AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (486.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources

Jin-Qiang Chena( )Stephanie HealeyaPatrick ReganaPongpan LaksanalamaibZonglin Hua( )
Winchester Engineering & Analytical Center (WEAC), HFR-NE460, Office of Regulatory Affairs, US Food and Drug Administration, 109 Holton Street, Winchester, MA 01890, USA
MD DHMH Laboratories Administration, Division of Microbiology, Room 528, 1770 Ashland Ave. Baltimore, MD 21205, USA

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Abstract

Listeria monocytogenes is an important foodborne pathogen responsible for listeriosis, a fatal disease. It is widely distributed in various foods and environmental sources. In this review, we focused on addressing PCR-based technologies, including conventional PCR, qPCR and droplet digital PCR (ddPCR). Specifically, we described (a) conventional PCR and mono-, duplex- and multiplex-qPCR methodologies; (b) development and applications of gene HlyA-, Iap-, PrfA – and SsrA-based conventional and qPCR assays as well as PCR assays targeting newly identified gene targets for specific detection of L. monocytogenes; differentiation of viable from dead L. monocytogenes by qPCR in conjugation with propidium monoazide pretreatment; PCR-based serotype identification of L. monocytogenes isolates; PCR-based detection of L. ivanovii, infecting ruminants, differentiation of L. monocytogenes from other Listeria species; and sigB-gene based PCR identification of Listeria spp; (c) applications of ddPCR in detection of L. monocytogenes; and (d) application of qPCR assays in detection and subtyping of L. monocytogenes in milk and dairy products; meats, meat products and meat-processing environment; and seafood, seafood products and processing environment. Our goal was to provide a relatively comprehensive overview of PCR-based methodologies available in detection, characterization and subtyping of various strains of L. monocytogenes in foods and environmental sources.

References

[1]

A. Schuchat, B. Swaminathan, C.V. Broome, Epidemiology of human listeriosis, Clin. Microbiol. Rev. 4 (2) (1991) 169-183.

[2]

E. Scallan, R.M. Hoekstra, B.E. Mahon, T.F. Jones, P.M. Griffin, An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years, Epidemiol. Infect. 143 (13) (2015) 2795-2804.

[3]

J. Farber, J. Harwig, A. Carter, Prevention of foodborne listeriosis, Can. J. Infect. Dis. 2 (3) (1991) 116-120.

[4]

P. Laksanalamai, L.A. Joseph, B.J. Silk, L.S. Burall, C.L. Tarr, P. Gerner-Smidt, A.R. Datta, Genomic characterization of Listeria monocytogenes strains involved in a multistate listeriosis outbreak associated with cantaloupe in US, PLoS One 7 (7) (2012) e42448.

[5]

P. Laksanalamai, S.R. Steyert, L.S. Burall, A.R. Datta, Genome sequences of listeria monocytogenes serotype 4b variant strains isolated from clinical and environmental sources, Genome Announc. 1 (5) (2013).

[6]
CDC U., Multistate Outbreak of Listeriosis Linked to Whole Cantaloupes from Jensen Farms, Colorado (FINAL UPDATE). 2012.
[7]
CDC U., Multistate Outbreak of Listeriosis Linked to Packaged Salads Produced at Springfield, Ohio Dole Processing Facility (Final Update) 2016.
[8]

R.K. Saiki, D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, H.A. Erlich, Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase, Science 239 (4839) (1988) 487-491.

[9]

D. Klein, Quantification using real-time PCR technology: applications and limitations, Trends Mol. Med. 8 (6) (2002) 257-260.

[10]

F. Postollec, H. Falentin, S. Pavan, J. Combrisson, D. Sohier, Recent advances in quantitative PCR (qPCR) applications in food microbiology, Food Microbiol. 28 (5) (2011) 848-861.

[11]

C.A. Heid, J. Stevens, K.J. Livak, P.M. Williams, Real time quantitative PCR, Genome Res. 6 (10) (1996) 986-994.

[12]

U.E. Gibson, C.A. Heid, P.M. Williams, A novel method for real time quantitative RT-PCR, Genome Res. 6 (10) (1996) 995-1001.

[13]

H.K. Nogva, K. Rudi, K. Naterstad, A. Holck, D. Lillehaug, Application of 5'-nuclease PCR for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk, Appl. Environ. Microbiol. 66 (10) (2000) 4266-4271.

[14]

I. Hein, D. Klein, A. Lehner, A. Bubert, E. Brandl, M. Wagner, Detection and quantification of the iap gene of Listeria monocytogenes and Listeria innocua by a new real-time quantitative PCR assay, Res. Microbiol. 152 (1) (2001) 37-46.

[15]

A.A. Bhagwat, Simultaneous detection of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella strains by real-time PCR, Int. J. Food Microbiol. 84 (2) (2003) 217-224.

[16]

X.W. Huijsdens, R.K. Linskens, H. Taspinar, S.G. Meuwissen, C.M. Vandenbroucke-Grauls, P.H. Savelkoul, Listeria monocytogenes and inflammatory bowel disease: detection of Listeria species in intestinal mucosal biopsies by real-time PCR, Scand. J. Gastroenterol. 38 (3) (2003) 332-333.

[17]

D. Rodriguez-Lazaro, M. Hernandez, M. Pla, Simultaneous quantitative detection of Listeria spp. and Listeria monocytogenes using a duplex real-time PCR-based assay, FEMS Microbiol. Lett. 233 (2) (2004) 257-267.

[18]

J.B. Day, U. Basavanna, Real-time PCR detection of Listeria monocytogenes in infant formula and lettuce following macrophage-based isolation and enrichment, J. Appl. Microbiol. 118 (1) (2015) 233-244.

[19]

A.J. Hough, S.A. Harbison, M.G. Savill, L.D. Melton, G. Fletcher, Rapid enumeration of Listeria monocytogenes in artificially contaminated cabbage using real-time polymerase chain reaction, J. Food Prot. 65 (8) (2002) 1329-1332.

[20]

P. Elizaquivel, R. Aznar, A multiplex RTi-PCR reaction for simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Staphylococcus aureus on fresh, minimally processed vegetables, Food Microbiol. 25 (5) (2008) 705-713.

[21]

E.M. Elnifro, A.M. Ashshi, R.J. Cooper, P.E. Klapper, Multiplex PCR: optimization and application in diagnostic virology, Clin. Microbiol. Rev. 13 (4) (2000) 559-570.

[22]

X. Zhao, C.W. Lin, J. Wang, D.H. Oh, Advances in rapid detection methods for foodborne pathogens, J. Microbiol. Biotechnol. 24 (3) (2014) 297-312.

[23]

E.J. Thomas, R.K. King, J. Burchak, V.P. Gannon, Sensitive and specific detection of Listeria monocytogenes in milk and ground beef with the polymerase chain reaction, Appl. Environ. Microbiol. 57 (9) (1991) 2576-2580.

[24]

Y.S. Jung, J.F. Frank, R.E. Brackett, J. Chen, Polymerase chain reaction detection of Listeria monocytogenes on frankfurters using oligonucleotide primers targeting the genes encoding internalin AB, J. Food Prot. 66 (2) (2003) 237-241.

[25]

H. Jamali, B. Radmehr, Frequency, virulence genes and antimicrobial resistance of Listeria spp. isolated from bovine clinical mastitis, Vet. J. 198 (2) (2013) 541-542.

[26]

P. Elizaquivel, R. Aznar, Comparison of four commercial DNA extraction kits for PCR detection of Listeria monocytogenes, Salmonella, Escherichia coli O157:H7, and Staphylococcus aureus in fresh, minimally processed vegetables, J. Food Prot. 71 (10) (2008) 2110-2114.

[27]

R. Aznar, B. Alarcon, PCR detection of Listeria monocytogenes: a study of multiple factors affecting sensitivity, J. Appl. Microbiol. 95 (5) (2003) 958-966.

[28]

K. Rudi, K. Naterstad, S.M. Dromtorp, H. Holo, Detection of viable and dead Listeria monocytogenes on gouda-like cheeses by real-time PCR, Lett. Appl. Microbiol. 40 (4) (2005) 301-306.

[29]

A. Nocker, A. Mazza, L. Masson, A.K. Camper, R. Brousseau, Selective detection of live bacteria combining propidium monoazide sample treatment with microarray technology, J. Microbiol. Methods 76 (3) (2009) 253-261.

[30]

A. Martinon, U.P. Cronin, M.G. Wilkinson, Development of defined microbial population standards using fluorescence activated cell sorting for the absolute quantification of S. aureus using real-time PCR, Mol. Biotechnol. 50 (1) (2012) 62-71.

[31]

R. Aznar, B. Alarcon, On the specificity of PCR detection of Listeria monocytogenes in food: a comparison of published primers, Syst. Appl. Microbiol. 25 (1) (2002) 109-119.

[32]

H.G. Deneer, I. Boychuk, Species-specific detection of Listeria monocytogenes by DNA amplification, Appl. Environ. Microbiol. 57 (2) (1991) 606-609.

[33]

D.M. Norton, Polymerase chain reaction-based methods for detection of Listeria monocytogenes: toward real-time screening for food and environmental samples, J. AOAC Int. 85 (2) (2002) 505-515.

[34]

A. Saito, T. Sawada, F. Ueda, R. Hondo, Classification of Listeria monocytogenes by PCR-restriction enzyme analysis in the two genes of hlyA and iap, New Microbiol. 21 (1) (1998) 87-92.

[35]

P. Rossmanith, M. Krassnig, M. Wagner, I. Hein, Detection of Listeria monocytogenes in food using a combined enrichment/real-time PCR method targeting the prfA gene, Res. Microbiol. 157 (8) (2006) 763-771.

[36]

P. Rossmanith, M. Wagner, The challenge to quantify Listeria monocytogenes–a model leading to new aspects in molecular biological food pathogen detection, J. Appl. Microbiol. 110 (3) (2011) 605-617.

[37]

M. D'Agostino, M. Wagner, J.A. Vazquez-Boland, T. Kuchta, R. Karpiskova, J. Hoorfar, S. Novella, M. Scortti, J. Ellison, A. Murray, et al., A validated PCR-based method to detect Listeria monocytogenes using raw milk as a food model–towards an international standard, J. Food Prot. 67 (8) (2004) 1646-1655.

[38]

A. Bubert, S. Kohler, W. Goebel, The homologous and heterologous regions within the iap gene allow genus- and species-specific identification of Listeria spp. by polymerase chain reaction, Appl. Environ. Microbiol. 58 (8) (1992) 2625-2632.

[39]

B. Furrer, U. Candrian, J. Luthy, Detection and identification of E. coli producing heat-labile enterotoxin type I by enzymatic amplification of a specific DNA fragment, Lett. Appl. Microbiol. 10 (1) (1990) 31-34.

[40]

Z. Zhang, D.Z. Jin, S.R. Zhu, J.L. Ye, Y. Luo, [Development of multiplex real time PCR methodology for better identification and discrimination of Vibrio cholerae and O139 serotype], Zhonghua Liu Xing Bing Xue Za Zhi 31 (9) (2010) 1026-1029.

[41]

E. Omiccioli, G. Amagliani, G. Brandi, M. Magnani, A new platform for real-time PCR detection of Salmonella spp., Listeria monocytogenes and Escherichia coli O157 in milk, Food Microbiol. 26 (6) (2009) 615-622.

[42]

X. Li, N. Boudjellab, X. Zhao, Combined PCR and slot blot assay for detection of Salmonella and Listeria monocytogenes, Int. J. Food Microbiol. 56 (2–3) (2000) 167-177.

[43]

D.K. Winters, T.P. Maloney, M.G. Johnson, Rapid detection of Listeria monocytogenes by a PCR assay specific for an aminopeptidase, Mol. Cell. Probes 13 (2) (1999) 127-131.

[44]

D. Liu, A.J. Ainsworth, F.W. Austin, M.L. Lawrence, Use of PCR primers derived from a putative transcriptional regulator gene for species-specific determination of Listeria monocytogenes, Int. J. Food Microbiol. 91 (3) (2004) 297-304.

[45]

D. Liu, A.J. Ainsworth, F.W. Austin, M.L. Lawrence, PCR detection of a putative N-acetylmuramidase gene from Listeria ivanovii facilitates its rapid identification, Vet. Microbiol. 101 (2) (2004) 83-89.

[46]

D. Liu, A.J. Ainsworth, F.W. Austin, M.L. Lawrence, Identification of a gene encoding a putative phosphotransferase system enzyme IIBC in Listeria welshimeri and its application for diagnostic PCR, Lett. Appl. Microbiol. 38 (2) (2004) 151-157.

[47]

G. Amagliani, E. Omiccioli, A. Campo, I.J. Bruce, G. Brandi, M. Magnani, Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples, J. Appl. Microbiol. 100 (2) (2006) 375-383.

[48]

A. Mukhopadhyay, U.K. Mukhopadhyay, Novel multiplex PCR approaches for the simultaneous detection of human pathogens: Escherichia coli 0157:H7 and Listeria monocytogenes, J. Microbiol. Methods 68 (1) (2007) 193-200.

[49]

W.M. Johnson, S.D. Tyler, E.P. Ewan, F.E. Ashton, G. Wang, K.R. Rozee, Detection of genes coding for listeriolysin and Listeria monocytogenes antigen A (ImaA) in Listeria spp. by the polymerase chain reaction, Microb. Pathog. 12 (1) (1992) 79-86.

[50]

M. Bohnert, F. Dilasser, C. Dalet, J. Mengaud, P. Cossart, Use of specific oligonucleotides for direct enumeration of Listeria monocytogenes in food samples by colony hybridization and rapid detection by PCR, Res. Microbiol. 143 (3) (1992) 271-280.

[51]

C. Niederhauser, C. Hofelein, J. Luthy, U. Kaufmann, H.P. Buhler, U. Candrian, Comparison of gen-probe DNA probe and PCR for detection of Listeria monocytogenes in naturally contaminated soft cheese and semi-soft cheese, Res. Microbiol. 144 (1) (1993) 47-54.

[52]

L.T. Nguyen, B.E. Gillespie, H.M. Nam, S.E. Murinda, S.P. Oliver, Detection of Escherichia coli O157:H7 and Listeria monocytogenes in beef products by real-time polymerase chain reaction, Foodborne Pathog. Dis. 1 (4) (2004) 231-240.

[53]

A. Milenbachs Lukowiak, K.J. Mueller, N.E. Freitag, P. Youngman, Deregulation of Listeria monocytogenes virulence gene expression by two distinct and semi-independent pathways, Microbiology 150 (Pt. 2) (2004) 321-333.

[54]

P. Cossart, M.F. Vicente, J. Mengaud, F. Baquero, J.C. Perez-Diaz, P. Berche, Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation, Infect. Immun. 57 (11) (1989) 3629-3636.

[55]

J.A. Vazquez-Boland, M. Kuhn, P. Berche, T. Chakraborty, G. Dominguez-Bernal, W. Goebel, B. Gonzalez-Zorn, J. Wehland, J. Kreft, Listeria pathogenesis and molecular virulence determinants, Clin. Microbiol. Rev. 14 (3) (2001) 584-640.

[56]

A. Renzoni, A. Klarsfeld, S. Dramsi, P. Cossart, Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive, Infect. Immun. 65 (4) (1997) 1515-1518.

[57]

M.D. Wuenscher, S. Kohler, A. Bubert, U. Gerike, W. Goebel, The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity, J. Bacteriol. 175 (11) (1993) 3491-3501.

[58]

M. Leimeister-Wachter, C. Haffner, E. Domann, W. Goebel, T. Chakraborty, Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of listeria monocytogenes, Proc. Natl. Acad. Sci. U. S. A. 87 (21) (1990) 8336-8340.

[59]

M. Leimeister-Wachter, E. Domann, T. Chakraborty, Detection of a gene encoding a phosphatidylinositol-specific phospholipase C that is co-ordinately expressed with listeriolysin in Listeria monocytogenes, Mol. Microbiol. 5 (2) (1991) 361-366.

[60]

L. Braun, S. Dramsi, P. Dehoux, H. Bierne, G. Lindahl, P. Cossart, InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association, Mol. Microbiol. 25 (2) (1997) 285-294.

[61]

S. Dramsi, P. Dehoux, M. Lebrun, P.L. Goossens, P. Cossart, Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD, Infect. Immun. 65 (5) (1997) 1615-1625.

[62]

J. O'Grady, M. Ruttledge, S. Sedano-Balbas, T.J. Smith, T. Barry, M. Maher, Rapid detection of Listeria monocytogenes in food using culture enrichment combined with real-time PCR, Food Microbiol. 26 (1) (2009) 4-7.

[63]

J. O' Grady, S. Sedano-Balbas, M. Maher, T. Smith, T. Barry, Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target, Food Microbiol. 25 (1) (2008) 75-84.

[64]

D. Jin, Y. Luo, Z. Zhang, W. Fang, J. Ye, F. Wu, G. Ding, Rapid molecular identification of Listeria species by use of real-time PCR and high-resolution melting analysis, FEMS Microbiol. Lett. 330 (1) (2012) 72-80.

[65]

K.C. Keiler, L. Shapiro, Williams KP: tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: a two-piece tmRNA functions in Caulobacter, Proc. Natl. Acad. Sci. U. S. A. 97 (14) (2000) 7778-7783.

[66]

R.L. Churchill, H. Lee, J.C. Hall, Detection of Listeria monocytogenes and the toxin listeriolysin O in food, J. Microbiol. Methods 64 (2) (2006) 141-170.

[67]

J.B. Day, U. Basavanna, S.K. Sharma, Development of a cell culture method to isolate and enrich Salmonella enterica serotype enteritidis from shell eggs for subsequent detection by real-time PCR, Appl. Environ. Microbiol. 75 (16) (2009) 5321-5327.

[68]

J.B. Day, R.C. Whiting, Development of a macrophage cell culture method to isolate and enrich Francisella tularensis from food matrices for subsequent detection by real-time PCR, J. Food Prot. 72 (6) (2009) 1156-1164.

[69]

R.D. Sleator, N. Banville, C. Hill, Carnitine enhances the growth of Listeria monocytogenes in infant formula at 7 °C, J Food Prot 72 (6) (2009) 1293-1295.

[70]

A. Le Monnier, E. Abachin, J.L. Beretti, P. Berche, S. Kayal, Diagnosis of Listeria monocytogenes meningoencephalitis by real-time PCR for the hly gene, J. Clin. Microbiol. 49 (11) (2011) 3917-3923.

[71]

A.G.S. Kumar, V.K. Batish, Exploring specific primers targeted against different genes for a multiplex PCR for detection of Listeria monocytogenes, 3 Biotechnology 5 (3) (2015) 261-269.

[72]

, N.E. Freitag, Constitutive activation of PrfA tilts the balance of Listeria monocytogenes fitness towards life within the host versus environmental survival, PLoS One 5 (12) (2010) e15138.

[73]

B. Xayarath, J.I. Smart, K.J. Mueller, N.E. Freitag, A novel C-terminal mutation resulting in constitutive activation of the Listeria monocytogenes central virulence regulatory factor PrfA, Microbiology 157 (Pt. 11) (2011) 3138-3149.

[74]

N.S. Bansal, F.H. McDonell, A. Smith, G. Arnold, G.F. Ibrahim, Multiplex PCR assay for the routine detection of Listeria in food, Int. J. Food Microbiol. 33 (2–3) (1996) 293-300.

[75]

P.M. Border, J.J. Howard, G.S. Plastow, K.W. Siggens, Detection of Listeria species and Listeria monocytogenes using polymerase chain reaction, Lett. Appl. Microbiol. 11 (3) (1990) 158-162.

[76]

L.M. Lawrence, A. Gilmour, Incidence of Listeria spp. and Listeria monocytogenes in a poultry processing environment and in poultry products and their rapid confirmation by multiplex PCR, Appl. Environ. Microbiol. 60 (12) (1994) 4600-4604.

[77]

D. Weller, A. Andrus, M. Wiedmann, H.C. den Bakker, Listeria booriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA, Int. J. Syst. Evol. Microbiol. 65 (Pt. 1) (2015) 286-292.

[78]

I.V. Wesley, K.M. Harmon, J.S. Dickson, A.R. Schwartz, Application of a multiplex polymerase chain reaction assay for the simultaneous confirmation of Listeria monocytogenes and other Listeria species in turkey sample surveillance, J. Food Prot. 65 (5) (2002) 780-785.

[79]

L. Somer, Y. Kashi, A PCR method based on 16S rRNA sequence for simultaneous detection of the genus Listeria and the species Listeria monocytogenes in food products, J. Food Prot. 66 (9) (2003) 1658-1665.

[80]

M. Tamburro, M.L. Sammarco, M.G. Ammendolia, I. Fanelli, F. Minelli, G. Ripabelli, Evaluation of transcription levels of inlA, inlB, hly, bsh and prfA genes in Listeria monocytogenes strains using quantitative reverse-transcription PCR and ability of invasion into human CaCo-2 cells, FEMS Microbiol. Lett. 362 (6) (2015).

[81]

M. Tamburro, G. Ripabelli, M. Vitullo, T.J. Dallman, M. Pontello, C.F. Amar, M.L. Sammarco, Gene expression in Listeria monocytogenes exposed to sublethal concentration of benzalkonium chloride, Comp. Immunol. Microbiol. Infect. Dis. 40 (2015) 31-39.

[82]

T. Tao, Q. Chen, X. Bie, F. Lu, Z. Lu, Mining of novel species-specific primers for PCR detection of Listeria monocytogenes based on genomic approach, World J. Microbiol. Biotechnol. 31 (12) (2015) 1955-1966.

[83]

A. Nocker, A.K. Camper, Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide, Appl. Environ. Microbiol. 72 (3) (2006) 1997-2004.

[84]

M.C. Riedy, K.A. Muirhead, C.P. Jensen, C.C. Stewart, Use of a photolabeling technique to identify nonviable cells in fixed homologous or heterologous cell populations, Cytometry 12 (2) (1991) 133-139.

[85]

H.K. Nogva, S.M. Dromtorp, H. Nissen, K. Rudi, Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5'-nuclease PCR, Biotechniques 34 (4) (2003) 804-808 (810, 812–803).

[86]

K. Rudi, H.K. Nogva, B. Moen, H. Nissen, S. Bredholt, T. Moretro, K. Naterstad, A. Holck, Development and application of new nucleic acid-based technologies for microbial community analyses in foods, Int. J. Food Microbiol. 78 (1–2) (2002) 171-180.

[87]

K. Rudi, B. Moen, S.M. Dromtorp, A.L. Holck, Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples, Appl. Environ. Microbiol. 71 (2) (2005) 1018-1024.

[88]

G. Flekna, P. Stefanic, M. Wagner, F.J. Smulders, S.S. Mozina, I. Hein, Insufficient differentiation of live and dead Campylobacter jejuni and Listeria monocytogenes cells by ethidium monoazide (EMA) compromises EMA/real-time PCR, Res. Microbiol. 158 (5) (2007) 405-412.

[89]

A. Nocker, C.Y. Cheung, A.K. Camper, Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells, J. Microbiol. Methods 67 (2) (2006) 310-320.

[90]

A. Nocker, A.K. Camper, Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques, FEMS Microbiol. Lett. 291 (2) (2009) 137-142.

[91]

A. Nocker, K.E. Sossa, A.K. Camper, Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR, J. Microbiol. Methods 70 (2) (2007) 252-260.

[92]

A. Nocker, P. Sossa-Fernandez, M.D. Burr, A.K. Camper, Use of propidium monoazide for live/dead distinction in microbial ecology, Appl. Environ. Microbiol. 73 (16) (2007) 5111-5117.

[93]

Y. Pan, , Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells, Appl. Environ. Microbiol. 73 (24) (2007) 8028-8031.

[94]

B. Li, J.Q. Chen, Real-time PCR methodology for selective detection of viable Escherichia coli O157:H7 cells by targeting Z3276 as a genetic marker, Appl. Environ. Microbiol. 78 (15) (2012) 5297-5304.

[95]

B. Li, J.Q. Chen, Development of a sensitive and specific qPCR assay in conjunction with propidium monoazide for enhanced detection of live Salmonella spp. in food, BMC Microbiol. 13 (2013) 273.

[96]

S. Kathariou, Listeria monocytogenes virulence and pathogenicity, a food safety perspective, J. Food Prot. 65 (11) (2002) 1811-1829.

[97]

D. Liu, M.L. Lawrence, F.W. Austin, A.J. Ainsworth, A multiplex PCR for species- and virulence-specific determination of Listeria monocytogenes, J. Microbiol. Methods 71 (2) (2007) 133-140.

[98]

A. Bubert, I. Hein, M. Rauch, A. Lehner, B. Yoon, W. Goebel, M. Wagner, Detection and differentiation of Listeria spp: by a single reaction based on multiplex PCR, Appl. Environ. Microbiol. 65 (10) (1999) 4688-4692.

[99]

M.K. Borucki, M.J. Krug, W.T. Muraoka, D.R. Call, Discrimination among Listeria monocytogenes isolates using a mixed genome DNA microarray, Vet. Microbiol. 92 (4) (2003) 351-362.

[100]

D.R. Call, M.K. Borucki, T.E. Besser, Mixed-genome microarrays reveal multiple serotype and lineage-specific differences among strains of Listeria monocytogenes, J. Clin. Microbiol. 41 (2) (2003) 632-639.

[101]

M.K. Borucki, D.R. Call, Listeria monocytogenes serotype identification by PCR, J. Clin. Microbiol. 41 (12) (2003) 5537-5540.

[102]

W. Zhang, S.J. Knabel, Multiplex PCR assay simplifies serotyping and sequence typing of Listeria monocytogenes associated with human outbreaks, J. Food Prot. 68 (9) (2005) 1907-1910.

[103]

Y. Chen, S.J. Knabel, Multiplex PCR for simultaneous detection of bacteria of the genus Listeria, Listeria monocytogenes, and major serotypes and epidemic clones of L. monocytogenes, Appl. Environ. Microbiol. 73 (19) (2007) 6299-6304.

[104]

M. Doumith, C. Buchrieser, P. Glaser, C. Jacquet, P. Martin, Differentiation of the major Listeria monocytogenes serovars by multiplex PCR, J. Clin. Microbiol. 42 (8) (2004) 3819-3822.

[105]

A. Kerouanton, M. Marault, L. Petit, J. Grout, T.T. Dao, A. Brisabois, Evaluation of a multiplex PCR assay as an alternative method for Listeria monocytogenes serotyping, J. Microbiol. Methods 80 (2) (2010) 134-137.

[106]

A. Leclercq, V. Chenal-Francisque, H. Dieye, T. Cantinelli, R. Drali, S. Brisse, M. Lecuit, Characterization of the novel Listeria monocytogenes PCR serogrouping profile IVb-v1, Int. J. Food Microbiol. 147 (1) (2011) 74-77.

[107]

Y.I.M. Shimojima, Y. Nishino, R. Ishitsuka, S. Kuroda, A. Hirai, K. Sadamasu, A. Nakama, A. Kai, Multiplex PCR serogrouping of Listeria monocytogenes isolated in Japan, J. Vet. Med. Sci. 78 (3) (2016) 477-479.

[108]

D.B. Rawool, S.P. Doijad, K.V. Poharkar, M. Negi, S.B. Kale, S.V. Malik, N.V. Kurkure, T. Chakraborty, S.B. Barbuddhe, A multiplex PCR for detection of Listeria monocytogenes and its lineages, J. Microbiol. Methods (2016).

[109]

S.W. Nho, H. Abdelhamed, S. Reddy, A. Karsi, M.L. Lawrence, Identification of high-risk Listeria monocytogenes serotypes in lineage I (serotype 1/2a, 1/2c, 3a and 3c) using multiplex PCR, J. Appl. Microbiol. 119 (3) (2015) 845-852.

[110]

A.C. Camargo, D.C. Vallim, E. Hofer, L.A. Nero, Molecular serogrouping of Listeria monocytogenes from Brazil using PCR, J. Food Prot. 79 (1) (2016) 144-147.

[111]

R.F. Wang, W.W. Cao, H. Wang, M.G. Johnson, A 16S rRNA-based DNA probe and PCR method specific for Listeria ivanovii, FEMS Microbiol. Lett. 106 (1) (1993) 85-92.

[112]

D. Rodriguez-Lazaro, L. Lopez-Enriquez, M. Hernandez, smcL as a novel diagnostic marker for quantitative detection of Listeria ivanovii in biological samples, J. Appl. Microbiol. 109 (3) (2010) 863-872.

[113]

B. Gonzalez-Zorn, G. Dominguez-Bernal, M. Suarez, M.T. Ripio, Y. Vega, S. Novella, J.A. Vazquez-Boland, The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole, Mol. Microbiol. 33 (3) (1999) 510-523.

[114]

B. Gonzalez-Zorn, G. Dominguez-Bernal, M. Suarez, M.T. Ripio, Y. Vega, S. Novella, A. Rodriguez, I. Chico, A. Tierrez, J.A. Vazquez-Boland, SmcL, a novel membrane-damaging virulence factor in Listeria, Int. J. Med. Microbiol. 290 (4–5) (2000) 369-374.

[115]

Y. Mao, X. Huang, X. Xiong, H. Hengyi Xu, P. Zoraida, Z.P. Aguilar, Y. Xiong, Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes and Listeria ivanovii in lettuce, Food Control 59 (2016) 601-608.

[116]

J. Czajka, N. Bsat, M. Piani, W. Russ, K. Sultana, M. Wiedmann, R. Whitaker, C.A. Batt, Differentiation of Listeria monocytogenes and Listeria innocua by 16S rRNA genes and intraspecies discrimination of Listeria monocytogenes strains by random amplified polymorphic DNA polymorphisms, Appl. Environ. Microbiol. 59 (1) (1993) 304-308.

[117]

T. Graham, E.J. Golsteyn-Thomas, V.P. Gannon, J.E. Thomas, Genus- and species-specific detection of Listeria monocytogenes using polymerase chain reaction assays targeting the 16S/23S intergenic spacer region of the rRNA operon, Can. J. Microbiol. 42 (11) (1996) 1155-1162.

[118]

T.A. Graham, E.J. Golsteyn-Thomas, J.E. Thomas, V.P. Gannon, Inter- and intraspecies comparison of the 16S-23S rRNA operon intergenic spacer regions of six Listeria spp, Int. J. Syst. Bacteriol. 47 (3) (1997) 863-869.

[119]

B. Sallen, A. Rajoharison, S. Desvarenne, F. Quinn, C. Mabilat, Comparative analysis of 16S and 23S rRNA sequences of Listeria species, Int. J. Syst. Bacteriol. 46 (3) (1996) 669-674.

[120]

A. Hitchins, K. Jinneman, Y. Chen, Simultaneous Confirmation of Listeria species and L. monocytogenes isolates by real-time PCR, US Food and Drug Administration BAM: Chapter 10 Detection and Enumeration of Listeria Monocytogenes in Foods (2016).

[121]

S. Cai, D.Y. Kabuki, A.Y. Kuaye, T.G. Cargioli, M.S. Chung, R. Nielsen, M. Wiedmann, Rational design of DNA sequence-based strategies for subtyping Listeria monocytogenes, J. Clin. Microbiol. 40 (9) (2002) 3319-3325.

[122]

B.D. Sauders, M.Z. Durak, E. Fortes, K. Windham, Y. Schukken, , B. Akey, K.K. Nightingale, M. Wiedmann, Molecular characterization of Listeria monocytogenes from natural and urban environments, J. Food Prot. 69 (1) (2006) 93-105.

[123]

B.D. Sauders, J. Overdevest, E. Fortes, K. Windham, Y. Schukken, A. Lembo, M. Wiedmann, Diversity of Listeria species in urban and natural environments, Appl. Environ. Microbiol. 78 (12) (2012) 4420-4433.

[124]

C. Simmons, M.J. Stasiewicz, E. Wright, S. Warchocki, S. Roof, J.R. Kause, N. Bauer, S. Ibrahim, M. Wiedmann, H.F. Oliver, Listeria monocytogenes and Listeria spp. contamination patterns in retail delicatessen establishments in three U.S. states, J. Food Prot. 77 (11) (2014) 1929-1939.

[125]

E. Hage, O. Mpamugo, C. Ohai, S. Sapkota, C. Swift, D. Wooldridge, C.F. Amar, Identification of six Listeria species by real-time PCR assay, Lett. Appl. Microbiol. 58 (6) (2014) 535-540.

[126]

D. Liu, M.L. Lawrence, A.J. Ainsworth, F.W. Austin, Species-specific PCR determination of Listeria seeligeri, Res. Microbiol. 155 (9) (2004) 741-746.

[127]

D. Volokhov, A. Rasooly, K. Chumakov, V. Chizhikov, Identification of Listeria species by microarray-based assay, J. Clin. Microbiol. 40 (12) (2002) 4720-4728.

[128]

D. Liu, M.L. Lawrence, A.J. Ainsworth, F.W. Austin, Isolation and PCR amplification of a species-specific oxidoreductase-coding gene region in Listeria grayi, Can. J. Microbiol. 51 (1) (2005) 95-98.

[129]

C. Schrader, A. Schielke, L. Ellerbroek, R. Johne, PCR inhibitors – occurrence, properties and removal, J. Appl. Microbiol. 113 (5) (2012) 1014-1026.

[130]

B.J. Hindson, K.D. Ness, D.A. Masquelier, P. Belgrader, N.J. Heredia, A.J. Makarewicz, I.J. Bright, M.Y. Lucero, A.L. Hiddessen, T.C. Legler, et al., High-throughput droplet digital PCR system for absolute quantitation of DNA copy number, Anal. Chem. 83 (22) (2011) 8604-8610.

[131]

H. Doi, T. Takahara, T. Minamoto, S. Matsuhashi, K. Uchii, H. Yamanaka, Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species, Environ. Sci. Technol. 49 (9) (2015) 5601-5608.

[132]

X. Bian, F. Jing, G. Li, X. Fan, C. Jia, H. Zhou, Q. Jin, J. Zhao, A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes, Biosens. Bioelectron. 74 (2015) 770-777.

[133]

A. Klancnik, N. Toplak, M. Kovac, H. Marquis, B. Jersek, Quantification of Listeria monocytogenes cells with digital PCR and their biofilm cells with real-time PCR, J. Microbiol. Methods 118 (2015) 37-41.

[134]

D. Porcellato, J. Narvhus, S.B. Skeie, Detection and quantification of Bacillus cereus group in milk by droplet digital PCR, J. Microbiol. Methods 127 (2016) 1-6.

[135]

Y. Cao, M.R. Raith, J.F. Griffith, Droplet digital PCR for simultaneous quantification of general and human-associated fecal indicators for water quality assessment, Water Res. 70 (2015) 337-349.

[136]

S.P. Oliver, K.J. Boor, S.C. Murphy, S.E. Murinda, Food safety hazards associated with consumption of raw milk, Foodborne Pathog. Dis. 6 (7) (2009) 793-806.

[137]

R. Fretz, J. Pichler, U. Sagel, P. Much, W. Ruppitsch, A.T. Pietzka, A. Stoger, S. Huhulescu, S. Heuberger, G. Appl, et al., Update: multinational listeriosis outbreak due to ‘Quargel', a sour milk curd cheese, caused by two different L. monocytogenes serotype 1/2a strains, 2009–2010, Euro Surveill. 15 (2010) 16.

[138]

R. Fretz, U. Sagel, W. Ruppitsch, A. Pietzka, A. Stoger, S. Huhulescu, S. Heuberger, J. Pichler, P. Much, G. Pfaff, et al., Listeriosis outbreak caused by acid curd cheese Quargel, Austria and Germany 2009, Euro Surveill. 15 (2010) 5.

[139]

E. Waak, W. Tham, M.L. Danielsson-Tham, Prevalence and fingerprinting of Listeria monocytogenes strains isolated from raw whole milk in farm bulk tanks and in dairy plant receiving tanks, Appl. Environ. Microbiol. 68 (7) (2002) 3366-3370.

[140]

A.A. Latorre, A.K. Pradhan, J.A. Van Kessel, J.S. Karns, K.J. Boor, D.H. Rice, K.J. Mangione, Y.T. Grohn, Y.H. Schukken, Quantitative risk assessment of listeriosis due to consumption of raw milk, J. Food Prot. 74 (8) (2011) 1268-1281.

[141]

M. Rudol, S. Scherer, High incidence of Listeria monocytogenes in European red smear cheese, Int. J. Food Microbiol. 63 (1–2) (2001) 91-98.

[142]

W. Muraoka, C. Gay, D. Knowles, M. Borucki, Prevalence of Listeria monocytogenes subtypes in bulk milk of the Pacific Northwest, J. Food Prot. 66 (8) (2003) 1413-1419.

[143]

H. Yang, L. Qu, A.N. Wimbrow, X. Jiang, Y. Sun, Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR, Int. J. Food Microbiol. 118 (2) (2007) 132-138.

[144]

H. Jamali, M. Paydar, S. Ismail, C.Y. Looi, W.F. Wong, B. Radmehr, A. Abedini, Prevalence, antimicrobial susceptibility and virulotyping of Listeria species and Listeria monocytogenes isolated from open-air fish markets, BMC Microbiol. 15 (2015) 144.

[145]

P. Wang, F. Yuan, H. Yang, Y. Zhao, Y. Hu, G. Zhao, Y. Chen, Real-time PCR assay for rapid detection of Listeria monocytogenes in simulated milk specimens, Wei Sheng Yan Jiu 40 (6) (2011) 765-768.

[146]

K. Koo, L.A. Jaykus, Detection of Listeria monocytogenes from a model food by fluorescence resonance energy transfer-based PCR with an asymmetric fluorogenic probe set, Appl. Environ. Microbiol. 69 (2) (2003) 1082-1088.

[147]

K. Rantsiou, V. Alessandria, R. Urso, P. Dolci, L. Cocolin, Detection, quantification and vitality of Listeria monocytogenes in food as determined by quantitative PCR, Int. J. Food Microbiol. 121 (1) (2008) 99-105.

[148]

C. Longhi, A. Maffeo, M. Penta, G. Petrone, L. Seganti, M.P. Conte, Detection of Listeria monocytogenes in Italian-style soft cheeses, J. Appl. Microbiol. 94 (5) (2003) 879-885.

[149]

J.S. Van Kessel, J.S. Karns, L. Gorski, B.J. McCluskey, M.L. Perdue, Prevalence of Salmonellae, Listeria monocytogenes, and fecal coliforms in bulk tank milk on US dairies, J. Dairy Sci. 87 (9) (2004) 2822-2830.

[150]

Y. Zhang, E. Yeh, G. Hall, J. Cripe, A.A. Bhagwat, J. Meng, Characterization of Listeria monocytogenes isolated from retail foods, Int. J. Food Microbiol. 113 (1) (2007) 47-53.

[151]

K. Wieczorek, E. Denis, O. Lynch, J. Osek, Molecular characterization and antibiotic resistance profiling of Campylobacter isolated from cattle in Polish slaughterhouses, Food Microbiol. 34 (1) (2013) 130-136.

[152]

K. Wieczorek, K. Dmowska, J. Osek, Characterization and antimicrobial resistance of Listeria monocytogenes isolated from retail beef meat in Poland, Foodborne Pathog. Dis. 9 (8) (2012) 681-685.

[153]

S. Wu, Q. Wu, J. Zhang, M. Chen, Z.A. Yan, H. Hu, Listeria monocytogenes prevalence and characteristics in retail raw foods in China, PLoS One 10 (8) (2015) e0136682.

[154]

C. Fang, Y. Shan, T. Cao, Y. Xia, Y. Xin, C. Cheng, H. Song, X. Li, W. Fang, Prevalence and virulence characterization of Listeria monocytogenes in chilled pork in Zhejiang province, China, Foodborne Pathog. Dis. 13 (1) (2016) 8-12.

[155]

M.G. Jami, M. Zunabovic, M. Domig, W. Kneifel, Listeria monocytogenes in aquatic food products-A review, Compr. Rev. Food Sci. Food Saf. 13 (2014) 798-813.

[156]

H.H. Huss, L.V. Jorgensen, B.F. Vogel, Control options for Listeria monocytogenes in seafoods, Int. J. Food Microbiol. 62 (3) (2000) 267-274.

[157]

D.M. Norton, M.A. McCamey, K.L. Gall, J.M. Scarlett, K.J. Boor, M. Wiedmann, Molecular studies on the ecology of Listeria monocytogenes in the smoked fish processing industry, Appl. Environ. Microbiol. 67 (1) (2001) 198-205.

[158]

J. Thimothe, K.K. Nightingale, K. Gall, V.N. Scott, M. Wiedmann, Tracking of Listeria monocytogenes in smoked fish processing plants, J. Food Prot. 67 (2) (2004) 328-341.

[159]

D. Rodriguez-Lazaro, A. Jofre, T. Aymerich, M. Garriga, M. Pla, Rapid quantitative detection of, Listeria monocytogenes in salmon products: evaluation of pre-real-time PCR strategies, J. Food Prot. 68 (7) (2005) 1467-1471.

[160]

J.A. Khan, R.S. Rathore, S. Khan, I. Ahmad, In vitro detection of pathogenic Listeria monocytogenes from food sources by conventional, molecular and cell culture method, Braz. J. Microbiol. 44 (3) (2013) 751-758.

[161]

H. Momtaz, S. Yadollahi, Molecular characterization of Listeria monocytogenes isolated from fresh seafood samples in Iran, Diagn. Pathol. 8 (2013) 149.

[162]

M. Schmelcher, M.J. Loessner, Application of bacteriophages for detection of foodborne pathogens, Bacteriophage 4 (1) (2014) e28137.

[163]

J. Bai, Y.T. Kim, S. Ryu, J.H. Lee, Biocontrol and rapid detection of foodborne pathogens using bacteriophages and endolysins, Front. Microbiol. 7 (2016) 474.

[164]

R. Perez Pulido, M.J. Grande Burgos, A. Galvez, R. Lucas Lopez, Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria, Crit. Rev. Biotechnol. 36 (5) (2016) 851-861.

Food Science and Human Wellness
Pages 39-59
Cite this article:
Chen J-Q, Healey S, Regan P, et al. PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources. Food Science and Human Wellness, 2017, 6(2): 39-59. https://doi.org/10.1016/j.fshw.2017.03.001

579

Views

44

Downloads

39

Crossref

N/A

Web of Science

50

Scopus

0

CSCD

Altmetrics

Received: 01 February 2017
Revised: 24 March 2017
Accepted: 30 March 2017
Published: 02 April 2017
© 2017 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return