AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Calcium intake, calcium homeostasis and health

Fan PuaNing Chenb( )Shenghui Xuea( )
La Jolla Institute of Allergy & Immunology, La Jolla, CA 92037, USA
Hubei Exercise Training and Monitoring Key Laboratory, Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion, College of Health Science, Wuhan Sports University, Wuhan 430079, China

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Abstract

Calcium, as the most abundant mineral in human body, is involved in many physiological and pathological processes. Here, we reviewed the key mechanisms of calcium homeostasis, including calcium sensing receptor regulation, intestinal calcium absorption, renal calcium reabsorption and bone calcium resorption. We further discussed the roles of dietary calcium and vitamin D in diseases associated with dysfunctional regulation of calcium. However, the over-dosed consumption of calcium could increase the risks for a series of diseases, such as kidney stone, myocardial infarction and stroke.

References

[1]

Y. Zhou, S. Xue, J.J. Yang, Calciomics: integrative studies of Ca2+-binding proteins and their interactomes in biological systems, Metallomics 5 (1) (2013) 29-42.

[2]
D.E. Clapham, Calcium signaling, Cell. 131(6) 1047-1058.
[3]

L.R. Zhong, S. Estes, L. Artinian, V. Rehder, Nitric oxide regulates neuronal activity via calcium-activated potassium channels, PLOS ONE 8 (11) (2013) e78727.

[4]

Y. Chen, S.G. Naik, J. Krzystek, S. Shin, W.H. Nelson, S. Xue, J.J. Yang, V.L. Davidson, A. Liu, Role of calcium in metalloenzymes: effects of calcium removal on the axial ligation geometry and magnetic properties of the catalytic diheme center in MauG, Biochemistry 51 (8) (2012) 1586-1597.

[5]

C. Yanyi, X. Shenghui, Z. Yubin, Y.J. Jie, Calciomics: prediction and analysis of EF-hand calcium binding proteins by protein engineering, Sci. China Chem. 53 (1) (2010) 52-60.

[6]

G. Fu, A.A. Chumanevich, J. Agniswamy, B. Fang, R.W. Harrison, I.T. Weber, Structural basis for executioner caspase recognition of P5 position in substrates, Apoptosis 13 (11) (2008) 1291-1302.

[7]

K. Zhao, X. Wang, H.C. Wong, R. Wohlhueter, M.P. Kirberger, G. Chen, J.J. Yang, Predicting Ca2+-binding sites using refined carbon clusters, Proteins 80 (12) (2012) 2666-2679.

[8]

H. Zhang, L. Wang, R.W. Compans, B.Z. Wang, Universal influenza vaccines, a dream to be realized soon, Viruses 6 (5) (2014) 1974-1991.

[9]

X. Wang, K. Zhao, M. Kirberger, H. Wong, G. Chen, J.J. Yang, Analysis and prediction of calcium-binding pockets from apo-protein structures exhibiting calcium-induced localized conformational changes, Protein Sci. 19 (6) (2010) 1180-1190.

[10]

H. Zhang, M.E. El Zowalaty, DNA-based influenza vaccines as immunoprophylactic agents toward universality, Future Microbiol. 11 (2016) 153-164.

[11]

X. Wang, M. Kirberger, F. Qiu, G. Chen, J.J. Yang, Towards predicting Ca2+-binding sites with different coordination numbers in proteins with atomic resolution, Proteins 75 (4) (2009) 787-798.

[12]

Y. Chen, S. Xue, J. Zou, J.R. Lopez, J.J. Yang, C.F. Perez, Myoplasmic resting Ca2+ regulation by ryanodine receptors is under the control of a novel Ca2+-binding region of the receptor, Biochem. J. 460 (2) (2014) 261-271.

[13]

Y. Zhou, S. Xue, Y. Chen, J.J. Yang, Probing Ca2+-binding capability of viral proteins with the EF-hand motif by grafting approach, Methods Mol. Biol. 963 (2013) 37-53.

[14]
Y. Zhou, S. Xue, J. Yang, Calcium and viruses, in: R. Kretsinger, V. Uversky, E. Permyakov (Eds.), Encyclopedia of Metalloproteins, Springer, New York, 2013, pp. 415–424.
[15]

J. Adachi, W. Bensen, F. Bianchi, A. Cividino, S. Pillersdorf, R. Sebaldt, P. Tugwell, M. Gordon, M. Steele, C. Webber, Vitamin D and calcium in the prevention of corticosteroid induced osteoporosis: a 3 year followup, J. Rheumatol. 23 (6) (1996) 995-1000.

