AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (687.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Bioactive peptides on endothelial function

Subhadeep ChakrabartiJianping Wu( )
Department of Agricultural, Food & Nutritional Science and the Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Abstract

Cardiovascular diseases (CVD) such as myocardial infarction and stroke are a major cause of morbidity and mortality worldwide. Impairment of the normal vasorelaxant functions of the vascular endothelium, termed endothelial dysfunction; appear to underlie the pathogenesis of CVD. Endothelial dysfunction is often secondary to abnormal increases in oxidative stress, inflammation and overactivity of the renin–angiotensin system (RAS), which makes these pathways attractive targets for therapeutic interventions. Given the side-effects associated with synthetic pharmaceutical agents, there is growing interest in using natural products such as bioactive peptides for treating chronic diseases like CVD. In this review, we discuss the potential for bioactive peptides with antioxidant, anti-inflammatory and RAS modulating properties for treating endothelial dysfunction and preventing CVD.

References

[1]

G. Danaei, G.M. Singh, C.J. Paciorek, J.K. Lin, M.J. Cowan, M.M. Finucane, F. Farzadfar, G.A. Stevens, L.M. Riley, Y. Lu, M. Rao, M. Ezzati, The global cardiovascular risk transition: associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008, Circulation 127 (2013) 1493–1502, 1502e1491–1502e1498.

[2]

G.B.o.D. Study, Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013, Lancet 385 (2015) 117-171.

[3]

C. Costopoulos, T.V. Liew, M. Bennett, Ageing and atherosclerosis: mechanisms and therapeutic options, Biochem. Pharmacol. 75 (2008) 1251-1261.

[4]

D.T. Lackland, M.A. Weber, Global burden of cardiovascular disease and stroke: hypertension at the core, Can. J. Cardiol. 31 (2015) 569-571.

[5]

A. Chockalingam, World Hypertension Day and global awareness, Can. J. Cardiol. 24 (2008) 441-444.

[6]

D. Behrendt, P. Ganz, Endothelial function. From vascular biology to clinical applications, Am. J. Cardiol. 90 (2002) 40L-48L.

[7]

G. Giannotti, C. Doerries, P.S. Mocharla, M.F. Mueller, F.H. Bahlmann, T. Horvath, H. Jiang, S.A. Sorrentino, N. Steenken, C. Manes, M. Marzilli, K.L. Rudolph, T.F. Luscher, H. Drexler, U. Landmesser, Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction, Hypertension 55 (2010) 1389-1397.

[8]

H.M.S. Khan, G. Murtaza, M. Usman, F. Rasool, M. Akhtar, M.I.M. Qureshi, K. Farzana, Evidence based study of side effects of drugs used in the treatment of diabetes mellitus, Afr. J. Pharm. Pharmacol. 6 (2012) 1805-1808.

[9]

A. Khanna, L. Lefkowitz, W.B. White, Evaluation of recent fixed-dose combination therapies in the management of hypertension, Curr. Opin. Nephrol. Hypertens. 17 (2008) 477-483.

[10]

M. Yoshikawa, H. Fujita, N. Matoba, Y. Takenaka, T. Yamamoto, R. Yamauchi, H. Tsuruki, K. Takahata, Bioactive peptides derived from food proteins preventing lifestyle-related diseases, Biofactors 12 (2000) 143-146.

[11]

D.D. Kitts, K. Weiler, Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery, Curr. Pharm. Des. 9 (2003) 1309-1323.

[12]

F. Shahidi, Y. Zhong, Bioactive peptides, J. AOAC Int. 91 (2008) 914-931.

[13]

K.J. Rutherfurd-Markwick, Food proteins as a source of bioactive peptides with diverse functions, Br. J. Nutr. 108 (Suppl. 2) (2012) S149-S157.

[14]

Y. Mine, Egg proteins and peptides in human health – chemistry, bioactivity and production, Curr. Pharm. Des. 13 (2007) 875-884.

[15]

A. Cam, E.G. de Mejia, Role of dietary proteins and peptides in cardiovascular disease, Mol. Nutr. Food Res. 56 (2012) 53-66.

[16]

E. Schulz, T. Gori, T. Munzel, Oxidative stress and endothelial dysfunction in hypertension, Hypertens. Res. 34 (2011) 665-673.

[17]

J.J. McGuire, H. Ding, C.R. Triggle, Endothelium-derived relaxing factors: a focus on endothelium-derived hyperpolarizing factor(s), Can. J. Physiol. Pharmacol. 79 (2001) 443-470.

[18]

I. Zachary, Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor, Am. J. Physiol. Cell Physiol. 280 (2001) C1375-C1386.

