as a guide for sustainable forest management in Europe. Ecol. Appl. 325, e2596. https://doi.org/10.1002/eap.2596.

 

Bartels, S., Wulder, M., White, J., 2016. Trends in post-disturbance recovery rates of Canada's forests following wildfire and harvest. For. Ecol. Manag. 361, 194–207. https://doi.org/10.1016/j.foreco.2015.11.015.

 

Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01.

 

Buras, A., Schunk, C., Zeiträg, C., Herrmann, C., Kaiser, L., Lemme, H., Straub, C., Taeger, S., Gößwein, S., Klemmt, H.-J., Menzel, A., 2018. Are Scots pine forest edges particularly prone to drought-induced mortality? Environ. Res. Lett. 132, 025001. https://doi.org/10.1088/1748-9326/aaa0b4.

 

Eberhart, K.E., Woodard, P.M., 1987. Distribution of residual vegetation associated with large fires in Alberta. Can. J. For. Res. 1710, 1207–1212. https://doi.org/10.1139/x87-186.

 

Garbarino, M., Marzano, R., Shaw, J.D., Long, J.N., 2015. Environmental drivers of deadwood dynamics in woodlands and forests. Ecosphere 63, art30. https://doi.org/10.1890/ES14-00342.1.

 
Gauthier, S., Kuuluvainen, T., Macdonald, S.E., Shorohova, E., Shvidenko, A., Bélisle, A.C., Vaillancourt, M.A., Leduc, A., Grosbois, G., Bergeron, Y., Morin, H., Girona, M.M., 2023. Ecosystem management of the boreal forest in the era of global change. In: Girona, M.M., Morin, H., Gauthier, S., Bergeron, Y. (Eds.), Boreal Forests in the Face of Climate Change: Sustainable Management. Springer International Publishing, Switzerland, pp. 3–49. https://doi.org/10.1007/978-3-031-15988-6_1.
 

Green, P., MacLeod, C.J., 2016. SIMR: an R package for power analysis of generalized linear mixed models by simulation. Methods Ecol. Evol. 7, 493–498. https://doi.org/10.1111/2041-210X.12504.

 

Großmann, J., Carlson, L., Kändler, G., Pyttel, P., Kleinschmit, J.R.G., Bauhus, J., 2023. Evaluating retention forestry 10 years after its introduction in temperate forests regarding the provision of tree-related microhabitats and dead wood. Eur. J. For. Res. 142, 1125–1147. https://doi.org/10.1007/s10342-023-01581-w.

 

Gustafsson, L., Baker, S.C., Bauhus, J., Beese, W.J., Brodie, A., Kouki, J., Lindenmayer, D.B., Lõhmus, A., Pastur, G.M., Messier, C., Neyland, M., Palik, B., Sverdrup-Thygeson, A., Volney, W.J.A., Wayne, A., Franklin, J.F., 2012. Retention forestry to maintain multifunctional forests: a world perspective. Bioscience 627, 633–645. https://doi.org/10.1525/bio.2012.62.7.6.

 

Hallinger, M., Johansson, V., Schmalholz, M., Sjöberg, S., Ranius, T., 2016. Factors driving tree mortality in retained forest fragments. For. Ecol. Manag. 368, 163–172. https://doi.org/10.1016/j.foreco.2016.03.023.

 

Harmon, M.E., Fasth, B.G., Yatskov, M., Kastendick, D., Rock, J., Woodall, C.W., 2020. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manag. 151, 1. https://doi.org/10.1186/s13021-019-0136-6.

 

Harper, K., Lesieur, D., Bergeron, Y., Drapeau, P., 2004. Forest structure and composition at young fire and cut edges in black spruce boreal forest. Can. J. For. Res. 34, 289–302. https://doi.org/10.1139/x03-279.

 

Harper, K., Macdonald, S., Burton, P., Chen, J., Brosofske, K., Saunders, S., Euskirchen, E., Roberts, D., Jaiteh, M., Esseen, P.A., 2005. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19, 768–782. https://doi.org/10.1111/j.1523-1739.2005.00045.x.

 
Hartig, F., 2022. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html (accessed 10th January 2024).
 

Hothorn, T., Bretz, F., Westfall, P., 2008. Simultaneous inference in general parametric models. Biom. J. 503, 346–363. https://doi.org/10.1002/bimj.200810425.

 

Jönsson, M., Weslien, J.-O., Gustafsson, L., 2023. Coarse woody debris legacies and their dynamics in retained forest patches. For. Ecol. Manag. 541, 121063. https://doi.org/10.1016/j.foreco.2023.121063.

 

Köster, K., Metslaid, M., Engelhart, J., Köster, E., 2015. Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests. For. Ecol. Manag. 354, 35–42. https://doi.org/10.1016/j.foreco.2015.06.039.

 

Kuuluvainen, T., Angelstam, P., Frelich, L., Jõgiste, K., Koivula, M., Kubota, Y., Lafleur, B., Macdonald, E., 2021. Natural disturbance-based forest management: moving beyond retention and continuous-cover forestry. Front. For. Glob. Chang. 4, 629020. https://doi.org/10.3389/ffgc.2021.629020.

 

Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13.

 

Lambert, M.C., Ung, C.H., Raulier, F., 2005. Canadian national tree aboveground biomass equations. Can. J. For. Res. 358, 1996–2018. https://doi.org/10.1139/x05-112.

 

Lüdecke, D., 2018. Ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 326, 772. https://doi.org/10.21105/joss.00772.