[16]

P.J. Marie, J.M. Pettifor, F.P. Ross, F.H. Glorieux, Histological osteomalacia due to dietary calcium deficiency in children, N. Engl. J. Med. 307 (10) (1982) 584-588.

[17]

D.A. Straub, Calcium supplementation in clinical practice: a review of forms, doses, and indications, Nutr. Clin. Pract. 22 (3) (2007) 286-296.

[18]

S. Boros, R.J. Bindels, J.G. Hoenderop, Active Ca(2+) reabsorption in the connecting tubule, Pflugers Arch. 458 (1) (2009) 99-109.

[19]

E.M. Brown, M. Pollak, S.C. Hebert, The extracellular calcium-sensing receptor: its role in health and disease, Annu. Rev. Med. 49 (1) (1998) 15-29.

[20]

C. Zhang, C.L. Miller, E.M. Brown, J.J. Yang, The calcium sensing receptor: from calcium sensing to signaling, Sci. China Life Sci. 58 (1) (2015) 14-27.

[21]

J. Tfelt-Hansen, E.M. Brown, The calcium-sensing receptor in normal physiology and pathophysiology: a review, Crit. Rev. Clin. Lab. Sci. 42 (1) (2005) 35-70.

[22]

R.C. Khanal, I. Nemere, Regulation of intestinal calcium transport, Annu. Rev. Nutr. 28 (2008) 179-196.

[23]

S.F. van de Graaf, I. Boullart, J.G. Hoenderop, R.J. Bindels, Regulation of the epithelial Ca2+ channels TRPV5 and TRPV6 by 1α, 25-dihydroxy Vitamin D 3 and dietary Ca2+, J. Steroid Biochem. Mol. Biol. 89 (2004) 303-308.

[24]

S.F. van de Graaf, J.G. Hoenderop, R.J. Bindels, Regulation of TRPV5 and TRPV6 by associated proteins, Am. J. Physiol.-Renal Physiol. 290 (6) (2006) F1295-F1302.

[25]

S. Christakos, P. Dhawan, A. Porta, L.J. Mady, T. Seth, Vitamin D and intestinal calcium absorption, Mol. Cell Endocrinol. 347 (1–2) (2011) 25-29.

[26]

A.A. Peters, P.T. Simpson, J.J. Bassett, J.M. Lee, L. Da Silva, L.E. Reid, S. Song, M.-O. Parat, S.R. Lakhani, P.A. Kenny, Calcium channel TRPV6 as a potential therapeutic target in estrogen receptor–negative breast cancer, Mol. Cancer Therap. 11 (10) (2012) 2158-2168.

[27]

T. Fixemer, U. Wissenbach, V. Flockerzi, H. Bonkhoff, Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression, Oncogene 22 (49) (2003) 7858-7861.

[28]

L. Lieben, B. Benn, D. Ajibade, I. Stockmans, K. Moermans, M. Hediger, J. Peng, S. Christakos, R. Bouillon, G. Carmeliet, Trpv6 mediates intestinal calcium absorption during calcium restriction and contributes to bone homeostasis, Bone 47 (2) (2010) 301-308.

[29]

E. den Dekker, J.G. Hoenderop, B. Nilius, R.J. Bindels, The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation, Cell Calcium 33 (5) (2003) 497-507.

[30]

R. Vennekens, J.G. Hoenderop, J. Prenen, M. Stuiver, P.H. Willems, G. Droogmans, B. Nilius, R.J. Bindels, Permeation and gating properties of the novel epithelial Ca(2+) channel, J. Biol. Chem. 275 (6) (2000) 3963-3969.

[31]

S. Christakos, Mechanism of action of 1,25-dihydroxyvitamin D3 on intestinal calcium absorption, Rev. Endocr. Metab. Disord. 13 (1) (2012) 39-44.

[32]

Y. Song, X. Peng, A. Porta, H. Takanaga, J.B. Peng, M.A. Hediger, J.C. Fleet, S. Christakos, Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 dihydroxyvitamin D3 in the intestine and kidney of mice, Endocrinology 144 (9) (2003) 3885-3894.

