PDF (4.4 MB)
Collect
Research Article | Open Access

Assessing the effect of invasive organisms on forests under information uncertainty: The case of pine wood nematode in continental Europe

Nick SchafstallaLaura DoboraMarco BaldoaAndrew M. Liebholda,bWerner RammercJuha HonkaniemidTomáš Hlásnya()
Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
US Forest Service Northern Forest Research Station, Morgantown, USA
Ecosystem Dynamics and Forest Management Group, Technical University of Munich, Germany
Natural Resources Institute Finland, Helsinki, Finland
Show Author Information

Abstract

Forests worldwide are experiencing increasingly intense biotic disturbances; however, assessing impacts of these disturbances is challenging due to the diverse range of organisms involved and the complex interactions among them. This particularly applies to invasive species, which can greatly alter ecological processes in their invaded territories. Here we focus on the pine wood nematode (PWN, Bursaphelenchus xylophilus), an invasive pathogen that has caused extensive mortality of pines in East Asia and more recently has invaded southern Europe. It is expected to expand its range into continental Europe with heavy impacts possible.

Given the unknown dynamics of PWN in continental Europe, we reviewed laboratory and field experiments conducted in Asia and southern Europe to parameterize the main components of PWN biology and host-pathogen interactions in the Biotic Disturbance Engine (BITE), a model designed to implement a variety of forest biotic agents, from fungi to large herbivores. To simulate dynamically changing host availability and conditions, BITE was coupled with the forest landscape model iLand. The potential impacts of introducing PWN were assessed in a Central European forest landscape (40,928 ​ha), likely within PWN’s reach in future decades.

A parameter sensitivity analysis indicated a substantial influence of factors related to dispersal, colonization, and vegetation impact, whereas parameters related to population growth manifested a minor effect. Selection of different assumptions about biological processes resulted in differential timing and size of the main mortality wave, eliminating 40%–95% of pine trees within 100 years post-introduction, with a maximum annual carbon loss between 1.3% and 4.2%. PWN-induced tree mortality reduced the Gross Primary Productivity, increased heterotrophic respiration, and generated a distinct legacy sink effect in the recovery period. This assessment has corroborated the ecological plausibility of the simulated dynamics and highlighted the need for new strategies to navigate the substantial uncertainty in the agent’s biology and population dynamics.

References

 

Akbulut, S., Stamps, W.T., 2011. Insect vectors of the pinewood nematode: a review of the biology and ecology of Monochamus species. For. Pathol. 42 (2), 89–99. https://doi.org/10.1111/j.1439-0329.2011.00733.x.

 

Augustynczik, A.L.D., Dobor, L., Hlásny, T., 2021. Controlling landscape-scale bark beetle dynamics: can we hit the right spot? Landsc. Urban Plan. 209, 104035. https://doi.org/10.1016/j.landurbplan.2020.104035.

 

Bebber, D.P., 2015. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356. https://doi.org/10.1146/annurev-phyto-080614-120207.

 

Blanco, J.A., Lo, Y.-H., 2023. Latest trends in modelling forest ecosystems: new approaches or just new methods? Curr. For. Rep. 9, 219–229. https://doi.org/10.1007/s40725-023-00189-y.

 

Boyd, I.L., Freer-Smith, P.H., Gilligan, C.A., Godfray, H.C., 2013. The consequence of tree pests and diseases for ecosystem services. Science 342, 1235773. https://doi.org/10.1126/science.1235773.

 

Calvão, T., Duarte, C.M., Pimentel, C.S., 2019. Climate and landscape patterns of pine forest decline after invasion by the pinewood nematode. For. Ecol. Manag. 433, 43–51. https://doi.org/10.1016/j.foreco.2018.10.039.

 
Černý, M., Pařez, J., 1996. Růstové a Taxační Tabulky Hlavních Dřevin České Republiky: (Smrk, Borovice, Buk, Dub). IFER, Jílové U Prahy.
 

Chapin, F.S., Woodwell, G.M., Randerson, J.T., Rastetter, E.B., Lovett, G.M., Baldocchi, D.D., Clark, D.A., Harmon, M.E., Schimel, D.S., Valentini, R., Wirth, C., Aber, J.D., Cole, J.J., Goulden, M.L., Harden, J.W., Heimann, M., Howarth, R.W., Matson, P.A., McGuire, A.D., Melillo, J.M., Mooney, H.A., Neff, J.C., Houghton, R.A., Pace, M.L., Ryan, M.G., Running, S.W., Sala, O.E., Schlesinger, W.H., Schulze, E.-D., 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9, 1041–1050. https://doi.org/10.1007/s10021-005-0105-7.

 
Commission of the European Communities, 2009/420/EC (amending Decision 2006/133/EC).
 
Commission of the European Communities, 2015/226 (amending Implementing Decision 2012/535/EU).
 

Cuddington, K., Fortin, M.-J., Gerber, L.R., Hastings, A., Liebhold, A., O'Connor, M., Ray, C., 2013. Process-based models are required to manage ecological systems in a changing world. Ecosphere 4 (2), 1–12. https://doi.org/10.1890/ES12-00178.1.

 

Cumming, G.S., Peterson, G.D., 2017. Unifying research on social–ecological resilience and collapse. Trends Ecol. Evol. 32 (9), 695–713. https://doi.org/10.1016/j.tree.2017.06.014.

 

De la Fuente, B., Saura, S., Beck, P.S.A., 2018. Predicting the spread of an invasive tree pest: the pine wood nematode in Southern Europe. J. Appl. Ecol. 55 (5), 2374–2385. https://doi.org/10.1111/1365-2664.13177.

 

Dobor, L., Hlásny, T., Rammer, W., Barka, I., Trombik, J., Pavlenda, P., Šebeň, V., Štěpánek, P., Seidl, R., 2018. Post-disturbance recovery of forest carbon in a temperate forest landscape under climate change. Agric. For. Meteorol. 263, 308–322. https://doi.org/10.1016/j.agrformet.2018.08.028.

 

Dobor, L., Hlásny, T., Rammer, W., Zimová, S., Barka, I., Seidl, R., 2019. Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks? J. Appl. Ecol. 57 (1), 67–76. https://doi.org/10.1111/1365-2664.13518.

 

Dobor, L., Hlásny, T., Rammer, W., Zimová, S., Barka, I., Seidl, R., 2020. Spatial configuration matters when removing windfelled trees to manage bark beetle disturbances in Central European forest landscapes. J. Environ. Manag. 254, 109792. https://doi.org/10.1016/j.jenvman.2019.109792.

 

Dobor, L., Baldo, M., Bílek, L., Barka, I., Máliš, F., Štěpánek, P., Hlásny, T., 2024. The interacting effect of climate change and herbivory can trigger large-scale transformations of European temperate forests. Global Change Biol. 30 (2), e17194. https://doi.org/10.1111/gcb.17194.

 

Evans, H.F., McNamara, D.G., Braasch, H., Chadoeuf, J., Magnusson, C., 1996. Pest risk analysis (PRA) for the territories of the European Union (as PRA area) on Bursaphelenchus xylophilus and its vectors in the genus Monochamus. Bull. OEPP 26, 199–249. https://doi.org/10.1111/j.1365-2338.1996.tb00594.x.

 

Extebeste, I., Sanchez-Husillos, E., Álvarez, G., Mas i Gisbert, H., Pajares, J., 2015. Dispersal of Monochamus galloprovincialis (Col.: cerambycidae) as recorded by mark–release–recapture using pheromone traps. J. Appl. Entomol. 140, 485–499. https://doi.org/10.1111/jen.12278.

 

Fei, S., Morin, R.S., Oswalt, C.M., Liebhold, A.M., 2019. Biomass losses resulting from insect and disease invasions in US forests. Proc. Natl. Acad. Sci. U.S.A. 116 (35), 17371–17376. https://doi.org/10.1073/pnas.1820601116.

 

Fernández-Martínez, M., Vicca, S., Janssens, I.A., Sardans, J., Luyssaert, S., Campioli, M., Chapin III, F.S., Ciais, P., Malhi, Y., Obersteiner, M., Papale, D., Piao, S.L., Reichstein, M., Rodà, F., Peñuelas, J., 2014. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476. https://doi.org/10.1038/nclimate2177.

