AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham) Mabb. fruit extracts

G. MahendranB.D. Ranjitha Kumari( )
Department of Plant Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024 Tamil Nadu, India

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Abstract

In the present investigation, we have described the green biosynthesis of silver nanoparticles (AgNPs) using ripened fruit aqueous extract of Nothapodytes nimmoniana (Graham) Mabb. as capping agent. The antioxidant, anticancer and antimicrobial activities of AgNPs were also studied. UV analysis revealed that AgNPs had a sharp peak at 416 nm. X-ray diffraction (XRD) result confirmed the characteristic peaks indicated at 111, 200, 220 and 311 for the crystalline of the face centered cubic silver. The Scanning Electron Microscopy analysis results confirmed the spherical shaped of AgNPs with difference sizes of the particles and an average from 44 to 64 nm. Further, fruit extract and AgNPs were evaluated total phenolic, tannin and flavonoid contents and were subjected to assess their antioxidant potential using various in vitro systems such as using 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), metal chelating, phosphomolybdenum and ferric reducing antioxidant power (FRAP) activities and antimicrobial activity against Bacillus subtilis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Escherichia coli. When compared to AgNPs, fruit extract exhibited uppermost radical scavenging activities. In addition, the cytotoxicity activity was determined by MTT assay. Our results clearly proved that biosynthesized AgNPs inhibited proliferation of HeLA cell line with an IC50 of 87.32 ± 1.43 μg/mL and antibacterial activity.

References

[1]

J.M. Gutteridge, Free radicals in disease processes: a compilation of cause and consequence, Free Radic. Res. Commun. 19 (1993) 141-158.

[2]

B. Halliwell, J.M. Gutteridge, Role of free radicals and catalytic metal ions in human disease: an overview, Methods Enzymol. 186 (1990) 1-85.

[3]

T. Finkel, N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing, Nature 408 (2000) 239-247.

[4]

V. Lobo, A. Patil, A. Phatak, N. Chandra, Free radicals, antioxidants and functional foods: impact on human health, Pharmacogn. Rev. 4 (8) (2010) 118-126.

[5]

V.V. Mody, R. Siwale, A. Singh, R.H. Mody, Introduction to metallic nanoparticles, J. Pharm. Bioallied Sci. 2 (2010) 282-289.

[6]

K. Shameli, M.B. Ahmad, W.Z.W. Yunus, N.A. Ibrahim, M. Darroudi, Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction, Int. J. Nanomed. 5 (2010) 743-751.

[7]

B. Yin, H. Ma, S. Wang, S. Chen, Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone), J. Phys. Chem. B 107 (2003) 8898-8904.

[8]

M. Darroudi, M.B. Ahmad, M. Hakimi, R. Zamiri, A. Khorsand Zak, H.A. Hosseini, M. Zargar, Preparation, characterization and antibacterial activity of γ-irradiated silver nanoparticles in aqueous gelatin, Int. J. Miner. Metall. Mater. 20 (2013) 403-409.

[9]

M. Darroudi, M.B. Ahmad, A.K. Zak, R. Zamiri, M. Hakimi, Fabrication and characterization of gelatin stabilized silver nanoparticles under UV-light, Int. J. Mol. Sci. 12 (2011) 6346-6356.

[10]

A.S. Kutsenko, V.M. Granchak, Photochemical synthesis of silver nanoparticles in polyvinyl alcohol matrices, Theor. Exp. Chem. 45 (2009) 313-318.

[11]

M. Darroudi, A. Khorsand Zak, M.R. Muhamad, N.M. Huang, M. Hakimi, Green synthesis of colloidal silver nanoparticles by sonochemical method, Mater. Lett. 66 (2012) 117-120.

[12]

G.A. Kahrilas, L.M. Wally, S.J. Fredrick, M. Hiskey, A.L. Prieto, J.E. Owens, Investigation of antibacterial activity by silver nanoparticles prepared by microwave-​assisted green syntheses with soluble starch, dextrose and arabinose, ACS Sustain. Chem. Eng. 2 (2014) 367-376.

[13]

M. Darroudi, M.B. Ahmad, R. Zamiri, A.H. Abdullah, N.A. Ibrahim, A.R. Sadrolhosseini, Time-dependent preparation of gelatin-stabilized silver nanoparticles by pulsed Nd: YAG laser, Solid State Sci. 13 (2011) 520-524.

[14]

M. Darroudi, M.B. Ahmad, R. Zamiri, A.H. Abdullah, N.A. Ibrahim, K. Shameli, M.S. Husin, Preparation and characterization of gelatin mediated silver nanoparticles by laser ablation, J. Alloys Compd. 509 (2011) 1301-1304.

[15]

Q.H. Tran, V.Q. Nguyen, A.T. Le, Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives, Adv. Nat. Sci. Nanosci. Nanotechnol. 4 (2013) 1-20.

[16]

C. Rajkuberan, K. Sudha, G. Sathishkumar, S. Sivaramakrishnan, Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 136 (2015) 924-930.

[17]

T.J.I. Edison, M.G. Sethuraman, Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue, Process Biochem. 47 (2012) 1351-1357.

[18]

A. Bankar, B. Joshi, A.R. Kumar, S. Zinjarde, Banana peel extract mediated novel route for the synthesis of silver nanoparticles, Colloids Surf. A 368 (2010) 58-63.

[19]

S. Singh, J.P. Saikia, A.K. Buragohain, A novel reusable PAni-PVA-Amylase film: activity and analysis, Colloids Surf. B: Biointerfaces 102 (2013) 83-85.

[20]

M. Umadevi, M.R. Bindhu, V. Sathe, A novel synthesis of malic acid capped silver nanoparticles using Solanum lycopersicums fruit extract, J. Mater. Sci. Technol. 29 (4) (2013) 317-322.

[21]

P.S. Ramesh, T. Kokila, D. Geetha, Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 142 (2015) 339-343.

[22]

D. Jain, H.K. Daima, S. Kachhwaha, S.L. Kothari, Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities, Dig. J. Nanomater. Biostruct. 4 (4) (2009) 723-727.

[23]

M.G. Moghaddam, R.H. Dabanlou, Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract, J. Ind. Eng. Chem. 20 (2) (2014) 739-744.

[24]

R. Subashini, S. Sruthi, P. Sindhuja, S. Santhini, D. Gnana Prakash, Biosynthesis of silver nanoparticles using Garcinia mangostana fruit extract and their antibacterial, antioxidant activity, Int. J. Curr. Microbiol. Appl. Sci. 4 (1) (2015) 944-952.

[25]

M. Medhi, Eco-friendly synthesis of silver nanoparticles using fruit extract of Averrhoa Carambola, Int. J. Innov. Sci. Eng. Technol. 1 (4) (2014) 479-482.

[26]

B. Kumar, K. Smita, L. Cumbal, A. Debut, Lantana camara berry for the synthesis of silver nanoparticles, Asian Pac. J. Trop. Biomed. 5 (3) (2015) 192-195.

[27]

T. Isah, A. Mujib, In vitro propagation and camptothecin production in Nothapodytes nimmoniana, Plant Cell Tissue Organ Cult. 121 (2015) 1-10.

[28]

B. Sadeghi, F. Gholamhoseinpoor, A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 134 (2015) 310-315.

[29]

K. Roy, C.K. Sarkar, C.K. Ghosh, Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 146 (2015) 286-291.

[30]

P. Siddhuraju, K. Becker, Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves, J. Agric. Food Chem. 51 (2003) 2144-2155.

[31]

P. Siddhuraju, S. Manian, The antioxidant activity and free radical-scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds, Food Chem. 105 (2007) 950-958.

[32]

J. Zhishen, T. Mengcheng, W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem. 64 (1999) 555-559.

[33]

M.S. Blois, Antioxidant determinations by the use of a stable free radical, Nature 26 (1958) 1199-1200.

[34]

R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26 (1999) 1231-1237.

[35]

R. Pulido, L. Bravo, F. Sauro-Calixto, Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay, J. Agric. Food Chem. 48 (2000) 3396-3402.

[36]

P. Prieto, M. Pineda, M. Aguilar, Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E, Anal. Biochem. 269 (1999) 337-341.

[37]

T.C.P. Dinis, V.M.C. Madeira, L.M. Almeida, Action of phenolic derivatives (acetaminophen salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers, Arch. Biochem. Biophys. 315 (1994) 161-169.

[38]

J.M. Andrews, Determination of minimum inhibitory concentrations, J. Antimicrob. Chemother. 48 (2001) 5-16.

[39]

S. Dhuper, D. Panda, P.L. Nayak, Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera indica, Nano Trends: J. Nanotechnol. Appl. 13 (2) (2012) 16-22.

[40]

K. Kalishwaralal, V. Deepak, R.K. Pandian, S.M. Kottaisamy Barathmani, K.S. Kartikeyan, B.S. Gurunathan, Biosynthesis of silver and gold nanoparticles using Brevibacterium casei, Colloids Surf. B: Biointerfaces 77 (2010) 257-262.

[41]

S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise, J. Adv. Res. 7 (2016) 17-28.

[42]

S. Ashokkumar, S. Ravi, V. Kathiravan, S. Velmurugan, Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 134 (2015) 34-39.

[43]

M.K. Swamy, M.S. Akhtar, S.K. Mohanty, U.R. Sinniah, Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 151 (2015) 939-944.

[44]

N. Ahmad, S. Sharma, M.K. Alam, V.N. Singh, S.F. Shamsi, B.R. Mehta, Rapid synthesis of silver nanoparticles using dried medicinal plant of basil, Colloid Surf. B 81 (2010) 81-86.

[45]

R. Subramanian, P. Subbramaniyan, V. Raj, Antioxidant activity of the stem bark of Shorea roxburghii and its silver reducing power, Springer Plus 2 (28) (2013) 1-11.

[46]

J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles, J. Chem. Phys. 116 (2002) 6755-6759.

[47]

M. Rivallan, B.S. Thomas, M. Lepage, N. Takagi, H. Hirata, F.T. Starzyk, Evolution of platinum particles dispersed on zeolite upon oxidation catalysis and ageing, ChemCatChem 2 (2010) 1599-1605.

[48]

M.M. Priya, B.K. Selvi, J.A. John Paul, Green synthesis of silver nanoparticles from the leaf ext racts of Euphorbia hirta and Nerium indicum, Dig. J. Nanomater. Biostruct. 6 (2011) 535-542.

[49]

K. Kalimuthu, R.S. Babu, D. Venkataraman, M. Bilal, S. Gurunathan, Biosynthesis of silver nanocrystals by Bacillus licheniformis, Colloids Surf. B 65 (2008) 150-153.

[50]

V. Kathiravan, S. Ravi, S. Ashokkumar, S. Velmurugan, K. Elumalai, C.P. Khatiwada, Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 139 (2015) 200-205.

[51]

P. Vasileva, B. Donkova, I. Karadjova, C. Dushkin, Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide, Colloids Surf. A 382 (2010) 203-210.

[52]

V. Kathiravan, S. Ravi, S. Ashokkumar, Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity, Spectrochim. Acta A: Mol. Biomol. Spectrosc 130 (2014) 116-121.

[53]

A.K. Mittal, J. Bhaumik, S. Kumar, U.C. Banerjee, Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential, J. Colloid Interface Sci. 415 (2014) 39-47.

[54]

N.J. Reddy, D.N. Vali, M. Rani, S. Sudha Rani, Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit, Mater. Sci. Eng. C: Mater. Biol. Appl. 34 (2014) 115-122.

[55]

C. Dipankar, S. Murugan, The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts, Colloids Surf. B 98 (2012) 112-119.

[56]

M.S. Abdel-Aziz, M.S. Shaheen, A.A. El-Nekeety, M.A. Abdel-Wahhab, Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract, J. Saudi Chem. Soc. 18 (2014) 356-363.

[57]

L. Inbathamizh, T. Mekalai Ponnu, E. Jancy Mary, In vitro evaluation of antioxidant and anticancer potential of Morinda pubescens synthesized silver nanoparticles, J. Pharm. Res. 6 (1) (2013) 32-38.

[58]

T.V.M. Sreekanth, S. Ravikumar, In-Yong Eom, Green synthesized silver nanoparticles using Nelumbonucifera root extract for efficient protein binding, antioxidant and cytotoxicity activities, J. Photochem. Photobiol. B 141 (2014) 100-105.

[59]

A. Rajan, V. Vilas, D. Philip, Catalytic and antioxidant properties of biogenic silver nanoparticles synthesized using Areca catechu nut, J. Mol. Liq. 207 (2015) 231-236.

[60]

L.S. Devi, S.R. Joshi, Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi, J. Microsc. Ultrastruct. 3 (1) (2015) 29-37.

[61]

M.I. Sriram, S.B. Kanth, K. Kalishwaralal, S. Gurunathan, Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model, Int. J. Nanomed. 5 (2010) 753-762.

[62]

J.P. Jacob, S. Finub, A. Narayanan, Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line, Colloids Surf. B 91 (2012) 212-214.

Food Science and Human Wellness
Pages 207-218
Cite this article:
Mahendran G, Ranjitha Kumari B. Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham) Mabb. fruit extracts. Food Science and Human Wellness, 2016, 5(4): 207-218. https://doi.org/10.1016/j.fshw.2016.10.001

428

Views

6

Downloads

65

Crossref

N/A

Web of Science

70

Scopus

0

CSCD

Altmetrics

Received: 29 September 2015
Revised: 27 September 2016
Accepted: 08 October 2016
Published: 17 October 2016
© 2016 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return