AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Prevalence and methodologies for detection, characterization and subtyping of Listeria monocytogenes and L. ivanovii in foods and environmental sources

Jin-Qiang Chena( )Patrick ReganaPongpan LaksanalamaibStephanie HealeyaZonglin Hua( )
Winchester Engineering & Analytical Center (WEAC), HFR-NE460, Office of Regulatory Affairs, US Food and Drug Administration, 109 Holton Street, Winchester, MA 01890, USA
MD DHMH Laboratories Administration, Division of Microbiology, Room 528, 1770 Ashland Ave., Baltimore, MD 21205, USA

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Abstract

Listeria monocytogenes, one of the most important foodborne pathogens, can cause listeriosis, a lethal disease for humans. L. ivanovii, which is closely related to L. monocytogenes, is also widely distributed in nature and infects mainly warm-blooded ruminants, causing economic loss. Thus, there are high priority needs for methodologies for rapid, specific, cost-effective and accurate detection, characterization and subtyping of L. monocytogenes and L. ivanovii in foods and environmental sources. In this review, we (A) described L. monocytogenes and L. ivanovii, world-wide incidence of listeriosis, and prevalence of various L. monocytogenes strains in food and environmental sources; (B) comprehensively reviewed different types of traditional and newly developed methodologies, including culture-based, antigen/antibody-based, LOOP-mediated isothermal amplification, matrix-assisted laser desorption ionization-time of flight-mass spectrometry, DNA microarray, and genomic sequencing for detection and characterization of L. monocytogenes in foods and environmental sources; (C) comprehensively summarized different subtyping methodologies, including pulsed-field gel electrophoresis, multi-locus sequence typing, ribotyping, and phage-typing, and whole genomic sequencing etc. for subtyping of L. monocytogenes strains from food and environmental sources; and (D) described the applications of these methodologies in detection and subtyping of L. monocytogenes in foods and food processing facilities.

References

[1]

I.A. Gillespie, P. Mook, C.L. Little, K.A. Grant, J. McLauchlin, Human listeriosis in England, 2001–2007: association with neighbourhood deprivation, Euro Surveill. 15 (27) (2010) 7-16.

[2]

E. Scallan, P.M. Griffin, F.J. Angulo, R.V. Tauxe, R.M. Hoekstra, Foodborne illness acquired in the United States?unspecified agents, Emerg. Infect. Dis. 17 (1) (2011) 16-22.

[3]

R.H. Orsi, H.C. den Bakker, M. Wiedmann, Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics, Int. J. Med. Microbiol. 301 (2) (2011) 79-96.

[4]

J.A. Vazquez-Boland, M. Kuhn, P. Berche, T. Chakraborty, G. Dominguez-Bernal, W. Goebel, B. Gonzalez-Zorn, J. Wehland, J. Kreft, Listeria pathogenesis and molecular virulence determinants, Clin. Microbiol. Rev. 14 (3) (2001) 584-640.

[5]

J.M. Farber, P.I. Peterkin, Listeria monocytogenes, a food-borne pathogen, Microbiol. Rev. 55 (3) (1991) 476-511.

[6]

A. Leclercq, D. Clermont, C. Bizet, P.A. Grimont, A. Le Fleche-Mateos, S.M. Roche, C. Buchrieser, V. Cadet-Daniel, A. Le Monnier, M. Lecuit, et al., Listeria rocourtiae sp. nov, Int. J. Syst. Evol. Microbiol. 60 (9) (2010) 2210-2214.

[7]

E. Lang Halter, K. Neuhaus, S. Scherer, Listeria weihenstephanensis sp. nov., isolated from the water plant Lemna trisulca taken from a freshwater pond, Int. J. Syst. Evol. Microbiol. 63 (2) (2013) 641-647.

[8]

H.C. den Bakker, S. Warchocki, E.M. Wright, A.F. Allred, C. Ahlstrom, C.S. Manuel, M.J. Stasiewicz, A. Burrell, S. Roof, L.K. Strawn, et al., Listeria floridensis sp. nov., Listeria aquatica sp. nov., Listeria cornellensis sp. nov., Listeria riparia sp. nov. and Listeria grandensis sp. nov., from agricultural and natural environments, Int. J. Syst. Evol. Microbiol. 64 (6) (2014) 1882-1889.

[9]

D. Weller, A. Andrus, M. Wiedmann, H.C. den Bakker, Listeria booriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA, Int. J. Syst. Evol. Microbiol. 65 (1) (2015) 286-292.

[10]

R.H. Orsi, M. Wiedmann, Characteristics and distribution of Listeria spp., including Listeria species newly describedsince 2009, Appl. Microbiol. Biotechnol. 100 (12) (2016) 5273-5287.

[11]

T.K. Chapin, K.K. Nightingale, R.W. Worobo, M. Wiedmann, L.K. Strawn, Geographical and meteorological factors associated with isolation of Listeria species in New York State produce production and natural environments, J. Food Prot. 77 (11) (2014) 1919-1928.

[12]

B. Swaminathan, P. Gerner-Smidt, The epidemiology of human listeriosis, Microbes Infect. 9 (10) (2007) 1236-1243.

[13]

H. de Valk, C. Jacquet, V. Goulet, V. Vaillant, A. Perra, F. Simon, J.C. Desenclos, P. Martin, Listeria surveillance feasibility study P: surveillance of listeria infections in europe, Euro Surveill. 10 (10) (2005) 251-255.

[14]

J. Denny, J. McLauchlin, Human Listeria monocytogenes infections in Europe–an opportunity for improved European surveillance, Euro Surveill.13 (13) (2008).

[15]

D.A. Drevets, M.S. Bronze, Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion, FEMS Immunol. Med. Microbiol. 53 (2) (2008) 151-165.

[16]

V. Janakiraman, Listeriosis in pregnancy: diagnosis, treatment, and prevention, Rev. Obstet. Gynecol. 1 (4) (2008) 179-185.

[17]

E. Scallan, R.M. Hoekstra, F.J. Angulo, R.V. Tauxe, M.A. Widdowson, S.L. Roy, J.L. Jones, P.M. Griffin, Foodborne illness acquired in the United States–major pathogens, Emerg. Infect. Dis. 17 (1) (2011) 7-15.

[18]

E. Scallan, S.M. Crim, A. Runkle, O.L. Henao, B.E. Mahon, R.M. Hoekstra, P.M. Griffin, Bacterial enteric infections among older adults in the United States: foodborne diseases active surveillance network, 1996–2012, Foodborne Pathog. Dis. 12 (6) (2015) 492-499.

[19]

R.L. Jurado, M.M. Farley, E. Pereira, R.C. Harvey, A. Schuchat, J.D. Wenger, D.S. Stephens, Increased risk of meningitis and bacteremia due to Listeria monocytogenes in patients with human immunodeficiency virus infection, Clin. Infect. Dis. 17 (2) (1993) 224-227.

[20]

A.C. Camargo, J.J. Woodward, L.A. Nero, The continuous challenge of characterizing the foodborne pathogen listeria monocytogenes, Foodborne Pathog. Dis. 13 (8) (2016) 405-416.

[21]

P.D. Cotter, C. Hill, Surviving the acid test: responses of gram-positive bacteria to low pH, Microbiol. Mol. Biol. Rev. 67 (3) (2003) 429-453(table of contents).

[22]

D.W. Fleming, S.L. Cochi, K.L. MacDonald, J. Brondum, P.S. Hayes, B.D. Plikaytis, M.B. Holmes, A. Audurier, C.V. Broome, A.L. Reingold, Pasteurized milk as a vehicle of infection in an outbreak of listeriosis, N. Engl. J. Med. 312 (7) (1985) 404-407.