 

Firminho, P.N., Calvão, T., Ayres, M.P., Pimentel, C.S., 2017. Monochamus galloprovincialis and Bursaphelenchus xylophilus life history in an area severely affected by pine wilt disease: implications for forest management. For. Ecol. Manag. 389, 105–115. https://doi.org/10.1016/j.foreco.2016.12.027.

 

Forzieri, G., Girardello, M., Ceccherini, G., Spinoni, J., Feyen, L., Hartmann, H., Beck, P.S.A., Camps-Valls, G., Chirici, G., Mauri, A., Cescatti, A., 2021. Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1081. https://doi.org/10.1038/s41467-021-21399-7.

 

Francardi, V., Pennacchio, F., 1996. Note sulla bioecologia di Monochamus galloprovincialis (Olivier) in Toscana e in Liguria (Coleoptera: Cerambycidae). Redia 79 (2), 153–169.

 
Futai, K., 2008. In: Zhao, B.G., Futai, K., Sutherland, J.R., Takeuchi, Y. (Eds.), Pine Wilt in Japan: from First Incidence to the Present. Pine Wilt Disease, Springer, Tokyo. https://doi.org/10.1007/978-4-431-75655-2_2.
 

Goulden, M.L., McMillan, A.M.S., Winston, G.C., Rocha, A.V., Manies, K.L., Harden, J.W., Bond-Lamberty, B.P., 2010. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biol. 17, 855–871. https://doi.org/10.1111/j.1365-2486.2010.02274.x.

 

Gruffud, H.R., Schröder, T., Jenkins, T.A.R., Evans, H.F., 2018. Modelling pine wilt disease (PWD) for current and future climate scenarios as part of a pest risk analysis for pine wood nematode Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle in Germany. J. Plant Dis. Prot. 126, 129–144. https://doi.org/10.1007/s41348-018-0197-x.

 

Gustafson, E.J., 2013. When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world. Landscape Ecol. 28 (8), 1429–1437. https://doi.org/10.1007/s10980-013-9927-4.

 

Hirata, A., Nakamura, K., Nakao, K., Kominami, Y., Tanaka, N., Ohashi, H., Takano, K.T., Takeuchi, W., Matsui, T., 2017. Potential distribution of pine wilt disease under future climate change scenarios. PLoS One 12 (8), 0182837. https://doi.org/10.1371/journal.pone.0182837.

 

Hlasný, T., König, L., Krokene, P., Lindner, M., Montagné-Huck, C., Müller, J., Qin, H., Raffa, K.F., Schelhaas, M.-J., Svoboda, M., Viiri, H., Seidl, R., 2021. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Curr. For. Rep. 7, 138–165. https://doi.org/10.1007/s40725-021-00142-x.

 

Honkaniemi, J., Rammer, W., Seidl, R., 2021. From mycelia to mastodons – a general approach for simulating biotic disturbances in forest ecosystems. Environ. Model. Softw. 138, 104977. https://doi.org/10.1016/j.envsoft.2021.104977.

 
Houston Durrant, T., de Rigo, D., Caudullo, G., 2016. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), Pinus Sylvestris in Europe: Distribution, Habitat, Usage and Threats, European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, p. e016b94.
 
Hungerford, R.D., Nemani, R.R., Running, S.W., Coughlan, J.C., 1989. MTCLIM: a mountain microclimate simulation model. Res. Pap. INT-RP-414. Ogden, UT, U.S. Department of Agriculture, Forest Service, Intermountain Research Station, p. 52 https://doi.org/10.2737/INT-RP-414.
 
Keane, R.E., Loehman, R.A., Holsinger, L.M., 2011. The FireBGCv2 Landscape Fire and Succession Model: a Research Simulation Platform for Exploring Fire and Vegetation Dynamics. General Technical Report RMRS-GTR-255. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, p. 137.
 

Kobayashi, F., Yamane, A., Ikeda, T., 1984. The Japanese pine sawyer beetle as the vector of pine wilt disease. Annu. Rev. Entomol. 29 (1), 115–135. https://doi.org/10.1146/annurev.en.29.010184.000555.

 

Koch, D.C., Lewis, M.A., Lele, S.R., 2020. A unifying theory for two-dimensional spatial redistribution kernels with applications in population spread modelling. J. R. Soc. Interface 17 (170). https://doi.org/10.1098/rsif.2020.0434.

 

Landsberg, J.J., Waring, R.H., 1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 95 (3), 209–228. https://doi.org/10.1016/S0378-1127(97)00026-1.

 

Lehmann, P., Ammunét, T., Barton, M., Battisti, A., Eigenbrode, S.D., Jepsen, J.U., Kalinkat, G., Neuvonen, S., Niemelä, P., Terblanche, J.S., Økland, B., 2020. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18 (3), 141–150. https://doi.org/10.1002/fee.2160.

 

Liebhold, A.M., Brockerhoff, E.G., Kalisz, S., Nuñez, M.A., Wardle, D.A., Wingfield, M.J., 2017. Biological invasions in forest ecosystems. Biol. Invasions 19, 3437–3458. https://doi.org/10.1007/s10530-017-1458-5.

 

Lindroth, A., Lagergren, F., Grelle, A., Klemedtsson, L., Langvall, O., Weslien, P., Tuulik, J., 2009. Storms can cause Europe-wide reduction in forest carbon sink. Global Change Biol. 15, 346–355. https://doi.org/10.1111/j.1365-2486.2008.01719.x.

 

Linit, M.J., 1990. Transmission of pinewood nematode through feeding wounds of Monochamus carolinensis (Coleoptera: cerambycidae). J. Nematol. 22 (2), 231–236. PMID: 19287715.

 

Lovett, G.M., Canham, C.D., Arthur, M.A., Weathers, K.C., Fitzhugh, R.D., 2006. Forest ecosystem responses to exotic pests and pathogens in eastern North America. Bioscience 56 (5), 395–405. https://doi.org/10.1641/0006-3568(2006)056[0395:FERTEP]2.0.CO;2.

 

Mamiya, Y., 1988. History of pine wilt disease in Japan. J. Nematol. 20 (2), 219–226.

 

Mina, M., Messier, C., Duveneck, M.J., Fortin, M.-J., Aquilué, N., 2022. Managing for the unexpected: building resilient forest landscapes to cope with global change. Global Change Biol. 28 (14), 4323–4341. https://doi.org/10.1111/gcb.16197.

 

Naves, P.M., Camacho, S., De Sousa, E.M., Quartau, J.A., 2007. Transmission of the pine wood nematode Bursaphelenchus xylophilus through feeding activity of Monochamus galloprovincialis (Col., Cerambycidae). J. Appl. Entomol. 131 (1), 21–25. https://doi.org/10.1111/j.1439-0418.2006.01111.x.

 

Naves, P.M., De Sousa, E.M., Quartau, J.A., 2006a. Feeding and oviposition preferences of Monochamus galloprovincialis for certain conifers under laboratory conditions. Entomol. Exp. Appl. 120 (2), 99–104. https://doi.org/10.1111/j.1570-7458.2006.00430.x.

 

Naves, P.M., De Sousa, E.M., Rodrigues, J.M., 2006b. Biology of Monochamus galloprovincialis (Coleoptera, Cerambycidae) in the pine wilt disease affected zone, southern Portugal. Silva Lusit. 16 (2), 133–148.

 

Naves, P.M., Bonifacio, L., Inacio, M.L., De Sousa, E.M., 2018. Integrated management of pine wilt disease in Troia. Rev. Ciencias Agrar. 41, 11–20. https://doi.org/10.19084/RCA.17060.

 

Patacca, M., Lindner, M., Lucas-Borja, M.E., Cordonnier, T., Fidej, G., Gardiner, B., Hauf, Y., Jasinevičius, G., Labonne, S., Linkevičius, E., Mahnken, M., Milanovic, S., Nabuurs, G.-J., Nagel, T.A., Nikinmaa, L., Panyatov, M., Bercak, R., Seidl, R., Sever, M.Z.O., Socha, J., Thom, D., Vuletic, D., Zudin, S., Schelhaas, M.-J., 2022. Significant increase in natural disturbance impacts on European forests since 1950. Global Change Biol. 29 (5), 1359–1376. https://doi.org/10.1111/gcb.16531.

 

Peltzer, D.A., Allen, R.B., Lovett, G.M., Whitehead, D., Wardle, D.A., 2010. Effects of biological invasions on forest carbon sequestration. Global Change Biol. 16 (2), 732–746. https://doi.org/10.1111/j.1365-2486.2009.02038.x.

 

Powell, A., Bentz, B.J., 2014. Phenology and density-dependent dispersal predict patterns of mountain pine beetle (Dendroctonus ponderosae) impact. Ecol. Model. 273, 73–185. https://doi.org/10.1016/j.ecolmodel.2013.10.034.

 

Pukkala, T., Möykkynen, T., Robinet, C., 2014. Comparison of the potential spread of pinewood nematode (Bursaphelenchus xylophilus) in Finland and Iberia simulated with a cellular automaton model. For. Pathol. 44, 341–352. https://doi.org/10.1111/efp.12105.

 

Rammer, W., Seidl, R., 2015. Coupling human and natural systems: simulating adaptive management agents in dynamically changing forest landscapes. Global Environ. Change 35, 475–485. https://doi.org/10.1016/j.gloenvcha.2015.10.003.

 

Ramsfield, T.D., Bentz, B.J., Faccoli, M., Jactel, H., Brockerhoff, E.G., 2016. Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impacts. Forestry 89 (3), 245–252. https://doi.org/10.1093/forestry/cpw018.

 

Robinet, C., van Opstal, N., Baker, R., Roques, A., 2011. Applying a spread model to identify the entry points from which the pine wood nematode, the vector of pine wilt disease, would spread most rapidly across Europe. Biol. Invasions 13, 2981–2995. https://doi:10.1007/s10530-011-9983-0.

 

Robinet, C., David, G., Jactel, H., 2019. Modeling the distances traveled by flying insects based on the combination of flight mill and mark-release-recapture experiments. Ecol. Model. 402, 85–92. https://doi.org/10.1016/j.ecolmodel.2019.04.006.

 
Rodrigues, J.M., 2008. National Eradication Programme for the Pinewood Nematode. In: Mota, M.M., Vieira, P. (Eds.), Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems. Springer, Dordrecht, pp. 5–14.
 

Rutherford, T.A., Webster, J.M., 1987. Distribution of pine wilt disease with respect to temperature in North America, Japan and Europe. Can. J. For. Res. 17, 1050–1059. https://doi.org/10.1139/x87-161.

 

Schelhaas, M.J., Kramer, K., Peltola, H., van der Werf, D.C., Wijdeven, S.M.J., 2007. Introducing tree interactions in wind damage simulation. Ecol. Model. 207, 197–209. https://doi.org/10.1016/j.ecolmodel.2007.04.025.

 

Schumacher, S., Bugmann, H., Mladenoff, D.J., 2004. Improving the formulation of tree growth and succession in a spatially explicit landscape model. Ecol. Model. 180 (1), 175–194. https://doi.org/10.1016/j.ecolmodel.2003.12.055.

 

Seidl, R., Rammer, W., 2017. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landscape Ecol. 32, 1485–1498. https://doi.org/10.1007/s10980-016-0396-4.

 

Seidl, R., Fernandes, P.M., Fonseca, T.F., Gillet, F., Jönsson, A.M., Merganičová, K., Netherer, S., Arpaci, A., Bontemps, J.-D., Bugmann, H., González-Olabarria, J.R., Lasch, P., Meredieu, C., Moreira, F., Schelhaas, M.-J., Mohren, F., 2011. Modelling natural disturbances in forest ecosystems: a review. Ecol. Model. 222, 903–924. https://doi.org/10.1016/j.ecolmodel.2010.09.040.

 

Seidl, R., Rammer, W., Scheller, R.M., Spies, T.A., 2012. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol. Model. 231, 87–100. https://doi.org/10.1016/j.ecolmodel.2012.02.015.

 

Seidl, R., Rammer, W., Blennow, K., 2014. Simulating wind disturbance impacts on forest landscapes: tree-level heterogeneity matters. Environ. Model. Softw. 51, 1–11. https://doi.org/10.1016/j.envsoft.2013.09.018.

 

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T.A., Reyer, C.P.O., 2017. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402. https://doi.org/10.1038/nclimate3303.

 

Seidl, R., Klonner, G., Rammer, W., Essl, F., Moreno, A., Neumann, M., Dullinger, S., 2018. Invasive alien pests threaten the carbon stored in Europe's forests. Nat. Commun. 9, 1626. https://doi.org/10.1038/s41467-018-04096-w.

 
Sláma, M.E.F., 1998. Tesaříkovití – Cerambycidae České Republiky a Slovenské Republiky/Cerambycidae of the Czech Republic and Slovak Republic. Milan Sláma private printing, Krhanice, pp. 278–279.
 

Sturtevant, B.R., Gustafson, E.J., Li, W., He, H.S., 2004. Modeling biological disturbances in LANDIS: a module description and demonstration using spruce budworm. Ecol. Model. 180, 153–174. https://doi.org/10.1016/j.ecolmodel.2004.01.021.

 

Takasu, F., 2009. Individual-based modeling of the spread of pine wilt disease: vector beetle dispersal and the Allee effect. Popul. Ecol. 51, 399–409. https://doi.org/10.1007/s10144-009-0145-5.

 

Takasu, F., Yamamoto, N., Kawasaki, K., Togashi, K., Kishi, Y., Shigesada, N., 2000. Modeling the expansion of an introduced tree disease. Biol. Invasions 2, 141–150. https://doi.org/10.1023/A:1010048725497.

 

Togashi, K., 1985. Transmission curves of Bursaphelenchus xylophilus from its vector, Monochamus alternatus, to pine trees with reference to population performance. Appl. Entomol. Zool. 20, 246–251. https://doi.org/10.1303/aez.20.246.

 

Togashi, K., Shigesada, N., 2009. Spread of the pinewood nematode vectored by the Japanese pine sawyer: modeling and analytical approaches. Popul. Ecol. 48 (4), 271–283. https://doi.org/10.1007/s10144-006-0011-7.

 

Tomminen, J., 1993. Development of Monochamus galloprovincialis Olivier (Coleoptera, Cerambycidae) in cut trees of young pines (Pinus sylvestris L.) and log bolts in southern Finland. Entomol. Fennica 4 (3), 137–142. https://doi.org/10.33338/ef.83759.

 

Turner, M.G., Seidl, R., 2023. Novel disturbance regimes and ecological responses. Annu. Rev. Ecol. Evol. Syst. 54, 63–83. https://doi.org/10.1146/annurev-ecolsys-110421-101120.

 

Yoshimura, A., Kawasaki, K., Takasu, F., Togashi, K., Futai, K., Shigesada, N., 1999. Modeling the spread of pine wilt disease caused by nematodes with pine sawyers as vector. Ecology 80, 1691–1702. https://doi.org/10.2307/176557.

 

Yue, C., Ciais, P., Zhu, D., Wang, T., Peng, S.S., Piao, S.L., 2016. How have past fire disturbances contributed to the current carbon balance of boreal ecosystems? Biogeosciences 13, 675–690. https://doi.org/10.5194/bg-13-675-2016.

 
Zhao, B., 2008. Pine Wilt Disease in China. In: Zhao, B.G., Futai, K., Sutherland, J.R., Takeuchi, Y. (Eds.), Pine Wilt Disease. Springer, Tokyo, pp. 18–25.
Forest Ecosystems
Article number: 100226
Cite this article:
Schafstall N, Dobor L, Baldo M, et al. Assessing the effect of invasive organisms on forests under information uncertainty: The case of pine wood nematode in continental Europe. Forest Ecosystems, 2024, 11(5): 100226. https://doi.org/10.1016/j.fecs.2024.100226
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return