 

Marshall, P.L., Davis, G., Taylor, S.W., 2003. Using line intersect sampling for coarse woody 618 debris: practitioner’s questions addressed. Research Section, Coast Forest Region, BC 619 Ministry of Forests. Nanaimo, BC.

 

Martin, A.R., Domke, G.M., Doraisami, M., Thomas, S.C., 2021. Carbon fractions in the world's dead wood. Nat. Commun. 121, 889. https://doi.org/10.1038/s41467-021-21149-9.

 
Maser, C., Anderson, R.G., Cromack, K., Williams, J.T., Martin, R.E., 1979. Dead and down woody material. In: Thomas, J.W. (Ed.), Wildlife Habitats in Managed Forests: the Blue Mountains of Oregon and Washington. USDA Forest Service Agricultural Handbook No. 553, Washington DC, pp. 78–95.
 

Moussaoui, L., Fenton, N.J., Leduc, A., Bergeron, Y., 2016a. Can retention harvest maintain natural structural complexity? A comparison of post-harvest and post-fire residual patches in boreal forest. Forests 710, 10. https://doi.org/10.3390/f7100243.

 

Moussaoui, L., Fenton, N.J., Leduc, A., Bergeron, Y., 2016b. Deadwood abundance in post-harvest and post-fire residual patches: an evaluation of patch temporal dynamics in black spruce boreal forest. For. Ecol. Manag. 368, 17–27. https://doi.org/10.1016/j.foreco.2016.03.012.

 

Nirhamo, A., Hämäläinen, K., Junninen, K., Kouki, J., 2023. Deadwood on clearcut sites during 20 years after harvests: the effects of tree retention level and prescribed burning. For. Ecol. Manag. 545, 121287. https://doi.org/10.1016/j.foreco.2023.121287.

 

Odell, R.A., Osei, R., Schneider, M., Moore, L.P., Shovon, T.A., Nock, C.A., 2023. Species identity and tree size drive residual tree mortality in island remnants in burned and harvested boreal forests. For. Ecol. Manag. 549, 121474. https://doi.org/10.1016/j.foreco.2023.121474.

 

Petrillo, M., Cherubini, P., Fravolini, G., Marchetti, M., Ascher-Jenull, J., Schärer, M., Synal, H.A., Bertoldi, D., Camin, F., Larcher, R., Egli, M., 2016. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating. Biogeosciences 135, 1537–1552. https://doi.org/10.5194/bg-13-1537-2016.

 

Pöpperl, F., Seidl, R., 2021. Effects of stand edges on the structure, functioning, and diversity of a temperate mountain forest landscape. Ecosphere 128, e03692. https://doi.org/10.1002/ecs2.3692.

 

Russell, M.B., Woodall, C.W., Fraver, S., D'Amato, A.W., 2013. Estimates of downed woody debris decay class transitions for forests across the eastern United States. Ecol. Model. 251, 22–31. https://doi.org/10.1016/j.ecolmodel.2012.12.012.

 

Senez-Gagnon, F., Thiffault, E., Paré, D., Achim, A., Bergeron, Y., 2018. Dynamics of detrital carbon pools following harvesting of a humid eastern Canadian balsam fir boreal forest. For. Ecol. Manag. 430, 33–42. https://doi.org/10.1016/j.foreco.2018.07.044.

 

Smith, J.E., Domke, G.M., Woodall, C.W., 2022. Predicting downed woody material carbon stocks in forests of the conterminous United States. Sci. Total Environ. 803, 150061. https://doi.org/10.1016/j.scitotenv.2021.150061.

 

Steenberg, J.W.N., Duinker, P.N., Nitoslawski, S.A., 2019. Ecosystem-based management revisited: updating the concepts for urban forests. Landsc. Urban Plann. 186, 24–35. https://doi.org/10.1016/j.landurbplan.2019.02.006.

 

Stockdale, C., Flannigan, M., Macdonald, E., 2016. Is the END emulation of natural disturbance a new beginning? A critical analysis of the use of fire regimes as the basis of forest ecosystem management with examples from the Canadian western Cordillera. Environ. Rev. 243, 233–243. https://doi.org/10.1139/er-2016-0002.

 

Strukelj, M., Brais, S., Quideau, S.A., Angers, V.A., Kebli, H., Drapeau, P., Oh, S.W., 2013. Chemical transformations in downed logs and snags of mixed boreal species during decomposition. Can. J. For. Res. 439, 785–798. https://doi.org/10.1139/cjfr-2013-0086.

 

Warren, W., Olsen, P.F., 1964. A line intersect technique for assessing logging waste. For. Sci. 103, 267–276.

 

Woldendorp, G., Keenan, R.J., 2005. Coarse woody debris in Australian forest ecosystems: a review. Austral Ecol. 308, 834–843. https://doi.org/10.1111/j.1442-9993.2005.01526.x.

 

Woodall, C., Walters, B., Oswalt, S., Domke, G., Toney, C., Gray, A., 2013. Biomass and carbon attributes of downed woody materials in forests of the United States. For. Ecol. Manag. 305, 48–59. https://doi.org/10.1016/j.foreco.2013.05.030.

Forest Ecosystems
Article number: 100225
Cite this article:
Osei R, Moore LP, Odell RA, et al. Fire and retention island remnants have similar deadwood carbon stock a decade after disturbances in boreal forests of Alberta. Forest Ecosystems, 2024, 11(5): 100225. https://doi.org/10.1016/j.fecs.2024.100225
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return