[33]

M. Cui, Q. Li, R. Johnson, J.C. Fleet, Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice, J. Bone Mineral Res. 27 (10) (2012) 2097-2107.

[34]

T.T. Lambers, A.F. Weidema, B. Nilius, J.G. Hoenderop, R.J. Bindels, Regulation of the mouse epithelial Ca2+ channel TRPV6 by the Ca2+-sensor calmodulin, J. Biol. Chem. 279 (28) (2004) 28855-28861.

[35]

S.F. van de Graaf, J.G. Hoenderop, D. Gkika, D. Lamers, J. Prenen, U. Rescher, V. Gerke, O. Staub, B. Nilius, R.J. Bindels, Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10–annexin 2 complex, EMBO J. 22 (7) (2003) 1478-1487.

[36]

J.P.H. Schoeber, C.N. Topala, K.P. Lee, T.T. Lambers, G. Ricard, A.W.C.M. van der Kemp, M.A. Huynen, J.G.J. Hoenderop, R.J.M. Bindels, Identification of Nipsnap1 as a novel auxiliary protein inhibiting TRPV6 activity, Pflügers Arch. – Eur. J. Physiol. 457 (1) (2008) 91-101.

[37]

S.F. van de Graaf, Q. Chang, A.R. Mensenkamp, J.G. Hoenderop, R.J. Bindels, Direct interaction with Rab11a targets the epithelial Ca2+ channels TRPV5 and TRPV6 to the plasma membrane, Mol. Cell. Biol. 26 (1) (2006) 303-312.

[38]

B.B. Kragelund, M. Jönsson, G. Bifulco, W.J. Chazin, H. Nilsson, B.E. Finn, S. Linse, Hydrophobic core substitutions in calbindin D9k: effects on Ca2+ binding and dissociation, Biochemistry 37 (25) (1998) 8926-8937.

[39]

N. Chen, Y. Ye, J. Zou, S. Li, S. Wang, A. Martin, R. Wohlhueter, J.J. Yang, Fluorescence complementation via EF-hand interactions, J. Biotechnol. 142 (3–4) (2009) 205-213.

[40]

S. Xue, H. Yang, J. Qiao, F. Pu, J. Jiang, K. Hubbard, K. Hekmatyar, J. Langley, M. Salarian, R.C. Long, Protein MRI contrast agent with unprecedented metal selectivity and sensitivity for liver cancer imaging, Proc. Natl. Acad. Sci. U. S. A. 112 (21) (2015) 6607-6612.

[41]

M.T. Henzl, J.D. Larson, S. Agah, Estimation of parvalbumin Ca2+- and Mg2+-binding constants by global least-squares analysis of isothermal titration calorimetry data, Anal. Biochem. 319 (2) (2003) 216-233.

[42]

J.B. Peng, E.M. Brown, M.A. Hediger, Apical entry channels in calcium-transporting epithelia, News Physiol. Sci. 18 (2003) 158-163.

[43]

G.D. Kutuzova, S. Akhter, S. Christakos, J. Vanhooke, C. Kimmel-Jehan, H.F. DeLuca, Calbindin D9k knockout mice are indistinguishable from wild-type mice in phenotype and serum calcium level, Proc. Natl. Acad. Sci. U. S. A. 103 (33) (2006) 12377-12381.

[44]

G.D. Kutuzova, F. Sundersingh, J. Vaughan, B.P. Tadi, S.E. Ansay, S. Christakos, H.F. DeLuca, TRPV6 is not required for 1α, 25-dihydroxyvitamin D3-induced intestinal calcium absorption in vivo, Proc. Natl. Acad. Sci. U. S. A. 105 (50) (2008) 19655-19659.

[45]

Q. Cai, J.S. Chandler, R.H. Wasserman, R. Kumar, J.T. Penniston, Vitamin D and adaptation to dietary calcium and phosphate deficiencies increase intestinal plasma membrane calcium pump gene expression, Proc. Natl. Acad. Sci. U. S. A. 90 (4) (1993) 1345-1349.

[46]

J.A. Johnson, R. Kumar, Renal and intestinal calcium transport: roles of vitamin D and vitamin D-dependent calcium binding proteins, Semin. Nephrol. 14 (2) (1994) 119-128.

[47]

G.D. Kutuzova, H.F. Deluca, Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D(3) stimulated calcium absorption and clarify its immunomodulatory properties, Arch. Biochem. Biophys. 432 (2) (2004) 152-166.

[48]

S. Christakos, Recent advances in our understanding of 1,25-dihydroxyvitamin D(3) regulation of intestinal calcium absorption, Arch. Biochem. Biophys. 523 (1) (2012) 73-76.

[49]

J.B. Peng, X.Z. Chen, U.V. Berger, P.M. Vassilev, H. Tsukaguchi, E.M. Brown, M.A. Hediger, Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption, J. Biol. Chem. 274 (32) (1999) 22739-22746.

[50]

J.G. Hoenderop, J.P. van Leeuwen, B.C. van der Eerden, F.F. Kersten, A.W. van der Kemp, A.M. Merillat, J.H. Waarsing, B.C. Rossier, V. Vallon, E. Hummler, R.J. Bindels, Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5, J. Clin. Invest. 112 (12) (2003) 1906-1914.

[51]

D. Gkika, C.N. Topala, Q. Chang, N. Picard, S. Thebault, P. Houillier, J.G. Hoenderop, R.J. Bindels, Tissue kallikrein stimulates Ca(2+) reabsorption via PKC-dependent plasma membrane accumulation of TRPV5, EMBO J. 25 (20) (2006) 4707-4716.

[52]

T.T. Lambers, F. Mahieu, E. Oancea, L. Hoofd, F. de Lange, A.R. Mensenkamp, T. Voets, B. Nilius, D.E. Clapham, J.G. Hoenderop, Calbindin-D28K dynamically controls TRPV5-mediated Ca2+ transport, EMBO J. 25 (13) (2006) 2978-2988.

[53]

K. Sooy, T. Schermerhorn, M. Noda, M. Surana, W.B. Rhoten, M. Meyer, N. Fleischer, G.W. Sharp, S. Christakos, Calbindin-D(28k) controls [Ca(2+)](i) and insulin release. Evidence obtained from calbindin-d(28k) knockout mice and beta cell lines, J. Biol. Chem. 274 (48) (1999) 34343-34349.

[54]

D. Gkika, Y.J. Hsu, A.W. van der Kemp, S. Christakos, R.J. Bindels, J.G. Hoenderop, Critical role of the epithelial Ca2+ channel TRPV5 in active Ca2+ reabsorption as revealed by TRPV5/calbindin-D28K knockout mice, J. Am. Soc. Nephrol. 17 (11) (2006) 3020-3027.

[55]

M. Van Abel, J.G. Hoenderop, O. Dardenne, R. St Arnaud, C.H. Van Os, H.J. Van Leeuwen, R.J. Bindels, 1,25-dihydroxyvitamin D(3)-independent stimulatory effect of estrogen on the expression of ECaC1 in the kidney, J. Am. Soc. Nephrol. 13 (8) (2002) 2102-2109.

[56]

S.C. Manolagas, R.L. Jilka, Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis, N. Engl. J. Med. 332 (5) (1995) 305-311.

[57]

S. Kitazawa, K. Kajimoto, T. Kondo, R. Kitazawa, Vitamin D3 supports osteoclastogenesis via functional vitamin D response element of human RANKL gene promoter, J. Cell. Biochem. 89 (4) (2003) 771-777.

[58]

Y.L. Ma, R.L. Cain, D.L. Halladay, X. Yang, Q. Zeng, R.R. Miles, S. Chandrasekhar, T.J. Martin, J.E. Onyia, Catabolic effects of continuous human PTH (1-38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation, Endocrinology 142 (9) (2001) 4047-4054.

[59]

K.T. Steeve, P. Marc, T. Sandrine, H. Dominique, F. Yannick, IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology, Cytokine Growth Factor Rev. 15 (1) (2004) 49-60.

[60]

K.K. Mak, Y. Bi, C. Wan, P.-T. Chuang, T. Clemens, M. Young, Y. Yang, Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression, Dev. Cell. 14 (5) (2008) 674-688.

[61]

E. Lubberts, L. van den Bersselaar, B. Oppers-Walgreen, P. Schwarzenberger, C.J.J. Coenen-de Roo, J.K. Kolls, L.A.B. Joosten, W.B. van den Berg, IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-κB ligand/osteoprotegerin balance, J. Immunol. 170 (5) (2003) 2655-2662.

[62]

M. Karst, G. Gorny, R.J.S. Galvin, M.J. Oursler, Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-β regulation of osteoclast differentiation, J. Cell. Physiol. 200 (1) (2004) 99-106.

[63]

L.C. Hofbauer, M. Schoppet, Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases, JAMA 292 (4) (2004) 490-495.

[64]

L.E. Theill, W.J. Boyle, J.M. Penninger, RANK-L and RANK: T cells, bone loss, and mammalian evolution, Annu. Rev. Immunol. 20 (1) (2002) 795-823.

[65]

W.J. Boyle, W.S. Simonet, D.L. Lacey, Osteoclast differentiation and activation, Nature 423 (6937) (2003) 337-342.

[66]

C. Zhang, Y. Huang, Y. Jiang, N. Mulpuri, L. Wei, D. Hamelberg, E.M. Brown, J.J. Yang, Identification of an L-phenylalanine binding site enhancing the cooperative responses of the calcium-sensing receptor to calcium, J. Biol. Chem. 289 (8) (2014) 5296-5309.

[67]

Y. Jiang, Y. Huang, H.C. Wong, Y. Zhou, X. Wang, J. Yang, R.A. Hall, E.M. Brown, J.J. Yang, Elucidation of a novel extracellular calcium-binding site on metabotropic glutamate receptor 1{alpha} (mGluR1{alpha}) that controls receptor activation, J. Biol. Chem. 285 (43) (2010) 33463-33474.

[68]

C. Zhang, N. Mulpuri, F.M. Hannan, M.A. Nesbit, R.V. Thakker, D. Hamelberg, E.M. Brown, J.J. Yang, Role of Ca2+ and L-Phe in regulating functional cooperativity of disease-associated “toggle” calcium-sensing receptor mutations, PLOS ONE 9 (11) (2014) e113622.

[69]

C. Zhang, Y. Zhuo, H.A. Moniz, S. Wang, K.W. Moremen, J.H. Prestegard, E.M. Brown, J.J. Yang, Direct determination of multiple ligand interactions with the extracellular domain of the calcium-sensing receptor, J. Biol. Chem. 289 (48) (2014) 33529-33542.

[70]

H.R. Toka, M.R. Pollak, P. Houillier, Calcium sensing in the renal tubule, Physiology (Bethesda) 30 (4) (2015) 317-326.

[71]

J.P. Pin, T. Galvez, L. Prezeau, Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors, Pharmacol. Ther. 98 (3) (2003) 325-354.

[72]

S.C. Brennan, A.D. Conigrave, Regulation of cellular signal transduction pathways by the extracellular calcium-sensing receptor, Curr. Pharm. Biotechnol. 10 (3) (2009) 270-281.

[73]

Y. Huang, J. Niwa, G. Sobue, G.E. Breitwieser, Calcium-sensing receptor ubiquitination and degradation mediated by the E3 ubiquitin ligase dorfin, J. Biol. Chem. 281 (17) (2006) 11610-11617.

[74]

S. Lorenz, R. Frenzel, R. Paschke, G.E. Breitwieser, S.U. Miedlich, Functional desensitization of the extracellular calcium-sensing receptor is regulated via distinct mechanisms: role of G protein-coupled receptor kinases, protein kinase C and beta-arrestins, Endocrinology 148 (5) (2007) 2398-2404.

[75]

H. Awata, C. Huang, M.E. Handlogten, R.T. Miller, Interaction of the calcium-sensing receptor and filamin, a potential scaffolding protein, J. Biol. Chem. 276 (37) (2001) 34871-34879.

[76]

S.Y. Jung, J.O. Kwak, H.W. Kim, D.S. Kim, S.D. Ryu, C.B. Ko, S.H. Cha, Calcium sensing receptor forms complex with and is up-regulated by caveolin-1 in cultured human osteosarcoma (Saos-2) cells, Exp. Mol. Med. 37 (2) (2005) 91-100.