[19]

R.Z. Zhao, X. Chen, Q. Yao, C. Chen, TNF-alpha induces interleukin-8 and endothelin-1 expression in human endothelial cells with different redox pathways, Biochem. Biophys. Res. Commun. 327 (2005) 985-992.

[20]

R. Kelishadi, M. Hashemi, S.H. Javanmard, M. Mansourian, M. Afshani, P. Poursafa, B. Sadeghian, M. Fakhri, Effect of particulate air pollution and passive smoking on surrogate biomarkers of endothelial dysfunction in healthy children, Paediatr. Int. Child Health 34 (2014) 165-169.

[21]

M.A. Talukder, W.M. Johnson, S. Varadharaj, J. Lian, P.N. Kearns, M.A. El-Mahdy, X. Liu, J.L. Zweier, Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice, Am. J. Physiol. Heart Circ. Physiol. 300 (2011) H388-H396.

[22]

H. Cai, D.G. Harrison, Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress, Circ. Res. 87 (2000) 840-844.

[23]

M.O.G. Albarran, S. Calvo, M. Carrasco, M. Alpanes, A. Paniagua, J. Gomez, G. Perez, J. Sancho, Insulin resistance and endothelial dysfunction in patients with hypertension and metabolic syndrome, J. Hypertens.27 (2009), S220–S220.

[24]

U. Forstermann, W.C. Sessa, Nitric oxide synthases: regulation and function, Eur. Heart J. 33 (2012) 829-837.837a–1837d.

[25]

T. Munzel, C. Sinning, F. Post, A. Warnholtz, E. Schulz, Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction, Ann. Med. 40 (2008) 180-196.

[26]

P. Pacher, I.G. Obrosova, J.G. Mabley, C. Szabo, Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies, Curr. Med. Chem. 12 (2005) 267-275.

[27]

C. Szabo, H. Ischiropoulos, R. Radi, Peroxynitrite: biochemistry, pathophysiology and development of therapeutics, Nat. Rev. Drug Discov. 6 (2007) 662-680.

[28]

S. Karbach, P. Wenzel, A. Waisman, T. Munzel, A. Daiber, eNOS uncoupling in cardiovascular diseases – the role of oxidative stress and inflammation, Curr. Pharm. Des. 20 (2014) 3579-3594.

[29]

M.D. Contreras, B. Hernandez-Ledesma, L. Amigo, P.J. Martin-Alvarez, I. Recio, Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: optimization by response surface methodology, LWT – Food Sci. Technol. 44 (2011) 9-15.

[30]

B. Hernandez-Ledesma, C.C. Hsieh, B.O. de Lumen, Lunasin, a novel seed peptide for cancer prevention, Peptides 30 (2009) 426-430.

[31]

B.P. Chay Pak Ting, Y. Mine, L.R. Juneja, T. Okubo, S.F. Gauthier, Y. Pouliot, Comparative composition and antioxidant activity of peptide fractions obtained by ultrafiltration of egg yolk protein enzymatic hydrolysates, Membranes 1 (2011) 149-161.

[32]

X.H. Kou, J. Gao, Z.H. Xue, Z.J. Zhang, H. Wang, X. Wang, Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates, LWT – Food Sci. Technol. 50 (2013) 591-598.

[33]

Y. Tokudome, K. Nakamura, M. Kage, H. Todo, K. Sugibayashi, F. Hashimoto, Effects of soybean peptide and collagen peptide on collagen synthesis in normal human dermal fibroblasts, Int. J. Food Sci. Nutr. 63 (2012) 689-695.

[34]

K. Sato, Y. Egashira, S. Ono, S. Mochizuki, Y. Shimmura, Y. Suzuki, M. Nagata, K. Hashimoto, T. Kiyono, E.Y. Park, Y. Nakamura, M. Itabashi, Y. Sakata, S. Furuta, H. Sanada, Identification of a hepatoprotective peptide in wheat gluten hydrolysate against d-galactosamine-induced acute hepatitis in rats, J. Agric. Food Chem. 61 (2013) 6304-6310.

[35]

H. Korhonen, A. Pihlanto, Bioactive peptides: production and functionality, Int. Dairy J. 16 (2006) 945-960.

[36]

M.J. Akpaffiong, A.A. Taylor, Antihypertensive and vasodilator actions of antioxidants in spontaneously hypertensive rats, Am. J. Hypertens. 11 (1998) 1450-1460.

[37]

Y. Watanabe, K. Watanabe, T. Kobayashi, Y. Saito, D. Fujioka, T. Nakamura, J.E. Obata, K. Kawabata, H. Mishina, K. Kugiyama, Chronic depletion of glutathione exacerbates ventricular remodelling and dysfunction in the pressure-overloaded heart, Cardiovasc. Res. 97 (2013) 282-292.

[38]

K. Kugiyama, Y. Miyao, T. Sakamoto, H. Kawano, H. Soejima, S. Miyamoto, M. Yoshimura, H. Ogawa, S. Sugiyama, H. Yasue, Glutathione attenuates coronary constriction to acetylcholine in patients with coronary spastic angina, Am. J. Physiol. Heart Circ. Physiol. 280 (2001) H264-H271.

[39]

K. Majumder, S. Chakrabarti, S.T. Davidge, J. Wu, Structure and activity study of egg protein ovotransferrin derived peptides (IRW and IQW) on endothelial inflammatory response and oxidative stress, J. Agric. Food Chem. 61 (2013) 2120-2129.

[40]

K. Majumder, J.P. Wu, Purification and characterisation of angiotensin I converting enzyme (ACE) inhibitory peptides derived from enzymatic hydrolysate of ovotransferrin, Food Chem. 126 (2011) 1614-1619.

[41]

K.D. Ballard, R.S. Bruno, R.L. Seip, E.E. Quann, B.M. Volk, D.J. Freidenreich, D.M. Kawiecki, B.R. Kupchak, M.Y. Chung, W.J. Kraemer, J.S. Volek, Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: a randomized, placebo controlled trial, Nutr. J. 8 (2009) 34.

[42]

C.C. Udenigwe, R.E. Aluko, Multifunctional cationic peptide fractions from flaxseed protein hydrolysates, Plant Foods Hum. Nutr. 67 (2012) 1-9.

[43]

N. Matoba, H. Usui, H. Fujita, M. Yoshikawa, A novel anti-hypertensive peptide derived from ovalbumin induces nitric oxide-mediated vasorelaxation in an isolated SHR mesenteric artery, FEBS Lett. 452 (1999) 181-184.

[44]

S.E. Gariballa, A.J. Sinclair, Carnosine: physiological properties and therapeutic potential, Age Ageing 29 (2000) 207-210.

[45]

S. Takahashi, Y. Nakashima, K. Toda, Carnosine facilitates nitric oxide production in endothelial f-2 cells, Biol. Pharm. Bull. 32 (2009) 1836-1839.

[46]

D.G. Ririe, P.R. Roberts, M.N. Shouse, G.P. Zaloga, Vasodilatory actions of the dietary peptide carnosine, Nutrition 16 (2000) 168-172.

[47]

D.J. Miller, A. O’Dowd, Vascular smooth muscle actions of carnosine as its zinc complex are mediated by histamine H(1) and H(2) receptors, Biochemistry (Mosc.) 65 (2000) 798-806.

[48]

M. Yoshikawa, F. Tani, T. Yoshimura, H. Chiba, Opioid-peptides from milk-proteins, Agric. Biol. Chem. Tokyo 50 (1986) 2419-2421.

[49]

M.L. Nurminen, M. Sipola, H. Kaarto, A. Pihlanto-Leppala, K. Piilola, R. Korpela, O. Tossavainen, H. Korhonen, H. Vapaatalo, Alpha-lactorphin lowers blood pressure measured by radiotelemetry in normotensive and spontaneously hypertensive rats, Life Sci. 66 (2000) 1535-1543.

[50]

M. Sipola, P. Finckenberg, H. Vapaatalo, A. Pihlanto-Leppala, H. Korhonen, R. Korpela, M.L. Nurminen, Alpha-lactorphin and beta-lactorphin improve arterial function in spontaneously hypertensive rats, Life Sci. 71 (2002) 1245-1253.

[51]

M. Yoshikawa, H. Suganuma, M. Takahashi, H. Usui, K. Kurahashi, H. Chiba, Casomokinins, opioid/vaso-relaxing peptides derivatized from casoxin-d or beta-casomorphin-6, Regul. Pept. (1994) S253-S254.

[52]

H. Fujita, H. Suganuma, H. Usui, K. Kurahashi, R. Nakagiri, R. Sasaki, M. Yoshikawa, Vasorelaxation by casomokinin L, a derivative of beta-casomorphin and casoxin D, is mediated by NK1 receptor, Peptides 17 (1996) 635-639.

[53]

J.S. Pober, W.C. Sessa, Evolving functions of endothelial cells in inflammation, Nat. Rev. Immunol. 7 (2007) 803-815.

[54]

D. Tousoulis, M. Charakida, C. Stefanadis, Endothelial function and inflammation in coronary artery disease, Postgrad. Med. J. 84 (2008) 368-371.

[55]

I. Jialal, Contemporary scientific insights: role of biomarkers of inflammation in cardiovascular disease/atherosclerosis, Crit. Pathw. Cardiol. 5 (2006) 191-210.

[56]

W. Huang, S. Chakrabarti, K. Majumder, Y. Jiang, S.T. Davidge, J. Wu, Egg-derived peptide IRW inhibits TNF-alpha-induced inflammatory response and oxidative stress in endothelial cells, J. Agric. Food Chem. 58 (2010) 10840-10846.

[57]

K. Majumder, S. Chakrabarti, J.S. Morton, S. Panahi, S. Kaufman, S.T. Davidge, J. Wu, Egg-derived tri-peptide IRW exerts antihypertensive effects in spontaneously hypertensive rats, PLOS ONE 8 (2013) e82829.

[58]

K. Majumder, S. Chakrabarti, J.S. Morton, S. Panahi, S. Kaufman, S.T. Davidge, J.P. Wu, Egg-derived ACE-inhibitory peptides IQW and LKP reduce blood pressure in spontaneously hypertensive rats, J. Funct. Foods 13 (2015) 50-60.

[59]

T. Nakamura, T. Hirota, K. Mizushima, K. Ohki, Y. Naito, N. Yamamoto, T. Yoshikawa, Milk-derived peptides, Val-Pro-Pro and Ile-Pro-Pro, attenuate atherosclerosis development in apolipoprotein E-deficient mice: a preliminary study, J. Med. Food 16 (2013) 396-403.

[60]

T.S. Vo, S.K. Kim, Down-regulation of histamine-induced endothelial cell activation as potential anti-atherosclerotic activity of peptides from Spirulina maxima, Eur. J. Pharm. Sci. 50 (2013) 198-207.

[61]

R. Ringseis, V. Gotze, K. Eder, Tripeptides from dietary proteins inhibit TNF alpha-induced monocyte adhesion to human aortic endothelial cells, Regul. Pept. 154 (2009) 91-96.

[62]

R.M. Touyz, Reactive oxygen species and angiotensin II signaling in vascular cells – implications in cardiovascular disease, Braz. J. Med. Biol. Res. 37 (2004) 1263-1273.

[63]

S. Kossmann, H. Hu, S. Steven, T. Schonfelder, D. Fraccarollo, Y. Mikhed, M. Brahler, M. Knorr, M. Brandt, S.H. Karbach, C. Becker, M. Oelze, J. Bauersachs, J. Widder, T. Munzel, A. Daiber, P. Wenzel, Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II, J. Biol. Chem. 289 (2014) 27540-27550.

[64]

A. Alvarez, C. Hermenegildo, A.C. Issekutz, J.V. Esplugues, M.J. Sanz, Estrogens inhibit angiotensin II-induced leukocyte-endothelial cell interactions in vivo via rapid endothelial nitric oxide synthase and cyclooxygenase activation, Circ. Res. 91 (2002) 1142-1150.

[65]

I.A. Arenas, Y. Xu, P. Lopez-Jaramillo, S.T. Davidge, Angiotensin II-induced MMP-2 release from endothelial cells is mediated by TNF-alpha, Am. J. Physiol. Cell Physiol. 286 (2004) C779-C784.

[66]

Z. Zhang, L. Chen, J. Zhong, P. Gao, G.Y. Oudit, ACE2/Ang-(1-7) signaling and vascular remodeling, Sci. China Life Sci. 57 (2014) 802-808.

[67]

C. Tikellis, M.C. Thomas, Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease, Int. J. Pept. 2012 (2012) 256294.

[68]

K. Majumder, J. Wu, Purification and characterisation of angiotensin I converting enzyme (ACE) inhibitory peptides derived from enzymatic hydrolysate of ovotransferrin, Food Chem. 126 (2011) 1614-1619.

[69]

T. Matsui, X.L. Zhu, K. Watanabe, K. Tanaka, Y. Kusano, K. Matsumoto, Combined administration of captopril with an antihypertensive Val-Tyr di-peptide to spontaneously hypertensive rats attenuates the blood pressure lowering effect, Life Sci. 79 (2006) 2492-2498.

[70]

T. Matsui, A. Hayashi, K. Tamaya, K. Matsumoto, T. Kawasaki, K. Murakami, K. Kimoto, Depressor effect induced by dipeptide, Val-Tyr, in hypertensive transgenic mice is due, in part, to the suppression of human circulating renin–angiotensin system, Clin. Exp. Pharmacol. Physiol. 30 (2003) 262-265.

[71]

L. Vercruysse, N. Morel, J. Van Camp, J. Szust, G. Smagghe, Antihypertensive mechanism of the dipeptide Val-Tyr in rat aorta, Peptides 29 (2008) 261-267.

[72]

M. Sipola, P. Finckenberg, R. Korpela, H. Vapaatalo, M.L. Nurminen, Effect of long-term intake of milk products on blood pressure in hypertensive rats, J. Dairy Res. 69 (2002) 103-111.

[73]

T. Hirota, A. Nonaka, A. Matsushita, N. Uchida, K. Ohki, M. Asakura, M. Kitakaze, Milk casein-derived tripeptides, VPP and IPP induced NO production in cultured endothelial cells and endothelium-dependent relaxation of isolated aortic rings, Heart Vessels 26 (2011) 549-556.

[74]

T. Nakamura, J. Mizutani, K. Ohki, K. Yamada, N. Yamamoto, M. Takeshi, K. Takazawa, Casein hydrolysate containing Val-Pro-Pro and Ile-Pro-Pro improves central blood pressure and arterial stiffness in hypertensive subjects: a randomized, double-blind, placebo-controlled trial, Atherosclerosis 219 (2011) 298-303.

[75]

N. Yamaguchi, K. Kawaguchi, N. Yamamoto, Study of the mechanism of antihypertensive peptides VPP and IPP in spontaneously hypertensive rats by DNA microarray analysis, Eur. J. Pharmacol. 620 (2009) 71-77.

[76]

T. Jauhiainen, M. Ronnback, H. Vapaatalo, K. Wuolle, H. Kautiainen, P.H. Groop, R. Korpela, Long-term intervention with Lactobacillus helveticus fermented milk reduces augmentation index in hypertensive subjects, Eur. J. Clin. Nutr. 64 (2010) 424-431.

[77]

O. Boonla, U. Kukongviriyapan, P. Pakdeechote, V. Kukongviriyapan, P. Pannangpetch, S. Thawornchinsombut, Peptides-derived from Thai rice bran improves endothelial function in 2K-1C renovascular hypertensive rats, Nutrients 7 (2015) 5783-5799.

[78]

D. Rousseau-Ralliard, F. Goirand, S. Tardivel, A. Lucas, F. Algaron, D. Molle, V. Robert, D. Auchere, J.F. Boudier, J.L. Gaillard, V. Monnet, J. Tauzin, A. Grynberg, Inhibitory effect of alphaS1- and alphaS2-casein hydrolysates on angiotensin I-converting enzyme in human endothelial cells in vitro, rat aortic tissue ex vivo, and renovascular hypertensive rats in vivo, J. Dairy Sci. 93 (2010) 2906-2921.

[79]

K. Majumder, G. Liang, Y. Chen, L. Guan, S.T. Davidge, J. Wu, Egg ovotransferrin-derived ACE inhibitory peptide IRW increases ACE2 but decreases proinflammatory genes expression in mesenteric artery of spontaneously hypertensive rats, Mol. Nutr. Food Res. (2015).

[80]

P.I. Ehlers, L. Nurmi, A.M. Turpeinen, R. Korpela, H. Vapaatalo, Casein-derived tripeptide Ile-Pro-Pro improves angiotensin-(1-7)- and bradykinin-induced rat mesenteric artery relaxation, Life Sci. 88 (2011) 206-211.

[81]

R. Fernandez-Musoles, M. Castello-Ruiz, C. Arce, P. Manzanares, M.D. Ivorra, J.B. Salom, Antihypertensive mechanism of lactoferrin-derived peptides: angiotensin receptor blocking effect, J. Agric. Food Chem. 62 (2014) 173-181.

[82]

Z. Yu, Y. Yin, W. Zhao, F. Chen, J. Liu, Antihypertensive effect of angiotensin-converting enzyme inhibitory peptide RVPSL on spontaneously hypertensive rats by regulating gene expression of the renin–angiotensin system, J. Agric. Food Chem. 62 (2014) 912-917.

Food Science and Human Wellness
Pages 1-7
Cite this article:
Chakrabarti S, Wu J. Bioactive peptides on endothelial function. Food Science and Human Wellness, 2016, 5(1): 1-7. https://doi.org/10.1016/j.fshw.2015.11.004

490

Views

6

Downloads

38

Crossref

N/A

Web of Science

37

Scopus

0

CSCD

Altmetrics

Received: 08 November 2015
Accepted: 30 November 2015
Published: 29 December 2015
© 2015 Beijing Academy of Food Sciences.
Return