[23]

M.J. Linnan, L. Mascola, X.D. Lou, V. Goulet, S. May, C. Salminen, D.W. Hird, M.L. Yonekura, P. Hayes, R. Weaver, et al., Epidemic listeriosis associated with Mexican-style cheese, N. Engl. J. Med. 319 (13) (1988) 823-828.

[24]

J. McLauchlin, Listeria monocytogenes, recent advances in the taxonomy and epidemiology of listeriosis in humans, J. Appl. Bacteriol. 63 (1) (1987) 1-11.

[25]

A. Schuchat, B. Swaminathan, C.V. Broome, Epidemiology of human listeriosis, Clin. Microbiol. Rev. 4 (2) (1991) 169-183.

[26]

C.B. Dalton, C.C. Austin, J. Sobel, P.S. Hayes, W.F. Bibb, L.M. Graves, B. Swaminathan, M.E. Proctor, P.M. Griffin, An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk, N. Engl. J. Med. 336 (2) (1997) 100-105.

[27]

M.K. Miettinen, A. Siitonen, P. Heiskanen, H. Haajanen, K.J. Bjorkroth, H.J. Korkeala, Molecular epidemiology of an outbreak of febrile gastroenteritis caused by Listeria monocytogenes in cold-smoked rainbow trout, J. Clin. Microbiol. 37 (7) (1999) 2358-2360.

[28]

C. Jacquet, B. Catimel, R. Brosch, C. Buchrieser, P. Dehaumont, V. Goulet, A. Lepoutre, P. Veit, J. Rocourt, Investigations related to the epidemic strain involved in the French listeriosis outbreak in 1992, Appl. Environ. Microbiol. 61 (6) (1995) 2242-2246.

[29]

G. Salamina, E. Dalle Donne, A. Niccolini, G. Poda, D. Cesaroni, M. Bucci, R. Fini, M. Maldini, A. Schuchat, B. Swaminathan, et al., A foodborne outbreak of gastroenteritis involving Listeria monocytogenes, Epidemiol. Infect. 117 (3) (1996) 429-436.

[30]

P. Aureli, G.C. Fiorucci, D. Caroli, G. Marchiaro, O. Novara, L. Leone, S. Salmaso, An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes, N. Engl. J. Med. 342 (17) (2000) 1236-1241.

[31]

D.M. Frye, R. Zweig, J. Sturgeon, M. Tormey, M. LeCavalier, I. Lee, L. Lawani, L. Mascola, An outbreak of febrile gastroenteritis associated with delicatessen meat contaminated with Listeria monocytogenes, Clin. Infect. Dis. 35 (8) (2002) 943-949.

[32]

E. Perez-Trallero, C. Zigorraga, J. Artieda, M. Alkorta, J.M. Marimon, Two outbreaks of listeria monocytogenes infection, northern Spain, E merg Infect Dis 20 (12) (2014) 2155-2157.

[33]

S. Lomonaco, B. Verghese, P. Gerner-Smidt, C. Tarr, L. Gladney, L. Joseph, L. Katz, M. Turnsek, M. Frace, Y. Chen, et al., Novel epidemic clones of listeria monocytogenes, United States, 2011, Emerg. Infect. Dis. 19 (1) (2013) 147-150.

[34]

J. Koch, K. Stark, Significant increase of listeriosis in Germany–epidemiological patterns 2001–2005, Euro Surveill. 11 (6) (2006) 85-88.

[35]

W. Ruppitsch, R. Prager, S. Halbedel, P. Hyden, A. Pietzka, S. Huhulescu, D. Lohr, K. Schonberger, E. Aichinger, A. Hauri, et al., Ongoing outbreak of invasive listeriosis, Germany, 2012–2015, Euro Surveill.20 (50) (2015).

[36]

V.S. Parihar, G. Lopez-Valladares, M.L. Danielsson-Tham, I. Peiris, S. Helmersson, M. Unemo, B. Andersson, M. Arneborn, E. Bannerman, S. Barbuddhe, et al., Characterization of human invasive isolates of Listeria monocytogenes in Sweden 1986–2007, Foodborne Pathog. Dis. 5 (6) (2008) 755-761.

[37]

R. Magalhaes, G. Almeida, V. Ferreira, I. Santos, J. Silva, M.M. Mendes, J. Pita, G. Mariano, I. Mancio, M.M. Sousa, et al., Cheese-related listeriosis outbreak, Portugal, march 2009 to february 2012, Euro Surveill.20 (17) (2015).

[38]

Y. Doorduyn, C.M. de Jager, W.K. van der Zwaluw, W.J. Wannet, A. van der Ende, L. Spanjaard, Y.T. van Duynhoven, First results of the active surveillance of Listeria monocytogenes infections in the Netherlands reveal higher than expected incidence, Euro Surveill. 11 (4) (2006)(E060420 060424).

[39]

H. de Valk, V. Vaillant, C. Jacquet, J. Rocourt, F. Le Querrec, F. Stainer, N. Quelquejeu, O. Pierre, V. Pierre, Two consecutive nationwide outbreaks of listeriosis in France, october 1999-February 2000, Am. J. Epidemiol. 154 (10) (2001) 944-950.

[40]

D. Girard, A. Leclercq, E. Laurent, M. Lecuit, H. de Valk, V. Goulet, Pregnancy-related listeriosis in France, 1984–2011, with a focus on 606 cases from 1999 to 2011, Euro Surveill.19 (38) (2014).

[41]

V. Goulet, C. Jacquet, P. Martin, V. Vaillant, E. Laurent, H. de Valk, Surveillance of human listeriosis in France, 2001–2003, Euro Surveill. 11 (6) (2006) 79-81.

[42]

I.A. Gillespie, J. McLauchlin, K.A. Grant, C.L. Little, V. Mithani, C. Penman, C. Lane, M. Regan, Changing pattern of human listeriosis, England and Wales, 2001–2004, Emerg. Infect. Dis. 12 (9) (2006) 1361-1366.

[43]

A. Awofisayo, C. Amar, R. Ruggles, R. Elson, G.K. Adak, P. Mook, K.A. Grant, Pregnancy-associated listeriosis in england and wales, Epidemiol. Infect. 143 (2) (2015) 249-256.

[44]

J. Bille, D.S. Blanc, H. Schmid, K. Boubaker, A. Baumgartner, H.H. Siegrist, M.L. Tritten, R. Lienhard, D. Berner, R. Anderau, et al., Outbreak of human listeriosis associated with tomme cheese in northwest Switzerland, 2005, Euro Surveill. 11 (6) (2006) 91-93.

[45]

M. Lynch, J. Painter, R. Woodruff, C. Braden, Centers for disease C, prevention: surveillance for foodborne-disease outbreaks–United States, 1998–2002, MMWR Surveill. Summ. 55 (10) (2006) 1-42.

[46]

B.D. Sauders, Y. Schukken, L. Kornstein, V. Reddy, T. Bannerman, E. Salehi, N. Dumas, B.J. Anderson, J.P. Massey, M. Wiedmann, Molecular epidemiology and cluster analysis of human listeriosis cases in three U.S. states, J. Food Prot. 69 (7) (2006) 1680-1689.

[47]

E.J. Cartwright, K.A. Jackson, S.D. Johnson, L.M. Graves, B.J. Silk, B.E. Mahon, Listeriosis outbreaks and associated food vehicles, United States, 1998–2008, Emerg. Infect. Dis. 19 (1) (2013) 1-9(quiz 184).

[48]

C. Kirkham, J. Berkowitz, Listeriosis in pregnancy: survey of British Columbia practitioners' knowledge of risk factors, counseling practices, and learning needs, Can. Fam. Physician 56 (4) (2010) e158-166.

[49]

C. Maertens de Noordhout, B. Devleesschauwer, F.J. Angulo, G. Verbeke, J. Haagsma, M. Kirk, A. Havelaar, N. Speybroeck, The global burden of listeriosis: a systematic review and meta-analysis, Lancet Infect. Dis. 14 (11) (2014) 1073-1082.

[50]

S.J. Olsen, M. Patrick, S.B. Hunter, V. Reddy, L. Kornstein, W.R. MacKenzie, K. Lane, S. Bidol, G.A. Stoltman, D.M. Frye, et al., Multistate outbreak of Listeria monocytogenes infection linked to delicatessen turkey meat, Clin. Infect. Dis. 40 (7) (2005) 962-967.

[51]

Y. Feng, S. Wu, J.K. Varma, J.D. Klena, F.J. Angulo, L. Ran, Systematic review of human listeriosis in China, 1964–2010, Trop. Med. Int. Health 18 (10) (2013) 1248-1256.

[52]

Y. Wang, Y. Jiao, R. Lan, X. Xu, G. Liu, X. Wang, L. Zhang, H. Pang, D. Jin, H. Dai, et al., Characterization of Listeria monocytogenes isolated from human Listeriosis cases in China, Emerg. Microbes Infect. 4 (8) (2015) e50.

[53]

Y. Jiao, W. Zhang, J. Ma, C. Wen, P. Wang, Y. Wang, J. Xing, W. Liu, L. Yang, J. He, Early onset of neonatal listeriosis, Pediatr. Int. 53 (6) (2011) 1034-1037.

[54]

L. Jiang, J. Chen, J. Xu, X. Zhang, S. Wang, H. Zhao, K. Vongxay, W. Fang, Virulence characterization and genotypic analyses of Listeria monocytogenes isolates from food and processing environments in eastern China, Int. J. Food Microbiol. 121 (1) (2008) 53-59.

[55]

J. Chen, X. Zhang, L. Mei, L. Jiang, W. Fang, Prevalence of Listeria in Chinese food products from 13 provincesbetween 2000 and 2007 and virulence characterization of Listeria monocytogenes isolates, Foodborne Pathog. Dis. 6 (1) (2009) 7-14.

[56]

S. Wu, Q. Wu, J. Zhang, M. Chen, Z.A. Yan, H. Hu, Listeria monocytogenes prevalence and characteristics in retail raw foods in China, PLoS One 10 (8) (2015) e0136682.

[57]

S.B. Barbuddhe, S.V. Malik, J.A. Kumar, D.R. Kalorey, T. Chakraborty, Epidemiology and risk management of listeriosis in India, Int. J. Food Microbiol. 154 (3) (2012) 113-118.

[58]

S. Miya, H. Takahashi, M. Nakagawa, T. Kuda, S. Igimi, B. Kimura, Genetic characteristics of Japanese clinical Listeria monocytogenes isolates, PLoS One 10 (3) (2015) e0122902.

[59]

N. Indrawattana, T. Nibaddhasobon, N. Sookrung, M. Chongsa-Nguan, A. Tungtrongchitr, S. Makino, W. Tungyong, W. Chaicumpa, Prevalence of Listeria monocytogenes in raw meats marketed in Bangkok and characterization of the isolates by phenotypic and molecular methods, J. Health Popul. Nutr. 29 (1) (2011) 26-38.

[60]

D.C. Vallim, C. Barroso Hofer, C. Lisboa Rde, A.V. Barbosa, L. Alves Rusak, C.M. dos Reis, E. Hofer, Twenty years of listeria in brazil: occurrence of listeria species and listeria monocytogenes serovars in food samples in Brazil between 1990 and 2012, BioMed Res. Int. 2015 (2015) 540204.

[61]

M. Prieto, C. Martinez, L. Aguerre, M.F. Rocca, L. Cipolla, R. Callejo, Antibiotic susceptibility of Listeria monocytogenes in Argentina, Enferm. Infecc. Microbiol. Clin. 34 (2) (2016) 91-95.

[62]

M.S. Brett, P. Short, J. McLauchlin, A small outbreak of listeriosis associated with smoked mussels, Int. J. Food Microbiol. 43 (3) (1998) 223-229.

[63]

I. Popovic, B. Heron, C. Covacin, Listeria: an australian perspective (2001–2010), Foodborne Pathog. Dis. 11 (6) (2014) 425-432.

[64]

O. Disson, M. Lecuit, Targeting of the central nervous system by Listeria monocytogenes, Virulence 3 (2) (2012) 213-221.

[65]

P.S. Mead, L. Slutsker, V. Dietz, L.F. McCaig, J.S. Bresee, C. Shapiro, P.M. Griffin, R.V. Tauxe, Food-related illness and death in the United States, Emerg. Infect. Dis. 5 (5) (1999) 607-625.

[66]

S. Hoffmann, M.B. Batz, , Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens, J. Food Prot. 75 (7) (2012) 1292-1302.

[67]

T. Jemmi, R. Stephan, Listeria monocytogenes: food-borne pathogen and hygiene indicator, Rev. Sci. Tech. 25 (2) (2006) 571-580.

[68]

Y. Gu, X. Liang, Z. Huang, Y. Yang, Outbreak of listeria monocytogenes in pheasants, Poult. Sci. 94 (12) (2015) 2905-2908.

[69]

K. Dhama, A.K. Verma, S. Rajagunalan, A. Kumar, R. Tiwari, S. Chakraborty, R. Kumar, Listeria monocytogenes infection in poultry and its public health importance with special reference to food borne zoonoses, Pak J. Biol. Sci. 16 (7) (2013) 301-308.

[70]

R. Crespo, M.M. Garner, S.G. Hopkins, D.H. Shah, Outbreak of Listeria monocytogenes in an urban poultry flock, BMC Vet. Res. 9 (2013) 204.

[71]

B. Siriken, N.D. Ayaz, I. Erol, Listeria monocytogenes in retailed raw chicken meat in Turkey, Berl. Munch. Tierarztl. Wochenschr. 127 (1-2) (2014) 43-49.

[72]

B.N. Bundrant, T. Hutchins, H.C. den Bakker, E. Fortes, M. Wiedmann, Listeriosis outbreak in dairy cattle caused by an unusual Listeria monocytogenes serotype 4b strain, J. Vet. Diagn. Invest. 23 (1) (2011) 155-158.

[73]

P.R. Rocha, S. Lomonaco, M.T. Bottero, A. Dalmasso, A. Dondo, C. Grattarola, F. Zuccon, B. Iulini, S.J. Knabel, M.T. Capucchio, et al., Ruminant rhombencephalitis-associated Listeria monocytogenes strains constitute a genetically homogeneous group related to human outbreak strains, Appl. Environ. Microbiol. 79 (9) (2013) 3059-3066.

[74]

J. Walland, J. Lauper, J. Frey, R. Imhof, R. Stephan, T. Seuberlich, A. Oevermann, Listeria monocytogenes infection in ruminants: is there a link to the environment, food and human health? A review, Schweiz. Arch. Tierheilkd. 157 (6) (2015) 319-328.

[75]

M. Dreyer, A. Thomann, S. Bottcher, J. Frey, A. Oevermann, Outbreak investigation identifies a single Listeria monocytogenes strain in sheep with different clinical manifestations, soil and water, Vet. Microbiol. 179 (1-2) (2015) 69-75.

[76]

P. Velge, S.M. Roche, Variability of Listeria monocytogenes virulence: a result of the evolution between saprophytism and virulence?, Future Microbiol. 5 (12) (2010) 1799-1821.

[77]

C. Guillet, O. Join-Lambert, A. Le Monnier, A. Leclercq, F. Mechai, M.F. Mamzer-Bruneel, M.K. Bielecka, M. Scortti, O. Disson, P. Berche, et al., Human listeriosis caused by Listeria ivanovii, Emerg. Infect. Dis. 16 (1) (2010) 136-138.

[78]

A.J. Cummins, A.K. Fielding, J. McLauchlin, Listeria ivanovii infection in a patient with AIDS, J. Infect. 28 (1) (1994) 89-91.

[79]

Y.M. Snapir, E. Vaisbein, F. Nassar, Low virulence but potentially fatal outcome-Listeria ivanovii, Eur J Intern Med 17 (4) (2006) 286-287.

[80]

M.P. Lessing, G.D. Curtis, I.C. Bowler, Listeria ivanovii infection, J. Infect. 29 (2) (1994) 230-231.

[81]

P. Chand, J.R. Sadana, Outbreak of Listeria ivanovii abortion in sheep in India, Vet. Rec. 145 (3) (1999) 83-84.

[82]

A.V. Alexander, R.L. Walker, B.J. Johnson, B.R. Charlton, L.W. Woods, Bovine abortions attributable to Listeria ivanovii: four cases (1988–1990), J. Am. Vet. Med. Assoc. 200 (5) (1992) 711-714.

[83]

C.P. Ramage, J.C. Low, J. McLauchlin, W. Donachie, Characterisation of Listeria ivanovii isolates from the UK using pulsed-field gel electrophoresis, FEMS Microbiol. Lett. 170 (2) (1999) 349-353.

[84]

E.S. Sergeant, S.C. Love, A. McInnes, Abortions in sheep due to Listeria ivanovii, Aust. Vet. J. 68 (1) (1991) 39.

[85]

S.M. Dennis, Perinatal lamb mortality in western Australia. 6. Listeric infection, Aust. Vet. J. 51 (2) (1975) 75-79.

[86]

B. Norrung, Microbiological criteria for Listeria monocytogenes in foods under special consideration of risk assessment approaches, Int. J. Food Microbiol. 62 (3) (2000) 217-221.

[87]

J.L. Gaillard, F. Jaubert, P. Berche, The inlAB locus mediates the entry of Listeria monocytogenes into hepatocytes in vivo, J. Exp. Med. 183 (2) (1996) 359-369.

[88]

J. Mengaud, M. Lecuit, M. Lebrun, F. Nato, J.C. Mazie, P. Cossart, Antibodies to the leucine-rich repeat region of internalin block entry of Listeria monocytogenes into cells expressing E-cadherin, Infect. Immun. 64 (12) (1996) 5430-5433.

[89]

J. Mengaud, H. Ohayon, P. Gounon, R.M. Mege, P. Cossart, E-cadherin is the receptor for internalin, a surface protein required for entry of L: monocytogenes into epithelial cells, Cell 84 (6) (1996) 923-932.

[90]

Y. Shen, M. Naujokas, M. Park, K. Ireton, InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase, Cell 103 (3) (2000) 501-510.

[91]

O. Dussurget, J. Pizarro-Cerda, P. Cossart, Molecular determinants of Listeria monocytogenes virulence, Annu. Rev. Microbiol. 58 (2004) 587-610.

[92]

S. Ryan, M. Begley, C. Hill, C.G. Gahan, A five-gene stress survival islet (SSI-1) that contributes to the growth of Listeria monocytogenes in suboptimal conditions, J. Appl. Microbiol. 109 (3) (2010) 984-995.

[93]

M. Doumith, C. Buchrieser, P. Glaser, C. Jacquet, P. Martin, Differentiation of the major Listeria monocytogenes serovars by multiplex PCR, J. Clin. Microbiol. 42 (8) (2004) 3819-3822.

[94]

D. Liu, Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen, J. Med. Microbiol. 55 (2006) 645-659(Pt 6).

[95]

M.K. Borucki, D.R. Call, Listeria monocytogenes serotype identification by PCR, J. Clin. Microbiol. 41 (12) (2003) 5537-5540.

[96]

Y. Wang, A. Zhao, R. Zhu, R. Lan, D. Jin, Z. Cui, Y. Wang, Z. Li, Y. Wang, J. Xu, et al., Genetic diversity and molecular typing of Listeria monocytogenes in China, BMC Microbiol. 12 (2012) 119.

[97]

P. Wang, H. Yang, Y. Hu, F. Yuan, G. Zhao, Y. Zhao, Y. Chen, Characterization of Listeria monocytogenes isolates in import food products of China from 8 provinces between 2005 and 2007, J. Food Sci. 77 (4) (2012) M212-216.

[98]

M. Wiedmann, J.L. Bruce, C. Keating, A.E. Johnson, P.L. McDonough, C.A. Batt, Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential, Infect. Immun. 65 (7) (1997) 2707-2716.

[99]

M. Wiedmann, J.L. Bruce, R. Knorr, M. Bodis, E.M. Cole, C.I. McDowell, P.L. McDonough, C.A. Batt, Ribotype diversity of Listeria monocytogenes strains associated with outbreaks of listeriosis in ruminants, J. Clin. Microbiol. 34 (5) (1996) 1086-1090.

[100]

R. Ivanek, Y.T. Grohn, M. Wiedmann, Listeria monocytogenes in multiple habitats and host populations: review of available data for mathematical modeling, Foodborne Pathog. Dis. 3 (4) (2006) 319-336.

[101]

D. Liu, M.L. Lawrence, A.J. Ainsworth, F.W. Austin, Comparative assessment of acid, alkali and salt tolerance in Listeria monocytogenes virulent and avirulent strains, FEMS Microbiol. Lett. 243 (2) (2005) 373-378.

[102]

V. Razavilar, C. Genigeorgis, Prediction of Listeria spp growth as affected by various levels of chemicals, pH, temperature and storage time in a model broth, Int. J. Food Microbiol. 40 (3) (1998) 149-157.

[103]

N. Bernbom, B.F. Vogel, L. Gram, Listeria monocytogenes survival of UV-C radiation is enhanced by presence of sodium chloride, organic food material and by bacterial biofilm formation, Int. J. Food Microbiol. 147 (1) (2011) 69-73.

[104]

C. Sommers, X. Fan, B.A. Niemira, K. Sokorai, Radiation (gamma) resistance and postirradiation growth of Listeria monocytogenes suspended in beef bologna containing sodium diacetate and potassium lactate, J. Food Prot. 66 (11) (2003) 2051-2056.

[105]

S.P. Doijad, S.B. Barbuddhe, S. Garg, K.V. Poharkar, D.R. Kalorey, N.V. Kurkure, D.B. Rawool, T. Chakraborty, Biofilm-forming abilities of listeria monocytogenes serotypes isolated from different sources, PLoS One 10 (9) (2015) e0137046.

[106]

J. Harvey, K.P. Keenan, A. Gilmour, Assessing biofilm formation by Listeria monocytogenes strains, Food Microbiol. 24 (4) (2007) 380-392.

[107]

M.R. Beresford, P.W. Andrew, G. Shama, Listeria monocytogenes adheres to many materials found in food-processing environments, J. Appl. Microbiol. 90 (6) (2001) 1000-1005.

[108]

R.B. Tompkin, Control of Listeria monocytogenes in the food-processing environment, J. Food Prot. 65 (4) (2002) 709-725.

[109]

H. Yan, S.B. Neogi, Z. Mo, W. Guan, Z. Shen, S. Zhang, L. Li, S. Yamasaki, L. Shi, N. Zhong, Prevalence and characterization of antimicrobial resistance of foodborne Listeria monocytogenes isolates in Hebei province of Northern China, 2005–2007, Int. J. Food Microbiol. 144 (2) (2010) 310-316.

[118]

L.S. da Rocha, G.U. Gunathilaka, Y. Zhang, Antimicrobial-resistant Listeria species from retail meat in metro Detroit, J. Food Prot. 75 (12) (2012) 2136-2141.

[120]

W. Zhang, X. Wang, X. Xia, B. Yang, M. Xi, J. Meng, Isolation and characterization of Listeria monocytogenes isolates from retail foods in Shaanxi Province, China, Foodborne Pathog. Dis. 10 (10) (2013) 867-872.

[121]

B.D. Sauders, J. Overdevest, E. Fortes, K. Windham, Y. Schukken, A. Lembo, M. Wiedmann, Diversity of Listeria species in urban and natural environments, Appl. Environ. Microbiol. 78 (12) (2012) 4420-4433.

[122]

J. Watkins, K.P. Sleath, Isolation and enumeration of listeria monocytogenes from sewage, sewage sludge and river water, J. Appl. Bacteriol. 50 (1) (1981) 1-9.

[123]

K. Linke, I. Ruckerl, K. Brugger, R. Karpiskova, J. Walland, S. Muri-Klinger, A. Tichy, M. Wagner, B. Stessl, Reservoirs of listeria species in three environmental ecosystems, Appl. Environ. Microbiol. 80 (18) (2014) 5583-5592.

[124]

D. Paillard, V. Dubois, R. Thiebaut, F. Nathier, E. Hoogland, P. Caumette, C. Quentin, Occurrence of Listeria spp. in effluents of French urban wastewater treatment plants, Appl. Environ. Microbiol. 71 (11) (2005) 7562-7566.

[125]

A. Schonberg, K. Gerigk, Listeria in effluents from the food-processing industry, Rev. Sci. Tech. 10 (3) (1991) 787-797.

[126]

H.J. Welshimer, J. Donker-Voet, Listeria monocytogenes in nature, Appl. Microbiol. 21 (3) (1971) 516-519.

[127]

R.R. Beumer, M.C. te Giffel, E. Spoorenberg, F.M. Rombouts, Listeria species in domestic environments, Epidemiol. Infect. 117 (3) (1996) 437-442.

[128]

P. Gaya, C. Saralegui, M. Medina, M. Nunez, Occurrence of Listeria monocytogenes and other Listeria spp. in raw caprine milk, J. Dairy Sci. 79 (11) (1996) 1936-1941.

[129]

A. Lianou, J.N. Sofos, A review of the incidence and transmission of Listeria monocytogenes in ready-to-eat products in retail and food service environments, J. Food Prot. 70 (9) (2007) 2172-2198.

[130]

M.L. Danielsson-Tham, E. Eriksson, S. Helmersson, M. Leffler, L. Ludtke, M. Steen, S. Sorgjerd, W. Tham, Causes behind a human cheese-borne outbreak of gastrointestinal listeriosis, Foodborne Pathog. Dis. 1 (3) (2004) 153-159.

[131]

R. Maijala, O. Lyytikainen, T. Autio, T. Aalto, L. Haavisto, T. Honkanen-Buzalski, Exposure of Listeria monocytogenes within an epidemic caused by butter in Finland, Int. J. Food Microbiol. 70 (1-2) (2001) 97-109.

[132]

B. Leverentz, W.S. Conway, M.J. Camp, W.J. Janisiewicz, T. Abuladze, M. Yang, R. Saftner, A. Sulakvelidze, Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin, Appl. Environ. Microbiol. 69 (8) (2003) 4519-4526.

[133]

J. Li, P. Du, Z. Li, Y. Zhou, W. Cheng, S. Wu, F. Chen, X. Wang, Genotypic analyses and virulence characterization of Listeria monocytogenes isolates from crayfish (Procambarus clarkii), Curr. Microbiol. 70 (5) (2015) 704-709.

[134]

M.G.M. Jami, M. Zunabovic, K.J. Domig, W. Kneifel, Listeria monocytogenes in aquatic food products-A review, Compr. Rev. Food Sci. Food Saf. 13 (2014) 798-813.

[135]

T.A. Ajayeoba, O.O. Atanda, A.O. Obadina, M.O. Bankole, O.O. Adelowo, The incidence and distribution of Listeria monocytogenes in ready-to-eat vegetables in South-Western Nigeria, Food Sci. Nutr. 4 (1) (2016) 59-66.

[136]

D. Althaus, E. Hofer, S. Corti, A. Julmi, R. Stephan, Bacteriological survey of ready-to-eat lettuce, fresh-cut fruit, and sprouts collected from the Swiss market, J. Food Prot. 75 (7) (2012) 1338-1341.

[137]

A.S. Sant'Ana, M.S. Barbosa, M.T. Destro, M. Landgraf, B.D. Franco, Growth potential of Salmonella spp. and Listeria monocytogenes in nine types of ready-to-eat vegetables stored at variable temperature conditions during shelf-life, Int. J. Food Microbiol. 157 (1) (2012) 52-58.

[138]

A.M. Cordano, C. Jacquet, Listeria monocytogenes isolated from vegetable salads sold at supermarkets in Santiago, Chile : prevalence and strain characterization, Int. J. Food Microbiol. 132 (2–3) (2009) 176-179.

[139]

E.H. Kampelmacher, L.M. van Noorle Jansen, Listeriosis in humans and animals in the Netherlands (1958–1977), Zentralbl. Bakteriol. A 246 (2) (1980) 211-227.

[140]

D.R. Fenlon, J. Wilson, W. Donachie, The incidence and level of Listeria monocytogenes contamination of food sources at primary production and initial processing, J. Appl. Bacteriol. 81 (6) (1996) 641-650.

[141]

V. Ferreira, M. Wiedmann, P. Teixeira, M.J. Stasiewicz, Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health, J. Food Prot. 77 (1) (2014) 150-170.

[142]

D.M. Norton, Polymerase chain reaction-based methods for detection of Listeria monocytogenes: toward real-time screening for food and environmental samples, J. AOAC Int. 85 (2) (2002) 505-515.

[143]
993.09. AOM, Listeria in dairy products, seafoods, and meats. Colorimetric deoxyribonucleic acid hybridization method (GENE-TvRAK ListeriaAssay), in: W. Horwitz (Ed.), Official Methods of Analysis of AOACINTERNATIONAL, Volume 1, 17th edition, 2000 (Chapter 17.10.04):pp. 147–150.
[144]
994.03. AOM, Listeria monocytogenes in dairy products, seafoods,and meats. Colorimetric monoclonal enzyme-linked immunosorbentassay method (Listeria-Tek), in: W. Horwitz (Ed.), Official Methods ofAnalysis of AOAC INTERNATIONAL, Volume 1, 17th edition, Agricultural Chemicals, Contaminants and Drugs. AOAC INTERNATIONAL,Gaithersburg, MD, 2000 (Chapter 17.10.05): pp. 150–152.
[145]
995.22 AOM, Listeria in foods. Colorimetric polyclonal enzymeimmunoassay screening method (TECRA listeria visual immunoassay[TLVIA]), in: W. Horwitz (Ed.), Official Methods of Analysis of AOACINTERNATIONAL, Volume 1, 17th edition, Agricultural Chemicals,Contaminants and Drugs. AOAC INTERNATIONAL, Gaithersburg, MD,2000 (Chapter 17.10.05): pp. 152–155.
[146]
996.14 AOM, Assurance polyclonal enzyme immunoassay method, in:W. Horwitz (Ed.), Official Methods of Analysis of AOAC INTERNATIONAL, Volume 1, 17th edition, Agricultural Chemicals, Contaminantsand Drugs. AOAC INTERNATIONAL, Gaithersburg, MD, 2000 (Chapter17.10.07): pp. 155–158.
[147]
997.03. AOM, Visual immunoprecipitate assay (VIP), in: W. Horwitz(Ed.), Official Methods of Analysis of AOAC INTERNATIONAL, Volume 1, 17th edition, Agricultural Chemicals, Contaminants and Drugs.AOAC INTERNATIONAL, Gaithersburg, MD, 2000 (Chapter 17.10.08):pp. 158–160.
[148]
999.06 AOM, Enzyme linked immunofluorescent assay (ELFA) VIDASLIS assay screening method, in: W. Horwitz (Ed.), Official Methods ofAnalysis of AOAC INTERNATIONAL, Volume 1, 17th edition, Agricultural Chemicals, Contaminants and Drugs. AOAC INTERNATIONAL,Gaithersburg, MD, 2000 (Chapter 17.10.09): pp. 163–163.
[149]
2003.12. AOM, Evaluation of BAX® automated system for the detectionof listeria monocytogenes in foods, in: W. Horwitz (Ed.), Official Methods of Analysis of AOAC INTERNATIONAL, Volume 1, 18th edition,Agricultural Chemicals, Contaminants and Drugs. AOAC INTERNATIONAL, Gaithersburg, MD, 2005 (Chapter 17.10.10): pp. 222–225.
[150]

M.S. Curiale, T. Sons, L. Fanning, W. Lepper, D. McIver, S. Garramone, M. Mozola, Deoxyribonucleic acid hybridization method for the detection of Listeria in dairy products, seafoods, and meats: collaborative study, J. AOAC Int. 77 (3) (1994) 602-617.

[151]

M.S. Curiale, W. Lepper, B. Robison, Enzyme-linked immunoassay for detection of Listeria monocytogenes in dairy products, seafoods, and meats: collaborative study, J. AOAC Int. 77 (6) (1994) 1472-1489.

[152]

P.T. Feldsine, M.T. Falbo-Nelson, S.L. Brunelle, R.L. Forgey, Assurance enzyme immunoassay for detection of enterohemorrhagic Escherichia coli O157:H7 in selected foods: collaborative study, J. AOAC Int. 80 (3) (1997) 530-543.

[153]

P.T. Feldsine, A.H. Lienau, R.L. Forgey, R.D. Calhoon, Visual immunoprecipitate assay (VIP) for Listeria monocytogenes and related Listeria species detection in selected foods: collaborative study, J. AOAC Int. 80 (4) (1997) 791-805.

[154]

V. Gangar, M.S. Curiale, A. D'Onorio, A. Schultz, R.L. Johnson, V. Atrache, VIDAS enzyme-linked immunoflourescent assay for detection of Listeria in foods: collaborative study, J. AOAC Int. 83 (4) (2000) 903-918.

[155]

M.T. Knight, M.C. Newman, , J.R. Agin, M. Ash, P. Sims, D. Hughes, TECRA Listeria Visual Immunoassay (TLVIA) for detection of Listeria in foods: collaborative study, J. AOAC Int. 79 (5) (1996) 1083-1094.

[156]

J.A. Mattingly, B.T. Butman, M.C. Plank, R.J. Durham, B.J. Robison, Rapid monoclonal antibody-based enzyme-linked immunosorbent assay for detection of Listeria in food products, J. Assoc. Off. Anal. Chem. 71 (3) (1988) 679-681.

[157]
Official Methods of Analysis of AOAC INTERNATIONAL AOAC INTERNATIONAL G, MD, USA Official Method 2002.09: 2002.
[158]
Official Methods of Analysis of AOAC INTERNATIONAL AOAC INTERNATIONAL G, MD, USA Official Method 2004.02: 2004.
[159]
Official Methods of Analysis of AOAC INTERNATIONAL AOAC INTERNATIONAL G, MD, USA Official Method 2010.02: 2010.
[160]
Official Methods of Analysis of AOAC INTERNATIONAL AOAC INTERNATIONAL G, MD, USA Official Method 2012.02: 2012.
[161]
Official Methods of Analysis of AOAC INTERNATIONAL AOAC INTERNATIONAL G, MD, USA Official Method 2013.10: 2013.
[162]

G.D.W. Curtis, R.G. Mitchell, A.F. King, J. Emma, A selective differential medium for the isolation of Listeria monocytogenes, Lett. Appl. Microbiol. 8 (1989) 95-98.

[163]

P. van Netten, I. Perales, A. van de Moosdijk, G.D. Curtis, D.A. Mossel, Liquid and solid selective differential media for the detection and enumeration of L. monocytogenes and other Listeria spp, Int. J. Food Microbiol. 8 (4) (1989) 299-316.

[164]
USDA/FSIS, Isolation and identification of Listeria monocytogenes from red meat, poultry, egg and environmental samples, (1999) (Revision 2, Chapter 8)
[165]

W.H. Lee, D. McClain, Improved Listeria monocytogenes selective agar, Appl. Environ. Microbiol. 52 (5) (1986) 1215-1217.

[166]

K.C. Jinneman, J.M. Hunt, C.A. Eklund, J.S. Wernberg, P.N. Sado, J.M. Johnson, R.S. Richter, S.T. Torres, E. Ayotte, S.J. Eliasberg, et al., Evaluation and interlaboratory validation of a selective agar for phosphatidylinositol-specific phospholipase C activity using a chromogenic substrate to detect Listeria monocytogenes from foods, J. Food Prot. 66 (3) (2003) 441-445.

[167]

L. Restaino, E.W. Frampton, R.M. Irbe, G. Schabert, H. Spitz, Isolation and detection of Listeria monocytogenes using fluorogenic and chromogenic substrates for phosphatidylinositol-specific phospholipase C, J. Food Prot. 62 (3) (1999) 244-251.

[168]
E.T. Ryser, E.H. Marth. Listeria, Listeriosis and Food Safety, Marcel Dekker, Inc, New York, NY 1999.
[169]

G. Vlaemynck, V. Lafarge, S. Scotter, Improvement of the detection of Listeria monocytogenes by the application of ALOA, a diagnostic, chromogenic isolation medium, J. Appl. Microbiol. 88 (3) (2000) 430-441.

[170]

W.F. Lauer, J.P. Facon, A. Patel, Evaluation of a chromogenic medium for identification and differentiation of Listeria monocytogenes in selected foods, J. AOAC Int. 88 (2) (2005) 511-517.

[171]

C.A. Nadon, D.L. Woodward, C. Young, F.G. Rodgers, M. Wiedmann, Correlations between molecular subtyping and serotyping of Listeria monocytogenes, J. Clin. Microbiol. 39 (7) (2001) 2704-2707.

[172]

S. Jadhav, M. Bhave, E.A. Palombo, Methods used for the detection and subtyping of Listeria monocytogenes, J. Microbiol. Methods 88 (3) (2012) 327-341.

[173]

S. Saleh-Lakha, V.G. Allen, J. Li, F. Pagotto, J. Odumeru, E. Taboada, M. Lombos, K.C. Tabing, B. Blais, D. Ogunremi, et al., Subtyping of a large collection of historical Listeria monocytogenes strains from Ontario, Canada, by an improved multilocus variable-number tandem-repeat analysis (MLVA), Appl. Environ. Microbiol. 79 (20) (2013) 6472-6480.

[174]

X. Yang, X. Zhou, M. Zhu, D. Xing, Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nanoplatforms, Biosensors and Bioelectronic 91 (15) (2017) 238-245.

[175]

R. Aznar, B. Alarcon, PCR detection of Listeria monocytogenes: a study of multiple factors affecting sensitivity, J. Appl. Microbiol. 95 (5) (2003) 958-966.

[176]

N.G. Besse, L. Barre, C. Buhariwalla, M.L. Vignaud, E. Khamissi, E. Decourseulles, M. Nirsimloo, M. Chelly, M. Kalmokoff, The overgrowth of Listeria monocytogenes by other Listeria spp. in food samples undergoing enrichment cultivation has a nutritional basis, Int. J. Food Microbiol. 136 (3) (2010) 345-351.

[177]

K. Oravcova, T. Trncikova, T. Kuchta, E. Kaclikova, Limitation in the detection of Listeria monocytogenes in food in the presence of competing Listeria innocua, J. Appl. Microbiol. 104 (2) (2008) 429-437.

[178]

U. Zitz, M. Zunabovic, K.J. Domig, P.T. Wilrich, W. Kneifel, Reduced detectability of Listeria monocytogenes in the presence of Listeria innocua, J. Food Prot. 74 (8) (2011) 1282-1287.

[179]

R.C. Dailey, L.J. Welch, A.D. Hitchins, R.D. Smiley, Effect of Listeria seeligeri or Listeria welshimeri on Listeria monocytogenes detection in and recovery from buffered Listeria enrichment broth, Food Microbiol. 46 (2015) 528-534.

[180]

S.A. Al-Zeyara, B. Jarvis, B.M. Mackey, The inhibitory effect of natural microflora of food on growth of Listeria monocytogenes in enrichment broths, Int. J. Food Microbiol. 145 (1) (2011) 98-105.

[181]

P.T. Feldsine, A.H. Lienau, R.L. Forgey, R.D. Calhoon, Assurance polyclonal enzyme immunoassay for detection of Listeria monocytogenes and related Listeria species in selected foods: collaborative study, J. AOAC Int. 80 (4) (1997) 775-790.

[182]

P.T. Feldsine, A.H. Lienau, S.C. Leung, L.A. Mui, Method extension study to validate applicability of AOAC Official Method 996. 14 Assurance polyclonal enzyme immunoassay for detection of Listeria monocytogenes and related Listeria spp. from environmental surfaces: collaborative study, J. AOAC Int. 85 (2) (2002) 460-469.

[183]

M. Magliulo, P. Simoni, M. Guardigli, E. Michelini, M. Luciani, R. Lelli, A. Roda, A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria, J. Agric. Food Chem. 55 (13) (2007) 4933-4939.

[184]

S. Ueda, Y. Kuwabara, Evaluation of an enzyme-linked fluorescent assay for the detection of Listeria monocytogenes from food, Biocontrol Sci. 15 (3) (2010) 91-95.

[185]
K. Jinneman, Bacteriological analytical manual, chapter 10: detection and enumeration of listeria monocytogenes in foods, in:BAM: Detection and Enumeration of Listeria Monocytogenes, 2016http://wwwfdagov/Food/FoodScienceResearch/LaboratoryMethods/ucm071400htm.
[186]

G. Walcher, B. Stessl, M. Wagner, F. Eichenseher, M.J. Loessner, I. Hein, Evaluation of paramagnetic beads coated with recombinant Listeria phage endolysin-derived cell-wall-binding domain proteins for separation of Listeria monocytogenes from raw milk in combination with culture-based and real-time polymerase chain reaction-based quantification, Foodborne Pathog. Dis. 7 (9) (2010) 1019-1024.

[187]

H. Yang, L. Qu, A.N. Wimbrow, X. Jiang, Y. Sun, Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR, Int. J. Food Microbiol. 118 (2) (2007) 132-138.

[188]

G. Amagliani, E. Omiccioli, A. Campo, I.J. Bruce, G. Brandi, M. Magnani, Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples, J. Appl. Microbiol. 100 (2) (2006) 375-383.

[189]

M. Lin, S. Armstrong, J. Ronholm, H. Dan, M.E. Auclair, Z. Zhang, X. Cao, Screening and characterization of monoclonal antibodies to the surface antigens of Listeria monocytogenes serotype 4b, J. Appl. Microbiol. 106 (5) (2009) 1705-1714.

[190]

Z. Tu, Q. Chen, Y. Li, Y. Xiong, Y. Xu, N. Hu, Y. Tao, Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk, Anal. Biochem. 493 (2016) 1-7.

[191]

A.B. Iliuk, L. Hu, W.A. Tao, Aptamer in bioanalytical applications, Anal. Chem. 83 (12) (2011) 4440-4452.

[192]

C. Ma, C. Zhao, Y. Ge, C. Shi, Aptameric molecular switch for cascade signal amplification, Clin. Chem. 58 (2) (2012) 384-390.

[193]

S.D. Jayasena, Aptamers: an emerging class of molecules that rival antibodies in diagnostics, Clin. Chem. 45 (9) (1999) 1628-1650.

[194]

S.H. Ohk, O.K. Koo, T. Sen, C.M. Yamamoto, A.K. Bhunia, Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food, J. Appl. Microbiol. 109 (3) (2010) 808-817.

[195]

J. Ding, J. Lei, X. Ma, J. Gong, W. Qin, Potentiometric aptasensing of Listeria monocytogenes using protamine as an indicator, Anal. Chem. 86 (19) (2014) 9412-9416.

[196]

S.H. Lee, J.Y. Ahn, K.A. Lee, H.J. Um, S.S. Sekhon, T. Sun Park, J. Min, Y.H. Kim, Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes, Biosens. Bioelectron. 68 (2015) 272-280.

[197]

L. Zhang, R. Huang, W. Liu, H. Liu, X. Zhou, D. Xing, Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification, Biosens. Bioelectron. 86 (2016) 1-7.

[198]

T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, T. Hase, Loop-mediated isothermal amplification of DNA, Nucleic Acids Res.28 (12) (2000) (E63).

[199]

K. Nagamine, T. Hase, T. Notomi, Accelerated reaction by loop-mediated isothermal amplification using loop primers, Mol. Cell. Probes 16 (3) (2002) 223-229.

[200]

Y. Mori, K. Nagamine, N. Tomita, T. Notomi, Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation, Biochem. Biophys. Res. Commun. 289 (1) (2001) 150-154.

[201]

Y. Mori, M. Kitao, N. Tomita, T. Notomi, Real-time turbidimetry of LAMP reaction for quantifying template DNA, J. Biochem. Biophys. Methods 59 (2) (2004) 145-157.

[202]

Z.K. Njiru, A.S. Mikosza, T. Armstrong, J.C. Enyaru, J.M. Ndung'u, A.R. Thompson, Loop-mediated isothermal amplification (LAMP) method for rapid detection of Trypanosoma brucei rhodesiense, PLoS Negl. Trop. Dis. 2 (1) (2008) e147.

[203]

M.J. Tang, S. Zhou, X.Y. Zhang, J.H. Pu, Q.L. Ge, X.J. Tang, Y.S. Gao, Rapid and sensitive detection of Listeria monocytogenes by loop-mediated isothermal amplification, Curr. Microbiol. 63 (6) (2011) 511-516.

[204]

L. Wang, Y. Li, J. Chu, Z. Xu, Q. Zhong, Development and application of a simple loop-mediated isothermal amplification method on rapid detection of Listeria monocytogenes strains, Mol. Biol. Rep. 39 (1) (2012) 445-449.

[205]

L. Zhang, J. Zeng, D. Ma, J. Cheng, H. Zhang, [Application and evaluation of loop-mediated isothermal amplification method for detecting of Listeria monocytogenes in food], Zhonghua Yu Fang Yi Xue Za Zhi 48 (3) (2014) 213-217.

[206]

R. Wu, X. Liu, B. Guo, F. Chen, X. Wang, Development of double loop-mediated isothermal amplification to detect Listeria monocytogenes in food, Curr. Microbiol. 69 (6) (2014) 839-845.

[207]

Y. Wang, Y. Wang, H. Xu, H. Dai, S. Meng, C. Ye, Rapid and sensitive detection of Listeria ivanovii by loop-mediated isothermal amplification of the smcL gene, PLoS One 9 (12) (2014) e115868.

[208]

D.G. Wang, J.D. Brewster, M. Paul, P.M. Tomasula, Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification, Molecules 20 (4) (2015) 6048-6059.

[209]

Y. Wang, Y. Wang, A. Ma, D. Li, L. Luo, D. Liu, S. Hu, D. Jin, K. Liu, C. Ye, The novel multiple inner primers-Loop-Mediated isothermal amplification (MIP-LAMP) for rapid detection and differentiation of listeria monocytogenes, Molecules 20 (12) (2015) 21515-21531.

[210]

M. Miks-Krajnik, H.S. Yue Lim, Q. Zheng, M. Turner, H.G. Yuk, Loop-mediated isothermal amplification (LAMP) coupled with bioluminescence for the detection of Listeria monocytogenes at low levels on food contact surfaces, Food Control 60 (2016) 237-240.

[211]

S. Suarez, A. Ferroni, A. Lotz, K.A. Jolley, P. Guerin, J. Leto, B. Dauphin, A. Jamet, M.C. Maiden, X. Nassif, et al: ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory, J. Microbiol. Methods 94 (3) (2013) 390-396.

[212]

S.B. Barbuddhe, T. Maier, G. Schwarz, M. Kostrzewa, H. Hof, E. Domann, T. Chakraborty, T. Hain, Rapid identification and typing of listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry, Appl. Environ. Microbiol. 74 (17) (2008) 5402-5407.

[213]

M. Alispahic, K. Hummel, D. Jandreski-Cvetkovic, K. Nobauer, E. Razzazi-Fazeli, M. Hess, C. Hess, Species-specific identification and differentiation of Arcobacter, Helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis, J. Med. Microbiol. 59 (2010) 295-301(Pt 3).

[214]

E. Seibold, T. Maier, M. Kostrzewa, E. Zeman, W. Splettstoesser, Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry: fast, reliable, robust, and cost-effective differentiation on species and subspecies levels, J. Clin. Microbiol. 48 (4) (2010) 1061-1069.

[215]

M. Christner, M. Trusch, H. Rohde, M. Kwiatkowski, H. Schluter, M. Wolters, M. Aepfelbacher, M. Hentschke, Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-Toxigenic Escherichia coli, PLoS One 9 (7) (2014) e101924.

[216]

J.A. Branda, J. Rychert, C.A. Burnham, M. Bythrow, O.B. Garner, C.C. Ginocchio, R. Jennemann, M.A. Lewinski, R. Manji, A.B. Mochon, et al., Multicenter validation of the VITEK MS v2.0 MALDI-TOF mass spectrometry system for the identification of fastidious gram-negative bacteria, Diagn. Microbiol. Infect. Dis. 78 (2) (2014) 129-131.

[217]

J. Rychert, C.A. Burnham, M. Bythrow, O.B. Garner, C.C. Ginocchio, R. Jennemann, M.A. Lewinski, R. Manji, A.B. Mochon, G.W. Procop, et al., Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria, J. Clin. Microbiol. 51 (7) (2013) 2225-2231.

[218]

S. Jadhav, V. Gulati, E.M. Fox, A. Karpe, D.J. Beale, D. Sevior, M. Bhave, E.A. Palombo, Rapid identification and source-tracking of Listeria monocytogenes using MALDI-TOF mass spectrometry, Int. J. Food Microbiol. 202 (2015) 1-9.

[219]

M. Ksiazczyk, M. Kuczkowski, B. Dudek, K. Korzekwa, A. Tobiasz, A. Korzeniowska-Kowal, E. Paluch, A. Wieliczko, G. Bugla-Ploskonska, Application of routine diagnostic procedure, VITEK 2 compact, MALDI-TOF MS, and PCR assays in identification procedure of bacterial strain with ambiguous phenotype, Curr. Microbiol. 72 (5) (2016) 570-582.

[220]

X. Deng, A.M. Phillippy, Z. Li, S.L. Salzberg, W. Zhang, Probing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification, BMC Genomics 11 (2010) 500.

[221]

P. Laksanalamai, S.R. Steyert, L.S. Burall, A.R. Datta, Genome sequences of listeria monocytogenes serotype 4b variant strains isolated from clinical and environmental sources, Genome Announc 1 (5) (2013).

[222]

Y. Chen, L.S. Burall, Y. Luo, R. Timme, D. Melka, T. Muruvanda, J. Payne, C. Wang, G. Kastanis, A. Maounounen-Laasri, et al., Isolation, enumeration and whole genome sequencing of Listeria monocytogenes in stone fruits linked to a multistate outbreak, Appl. Environ. Microbiol.(2016).

[223]

R.S. Lasken, J.S. McLean, Recent advances in genomic DNA sequencing of microbial species from single cells, Nat. Rev. Genet. 15 (9) (2014) 577-584.

[224]

Y. Chen, E.A. Strain, M. Allard, E.W. Brown, Genome sequences of Listeria monocytogenes strains J1816 and J1-220, associated with human outbreaks, J. Bacteriol. 193 (13) (2011) 3424-3425.

[225]

A.R. Datta, P. Laksanalamai, M. Solomotis, Recent developments in molecular sub-typing of Listeria monocytogenes, Food Addit. Contam Part A Chem. Anal. Control Expo Risk Assess. 30 (8) (2013) 1437-1445.

[226]

I.C.A. Oliveira, E. Hofer, P.F. Almeida, Bacteriophage amplification assay for detection of Listeria spp. using virrucidal laser treatment, Braz. J. Microbiol. (2012) 1128-1136.

[227]

D.P. Pires, S. Cleto, S. Sillankorva, J. Azeredo, T.K. Lu, Genetically engineered phages: a review of advances over the last decade, Microbiol. Mol. Biol. Rev. 80 (2016) 523-543.

[228]

M.J. Loessner, C.E. Rees, G.S. Stewart, S. Scherer, Construction of luciferase reporter bacteriophage A511:luxAB for rapid and sensitive detection of viable Listeria cells, Appl. Environ. Microbiol. 62 (4) (1996) 1133-1140.

[229]

N.R. Stambach, S.A. Carr, C.R. Cox, K.J. Voorhees, Rapid detection of Listeria by bacteriophage amplification and SERS-lateral flow immunochromatography, Viruses 7 (2015) 6631-6641.

[230]

M. Cappillino, R.P. Shivers, D.R. Brownell, B. Jacobson, J. King, P. Kocjan, M. Koeris, E. Tekeian, A. Tempesta, J. Bowers, Sample6 DETECT/L: an in-plant, In-shift, enrichment-free listeria environmental assay, Microbiological Methods 98 (2) (2015) 436-444.

[231]

S. Kathariou, Listeria monocytogenes virulence and pathogenicity, a food safety perspective, J. Food Prot. 65 (11) (2002) 1811-1829.

[232]

P. Gilot, A. Genicot, P. Andre, Serotyping and esterase typing for analysis of Listeria monocytogenes populations recovered from foodstuffs and from human patients with listeriosis in Belgium, J. Clin. Microbiol. 34 (4) (1996) 1007-1010.

[233]

P.M. Border, J.J. