AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (327.4 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Dietary seaweeds and obesity

Klaus W. Langea( )Joachim HauseraYukiko NakamurabShigehiko Kanayab
Department of Experimental Psychology, University of Regensburg, Regensburg, Germany
Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Japan

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Abstract

Potential therapeutic benefits of seaweed consumption have been reported in the management of body weight and obesity. In vitro and in vivo animal studies provide the majority of data available at present. The majority of studies assessing the short-term effects of alginate consumption indicate that alginate may increase satiety, reduce energy intake and support weight reduction. Mechanisms suggested for these effects include delayed gastric clearance, stimulation of gastric stretch receptors and attenuated nutrient absorption. Long-term studies in humans are required in order to allow firm conclusions. Animal studies have investigated potential anti-obesity effects of seaweeds on adipogenesis and the inhibition of major lipid hydrolyzing and metabolizing enzymes. The results of these studies suggest beneficial effects of seaweed components such as fucoxanthin on body weight and the percentage of abdominal white adipose tissue. It is premature to extrapolate these findings to humans since consistent findings are still lacking. There is at present no solid evidence indicating that seaweeds are effective in long-term weight management. However, available findings suggest potential benefits of seaweed components on obesity. Future investigations are required to establish the therapeutic efficacy in the management of overweight and obesity in humans and elucidate the underlying mechanisms of actions.

References

[1]

D.W. Haslam, W.P. James, Obesity, Lancet 366 (2005) 1197-1209.

[2]
World Health Organization, Obesity, 2013 http://www.who.int/topics/obesity/en/ (accessed 15.02.15).
[3]

M. Selassie, A.C. Sinha, The epidemiology and aetiology of obesity: a global challenge, Best Pract. Res. Clin. Anaesthesiol. 25 (2011) 1-9.

[4]

L.A. Barness, J.M. Opitz, E. Gilbert-Barness, Obesity: genetic, molecular, and environmental aspects, Am. J. Med. Genet. A 143A (2007) 3016-3034.

[5]
World Health Organization, Obesity, (2015) http://www.who.int/gho/ncd/risk factors/obesity text/en/ (accessed 15.02.15).
[6]

A.K. Guzman, M. Ding, Y. Xie, K.A. Martin, Pharmacogenetics of obesity drug therapy, Curr. Mol. Med. 14 (2014) 891-908.

[7]

J.W. Yun, Possible anti-obesity therapeutics from nature – a review, Phytochemistry 71 (2010) 1625-1641.

[8]

F.M. Afendi, T. Okada, M. Yamazaki, A.H. Morita, Y. Nakamura, K. Nakamura, S. Ikeda, H. Takahashi, M.A.U. Amin, L.K. Darusman, K. Saito, S. Kanaya, KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research, Plant Cell Physiol. 53 (2012) e1-e12.

[9]

F.M. Afendi, N. Ono, Y. Nakamura, K. Nakamura, L.K. Darusman, N. Kibinge, A.H. Morita, K. Tanaka, H. Horai, M.A.U. Amin, S. Kanaya, Data mining methods for omics and knowledge of crude medicinal plants toward big data biology, Comput. Struct. Biotechnol. J. 4 (2013) 1-14.

[10]

Y. Ohtana, A.A. Abdullah, M.A. Amin, M. Huang, N. Ono, T. Sato, T. Sugiura, H. Horai, Y. Nakamura, A.M. Hirai, K.W. Lange, N.K. Kibinge, T. Katsuragi, T. Shirai, S. Kanaya, Clustering of 3D-structure similarity based network of secondary metabolites reveals their relationships with biological activities, Mol. Inf. 33 (2014) 790-801.

[11]
S. Kanaya, “KNApSAcK” Family, 2008 http://kanaya.naist.jp/KNApSAcK Family/ (accessed 08.03.15).
[12]

S. Arasaki, T. Arasaki, Vegetables from the Sea, Japan Publications Inc., Tokyo (1983).

[13]

J. Yoshinaga, M. Morita, M. Yukawa, K. Shiraishi, H. Kawamura, Certified reference material for analytical quality assurance of minor and trace elements in food and related matrixes based on a typical Japanese diet: interlaboratory study, J. AOAC Int. 84 (2001) 1202-1208.

[14]

H. Iso, C. Date, H. Noda, T. Yoshimura, A. Tamakoshi, Frequency of food intake and estimated nutrient intake among men and women: the JACC Study, J. Epidemiol. 15 (Suppl. 1) (2005) S24-S42.

[15]

Y. Matsumura, Nutrition trends in Japan, Asia Pac. J. Clin. Nutr. 10 (Suppl.) (2001) S40-S47.

[16]

H. Toyokawa, Nutritional status in Japan from the viewpoint of numerical ecology, Soc. Sci. Med. 12 (1978) 517-524.

[17]

S. Matsuzaki, K. Iwamura, Application of Seaweeds to Human Nutrition and Medicine, Nahrung aus dem Meer/Food from the sea, Springer, New York 2001, pp. 162-184.

[18]

J. Teas, M.E. Baldeon, D.E. Chiriboga, J.R. Davis, A.J. Sarries, L.E. Braverman, Could dietary seaweed reverse the metabolic syndrome?, Asia Pac. J. Clin. Nutr. 18 (2009) 145-154.

[19]

S. Katamine, Y. Mamiya, K. Sekimoto, N. Hoshino, K. Totsuka, U. Naruse, A. Watabe, R. Sugiyama, M. Suzuki, Iodine content of various meals currently consumed by urban Japanese, J. Nutr. Sci. Vitaminol. 32 (1986) 487-495.

[20]

E.S. Brown, P.J. Allsopp, P.J. Magee, C.I. Gill, S. Nitecki, C.R. Strain, E.M. McSorley, Seaweed and human health, Nutr. Rev. 72 (2014) 205-216.

[21]

H. Iso, Lifestyle and cardiovascular disease in Japan, J. Atheroscler. Thromb. 18 (2011) 83-88.

[22]

J. Kim, A. Shin, J.S. Lee, S. Youn, K.Y. Yoo, Dietary factors and breast cancer in Korea: an ecological study, Breast J. 15 (2009) 683-686.

[23]

L.T. Cavalli-Sforza, A. Rosman, A.S. de Boer, I. Darnton-Hill, Nutritional aspects of changes in disease patterns in the Western Pacific region, Bull. World Health Organ. 74 (1996) 307-318.

[24]

A. Drewnowski, B.M. Popkin, The nutrition transition: new trends in the global diet, Nutr. Rev. 55 (1997) 31-43.

[25]

S. Nagataki, The average of dietary iodine intake due to the ingestion of seaweeds is 1.2 mg/day in Japan, Thyroid 18 (2008) 667-668.

[26]

M. Kristensen, M.G. Jensen, Dietary fibres in the regulation of appetite and food intake. Importance of viscosity, Appetite 56 (2011) 65-70.

[27]

P. MacArtain, C.I. Gill, M. Brooks, R. Campbell, I.R. Rowland, Nutritional value of edible seaweeds, Nutr. Rev. 65 (2007) 535-543.

[28]

C.L. Pelkman, J.L. Navia, A.E. Miller, R.J. Pohle, Novel calcium-gelled, alginate-pectin beverage reduced energy intake in nondieting overweight and obese women: interactions with dietary restraint status, Am. J. Clin. Nutr. 86 (2007) 1595-1602.

[29]

J.R. Paxman, J.C. Richardson, P.W. Dettmar, B.M. Corfe, Daily ingestion of alginate reduces energy intake in free-living subjects, Appetite 51 (2008) 713-719.

[30]

J.R. Paxman, J.C. Richardson, P.W. Dettmar, B.M. Corfe, Alginate reduces the increased uptake of cholesterol and glucose in overweight male subjects: a pilot study, Nutr. Res. 28 (2008) 501-505.

[31]

J.M. Georg, M. Kristensen, A. Belza, J.C. Knudsen, A. Astrup, Acute effect of alginate-based preload on satiety feelings, energy intake, and gastric emptying rate in healthy subjects, Obesity 20 (2012) 1851-1858.

[32]

J.M. Georg, M. Kristensen, A. Astrup, Can alginate-based preloads increase weight loss beyond calorie restriction? A pilot study in obese individuals, Appetite 57 (2011) 601-604.

[33]

J.M. Georg, M. Kristensen, A. Astrup, Effect of alginate supplementation on weight loss in obese subjects completing a 12-wk energy-restricted diet: a randomized controlled trial, Am. J. Clin. Nutr. 96 (2012) 5-13.

[34]

S.T. Odunsi, M.I. Vazquez-Roque, M. Camilleri, A. Papathanasopoulos, M.M. Clark, L. Wodrich, M. Lempke, S. McKinzie, M. Ryks, D. Burton, A.R. Zinsmeister, Effect of alginate on satiation, appetite, gastric function, and selected gut satiety hormones in overweight and obesity, Obesity 18 (2010) 1579-1584.

[35]

A. Strom, S.M. Melnikov, H.M. Boers, D.J. Mela, H.P. Peters, Odunsi et al. results for CM3 cannot be extrapolated to alginates in general, Obesity 18 (2010) 2069.

[36]

K.I. Draget, G.S. Braek, O. Smidsrod, Alginic acid gels: the effect of alginate chemical composition and molecular weight, Carbohydr. Polym. 25 (1994) 31-38.

[37]

O. Smidsrod, K. Draget, Chemical and physical properties of alginate, Carbohydr. Eur. 14 (1996) 6-13.

[38]

D. El Khoury, H.D. Goff, S. Berengut, R. Kubant, G.H. Anderson, Effect of sodium alginate addition to chocolate milk on glycemia, insulin, appetite and food intake in healthy adult men, Eur. J. Clin. Nutr. 68 (2014) 613-618.

[39]

A.C. Hall, A.C. Fairclough, K. Mahadevan, J.R. Paxman, Ascophyllum nodosum enriched bread reduces subsequent energy intake with no effect on post-prandial glucose and cholesterol in healthy, overweight males. A pilot study, Appetite 58 (2012) 379-386.

[40]

H. Maeda, M. Hosokawa, T. Sashima, K. Funayama, K. Miyashita, Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues, Biochem. Biophys. Res. Commun. 332 (2005) 392-397.

[41]

P. Jezek, Possible physiological roles of mitochondrial uncoupling proteins – UCPn, Int. J. Biochem. Cell Biol. 34 (2002) 1190-1206.

[42]

G. Labruna, F. Pasanisi, G. Fortunato, C. Nardelli, C. Finelli, E. Farinaro, F. Contaldo, L. Sacchetti, Sequence analysis of the UCP1 gene in a severe obese population from Southern Italy, J. Obes. 2011 (2011) 269043.

[43]

H. Maeda, T. Tsukui, T. Sashima, M. Hosokawa, K. Miyashita, Seaweed carotenoid, fucoxanthin, as a multi-functional nutrient, Asia Pac, J. Clin. Nutr. 17 (Suppl. 1) (2008) 196-199.

[44]

H. Maeda, M. Hosokawa, T. Sashima, K. Murakami-Funayama, K. Miyashita, Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model, Mol. Med. Rep. 2 (2009) 897-902.

[45]

M. Matsumoto, M. Hosokawa, N. Matsukawa, M. Hagio, A. Shinoki, M. Nishimukai, K. Miyashita, T. Yajima, H. Hara, Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct-cannulated rats, Eur. J. Nutr. 49 (2010) 243-249.

[46]

S.M. Jeon, H.J. Kim, M.N. Woo, M.K. Lee, Y.C. Shin, Y.B. Park, M.S. Choi, Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6J mice, Biotechnol. J. 5 (2010) 961-969.

[47]

H. Maeda, M. Hosokawa, T. Sashima, N. Takahashi, T. Kawada, K. Miyashita, Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells, Int. J. Mol. Med. 18 (2006) 147-152.

[48]

M.J. Yim, M. Hosokawa, Y. Mizushina, H. Yoshida, Y. Saito, K. Miyashita, Suppressive effects of amarouciaxanthin A on 3T3-L1 adipocyte differentiation through down-regulation of PPARgamma and C/EBPalpha mRNA expression, J. Agric. Food Chem. 59 (2011) 1646-1652.

[49]

S.I. Kang, H.C. Ko, H.S. Shin, H.M. Kim, Y.S. Hong, N.H. Lee, S.J. Kim, Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes, Biochem. Biophys. Res. Commun. 409 (2011) 769-774.

[50]

K. Miyashita, S. Nishikawa, F. Beppu, T. Tsukui, M. Abe, M. Hosokawa, The allenic carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds, J. Sci. Food Agric. 91 (2011) 1166-1174.

[51]

J. Peng, J.P. Yuan, C.F. Wu, J.H. Wang, Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health, Mar. Drugs 9 (2011) 1806-1828.

[52]

C.S. Lai, M.L. Tsai, V. Badmaev, M. Jimenez, C.T. Ho, M.H. Pan, Xanthigen suppresses preadipocyte differentiation and adipogenesis through down-regulation of PPARgamma and C/EBPs and modulation of SIRT-1, AMPK, and FoxO pathways, J. Agric. Food Chem. 60 (2012) 1094-1101.

[53]

C.H. Sarithakumari, G.L. Renju, G.M. Kurup, Anti-inflammatory and antioxidant potential of alginic acid isolated from the marine algae, Sargassum wightii on adjuvant-induced arthritic rats, Inflammopharmacology 21 (2013) 261-268.

[54]

M.F. Gregor, G.S. Hotamisligil, Inflammatory mechanisms in obesity, Annu. Rev. Immunol. 29 (2011) 415-445.

[55]

K.J. Kim, B.Y. Lee, Fucoidan from the sporophyll of Undaria pinnatifida suppresses adipocyte differentiation by inhibition of inflammation-related cytokines in 3T3-L1 cells, Nutr. Res. 32 (2012) 439-447.

[56]

M.K. Park, U. Jung, C. Roh, Fucoidan from marine brown algae inhibits lipid accumulation, Mar. Drugs 9 (2011) 1359-1367.

[57]

M.J. Kim, J. Jeon, J.S. Lee, Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation, Phytother. Res. 28 (2014) 137-143.

[58]

F. Beppu, M. Hosokawa, M.J. Yim, T. Shinoda, K. Miyashita, Down-regulation of hepatic stearoyl-CoA desaturase-1 expression by fucoxanthin via leptin signaling in diabetic/obese KK-A(y) mice, Lipids 48 (2013) 449-455.

[59]

X. Hu, Y. Li, C. Li, Y. Fu, F. Cai, Q. Chen, D. Li, Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats, Arch. Biochem. Biophys. 519 (2012) 59-65.

[60]

M.T. Wu, H.N. Chou, C.J. Huang, Dietary fucoxanthin increases metabolic rate and upregulated mRNA expressions of the PGC-1alpha network, mitochondrial biogenesis and fusion genes in white adipose tissues of mice, Mar. Drugs 12 (2014) 964-982.

[61]

A.W. Ha, W.K. Kim, The effect of fucoxanthin rich power on the lipid metabolism in rats with a high fat diet, Nutr. Res. Pract. 7 (2013) 287-293.

[62]

T. Mori, M. Hidaka, H. Ikuji, I. Yoshizawa, H. Toyohara, T. Okuda, C. Uchida, T. Asano, M. Yotsu-Yamashita, T. Uchida, A high-throughput screen for inhibitors of the prolyl isomerase, Pin1, identifies a seaweed polyphenol that reduces adipose cell differentiation, Biosci. Biotechnol. Biochem. 78 (2014) 832-838.

[63]

M. Abidov, Z. Ramazanov, R. Seifulla, S. Grachev, The effects of xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat, Diabetes Obes. Metab. 12 (2010) 72-81.

[64]

S. Hasani-Ranjbar, Z. Jouyandeh, M. Abdollahi, A systematic review of anti-obesity medicinal plants – an update, J. Diabetes Metab. Disord. 12 (2013) 28.

[65]

M.H. Pan, C.S. Lai, H. Wang, C.Y. Lo, C.T. Ho, S. Li, Black tea in chemo-prevention of cancer and other human diseases, Food Sci. Hum. Wellness 2 (2013) 12-21.

[66]

Y. Nakamura, F.M. Afendi, A.K. Parvin, N. Ono, K. Tanaka, M.A. Hirai, T. Sato, T. Sugiura, M. Altaf-Ul-Amin, S. Kanaya, KNApSAcK metabolite activity database for retrieving the relationships between metabolites and biological activities, Plant Cell Physiol. 55 (2014) e7.

[67]

M.N. Woo, S.M. Jeon, Y.C. Shin, M.K. Lee, M.A. Kang, M.S. Choi, Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice, Mol. Nutr. Food Res. 53 (2009) 1603-1611.

[68]

J.H. Hehemann, G. Correc, T. Barbeyron, W. Helbert, M. Czjzek, G. Michel, Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota, Nature 464 (2010) 908-912.

Food Science and Human Wellness
Pages 87-96
Cite this article:
Lange KW, Hauser J, Nakamura Y, et al. Dietary seaweeds and obesity. Food Science and Human Wellness, 2015, 4(3): 87-96. https://doi.org/10.1016/j.fshw.2015.08.001

375

Views

7

Downloads

72

Crossref

N/A

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 08 March 2015
Accepted: 08 August 2015
Published: 24 August 2015
© 2015 Beijing Academy of Food Sciences.
Return