[77]

I. Dal Pra, A. Chiarini, E.F. Nemeth, U. Armato, J.F. Whitfield, Roles of Ca2+ and the Ca2+-sensing receptor (CASR) in the expression of inducible NOS (nitric oxide synthase)-2 and its BH4 (tetrahydrobiopterin)-dependent activation in cytokine-stimulated adult human astrocytes, J Cell Biochem. 96 (2) (2005) 428-438.

[78]

E.M. Brown, G. Gamba, D. Riccardi, M. Lombardi, R. Butters, O. Kifor, A. Sun, M.A. Hediger, J. Lytton, S.C. Hebert, Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid, Nature 366 (6455) (1993) 575-580.

[79]

E.M. Brown, R.J. MacLeod, Extracellular calcium sensing and extracellular calcium signaling, Physiol. Rev. 81 (1) (2001) 239-297.

[80]

A.M. Hofer, E.M. Brown, Extracellular calcium sensing and signalling, Nat. Rev. Mol. Cell. Biol. 4 (7) (2003) 530-538.

[81]

Y. Huang, Y. Zhou, A. Castiblanco, W. Yang, E.M. Brown, J.J. Yang, Multiple Ca(2+)-binding sites in the extracellular domain of the Ca(2+)-sensing receptor corresponding to cooperative Ca(2+) response, Biochemistry 48 (2) (2009) 388-398.

[82]

Y. Huang, Y. Zhou, W. Yang, R. Butters, H.W. Lee, S. Li, A. Castiblanco, E.M. Brown, J.J. Yang, Identification and dissection of Ca(2+)-binding sites in the extracellular domain of Ca(2+)-sensing receptor, J. Biol. Chem. 282 (26) (2007) 19000-19010.

[83]

E.M. Brown, Role of the calcium-sensing receptor in extracellular calcium homeostasis, Best Pract. Res. Clin. Endocrinol. Metab. 27 (3) (2013) 333-343.

[84]

T. Kameda, H. Mano, Y. Yamada, H. Takai, N. Amizuka, M. Kobori, N. Izumi, H. Kawashima, H. Ozawa, K. Ikeda, A. Kameda, Y. Hakeda, M. Kumegawa, Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells, Biochem. Biophys. Res. Commun. 245 (2) (1998) 419-422.

[85]

B. Chakravarti, N. Chattopadhyay, E.M. Brown, Signaling through the extracellular calcium-sensing receptor (CaSR), Adv. Exp. Med. Biol. 740 (2012) 103-142.

[86]

M. Freichel, A. Zink-Lorenz, A. Holloschi, M. Hafner, V. Flockerzi, F. Raue, Expression of a calcium-sensing receptor in a human medullary thyroid carcinoma cell line and its contribution to calcitonin secretion, Endocrinology 137 (9) (1996) 3842-3848.

[87]

J.P. Geibel, S.C. Hebert, The functions and roles of the extracellular Ca2+-sensing receptor along the gastrointestinal tract, Annu. Rev. Physiol. 71 (2009) 205-217.

[88]

S.W. Kooh, Rickets due to calcium deficiency, N. Engl. J. Med. (1977).

[89]

B. Nordin, Osteoporosis and calcium deficiency, Proc. Nutr. Soc. 19 (02) (1960) 129-137.

[90]

J.A. Buckwalter, R.R. Cooper, Bone structure and function, Instr. Course. Lect. 36 (1987) 27-48.

[91]

M. Brini, D. Ottolini, T. Cali, E. Carafoli, Calcium in health and disease, Met. Ions Life Sci. 13 (2013) 81-137.

[92]

J.A. Beto, The role of calcium in human aging, Clin. Nutr. Res. 4 (1) (2015) 1-8.

[93]

C.C. Johnston Jr., J.Z. Miller, C.W. Slemenda, T.K. Reister, S. Hui, J.C. Christian, M. Peacock, Calcium supplementation and increases in bone mineral density in children, N. Engl. J. Med. 327 (2) (1992) 82-87.

[94]

G. Carmeliet, V. Dermauw, R. Bouillon, Vitamin D signaling in calcium and bone homeostasis: a delicate balance, Best Pract. Res. Clin. Endocrinol. Metab. 29 (4) (2015) 621-631.

[95]

V. Vera, J.M. Moran, P. Barros, M.L. Canal-Macias, R. Guerrero-Bonmatty, C. Costa-Fernandez, J.M. Lavado-Garcia, R. Roncero-Martin, J.D. Pedrera-Zamorano, Greater calcium intake is associated with better bone health measured by quantitative ultrasound of the phalanges in pediatric patients treated with anticonvulsant drugs, Nutrients 7 (12) (2015) 9908-9917.

[96]

H. Gao, X. Wei, J. Liao, R. Wang, J. Xu, X. Liu, X. Pan, Z. Li, Z. Li, Y. Xia, Q. Wang, Lower bone mineral density in patients with parkinson's disease: a cross-sectional study from Chinese Mainland, Front. Aging. Neurosci. 7 (2015) 203.

[97]

W. Cramer, On the biochemical mechanism of growth. The effect of sodium and calcium ions on the growth of a transplantable mouse carcinoma, Biochem. J. 12 (3) (1918) 210-220.

[98]

J. Wactawski-Wende, J.M. Kotchen, G.L. Anderson, A.R. Assaf, R.L. Brunner, M.J. O'Sullivan, K.L. Margolis, J.K. Ockene, L. Phillips, L. Pottern, R.L. Prentice, J. Robbins, T.E. Rohan, G.E. Sarto, S. Sharma, M.L. Stefanick, L. Van Horn, R.B. Wallace, E. Whitlock, T. Bassford, S.A. Beresford, H.R. Black, D.E. Bonds, R.G. Brzyski, B. Caan, R.T. Chlebowski, B. Cochrane, C. Garland, M. Gass, J. Hays, G. Heiss, S.L. Hendrix, B.V. Howard, J. Hsia, F.A. Hubbell, R.D. Jackson, K.C. Johnson, H. Judd, C.L. Kooperberg, L.H. Kuller, A.Z. LaCroix, D.S. Lane, R.D. Langer, N.L. Lasser, C.E. Lewis, M.C. Limacher, J.E. Manson, I. Women's Health Initiative, Calcium plus vitamin D supplementation and the risk of colorectal cancer, N. Engl. J. Med. 354 (7) (2006) 684-696.

[99]

K. Uusi-Rasi, M.U. Karkkainen, C.J. Lamberg-Allardt, Calcium intake in health maintenance – a systematic review, Food. Nutr. Res. 57 (2013).

[100]

L. Fan, K. Strasser-Weippl, J.J. Li, J. St Louis, D.M. Finkelstein, K.D. Yu, W.Q. Chen, Z.M. Shao, P.E. Goss, Breast cancer in China, Lancet Oncol. 15 (7) (2014) e279-e289.

[101]

F. Pu, S. Xue, J. Qiao, A. Patel, J.J. Yang, Towards the molecular imaging of prostate cancer biomarkers using protein-based MRI contrast agents, Curr. Protein Pept. Sci. (2016).

[102]

F. Pu, J. Qiao, S. Xue, H. Yang, A. Patel, L. Wei, K. Hekmatyar, M. Salarian, H.E. Grossniklaus, Z.R. Liu, J.J. Yang, GRPR-targeted protein contrast agents for molecular imaging of receptor expression in cancers by MRI, Sci. Rep. 5 (2015) 16214.

[103]

S. Xue, J. Qiao, J. Jiang, K. Hubbard, N. White, L. Wei, S. Li, Z.R. Liu, J.J. Yang, Design of ProCAs (protein-based Gd(3+) MRI contrast agents) with high dose efficiency and capability for molecular imaging of cancer biomarkers, Med. Res. Rev. 34 (5) (2014) 1070-1099.

[104]

S. Li, J. Jiang, J. Zou, J. Qiao, S. Xue, L. Wei, R. Long, L. Wang, A. Castiblanco, N. White, J. Ngo, H. Mao, Z.R. Liu, J.J. Yang, PEGylation of protein-based MRI contrast agents improves relaxivities and biocompatibilities, J. Inorg. Biochem. 107 (1) (2012) 111-118.

[105]

J. Qiao, S. Xue, F. Pu, N. White, J. Jiang, Z.R. Liu, J.J. Yang, Molecular imaging of EGFR/HER2 cancer biomarkers by protein MRI contrast agents, J. Biol. Inorg. Chem. 19 (2) (2014) 259-270.

[106]

S. Xue, J. Qiao, F. Pu, M. Cameron, J.J. Yang, Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5 (2) (2013) 163-179.

[107]

Y. Cui, T.E. Rohan, Vitamin D, calcium, and breast cancer risk: a review, Cancer Epidemiol. Biomark. Prev. 15 (8) (2006) 1427-1437.

[108]

M. Iqbal, T.A. Khan, S.A. Maqbool, Vitamin D receptor Cdx-2 polymorphism and premenopausal breast cancer risk in southern Pakistani patients, PLOS ONE 10 (3) (2015) e0122657.

[109]

X. Li, X. Kong, L. Jiang, T. Ma, S. Yan, C. Yuan, Q. Yang, A genetic polymorphism (rs17251221) in the calcium-sensing receptor is associated with breast cancer susceptibility and prognosis, Cell Physiol. Biochem. 33 (1) (2014) 165-172.

[110]

K.A. Bolanz, M.A. Hediger, C.P. Landowski, The role of TRPV6 in breast carcinogenesis, Mol. Cancer. Ther. 7 (2) (2008) 271-279.

[111]

I. Dhennin-Duthille, M. Gautier, M. Faouzi, A. Guilbert, M. Brevet, D. Vaudry, A. Ahidouch, H. Sevestre, H. Ouadid-Ahidouch, High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters, Cell Physiol. Biochem. 28 (5) (2011) 813-822.

[112]

A.I. Fleischman, H. Yacowitz, T. Hayton, M.L. Bierenbaum, Effects of dietary calcium upon lipid metabolism in mature male rats fed beef tallow, J. Nutr. 88 (3) (1966) 255-260.

[113]

H. Yacowitz, A.I. Fleischman, M.L. Bierenbaum, D. Kritchevsky, Calcium and lipid metabolism: effects of increased dietary calcium on atherosclerosis in rabbits, Trans. N. Y. Acad. Sci. 33 (3) (1971) 344-350.

[114]

S. Rautiainen, L. Wang, J.E. Manson, H.D. Sesso, The role of calcium in the prevention of cardiovascular disease – a review of observational studies and randomized clinical trials, Curr. Atheroscler. Rep. 15 (11) (2013) 362.

[115]

L.M. Resnick, J.H. Laragh, J.E. Sealey, M.H. Alderman, Divalent cations in essential hypertension. Relations between serum ionized calcium, magnesium, and plasma renin activity, N. Engl. J. Med. 309 (15) (1983) 888-891.

[116]

C.S. Shin, K.M. Kim, The risks and benefits of calcium supplementation, Endocrinol. Metab. (Seoul). 30 (1) (2015) 27-34.

[117]

S. Schrager, Dietary calcium intake and obesity, J. Am. Board Fam. Pract. 18 (3) (2005) 205-210.

[118]

M.J. Bolland, A. Grey, I.R. Reid, Calcium supplements and cardiovascular risk: 5 years on, Ther. Adv. Drug. Saf. 4 (5) (2013) 199-210.

[119]

I.R. Reid, Cardiovascular effects of calcium supplements, Nutrients 5 (7) (2013) 2522-2529.

[120]

M. Tseng, R.A. Breslow, B.I. Graubard, R.G. Ziegler, Dairy, calcium, and vitamin D intakes and prostate cancer risk in the National Health and Nutrition Examination Epidemiologic Follow-up Study cohort, Am. J. Clin. Nutr. 81 (5) (2005) 1147-1154.

[121]

E. Giovannucci, Y. Liu, M.J. Stampfer, W.C. Willett, A prospective study of calcium intake and incident and fatal prostate cancer, Cancer Epidemiol. Biomark. Prev. 15 (2) (2006) 203-210.

Food Science and Human Wellness
Pages 8-16
Cite this article:
Pu F, Chen N, Xue S. Calcium intake, calcium homeostasis and health. Food Science and Human Wellness, 2016, 5(1): 8-16. https://doi.org/10.1016/j.fshw.2016.01.001

628

Views

27

Downloads

103

Crossref

N/A

Web of Science

117

Scopus

0

CSCD

Altmetrics

Received: 10 January 2016
Revised: 24 January 2016
Accepted: 24 January 2016
Published: 01 February 2016
© 2016 Beijing Academy of Food Sciences.
Return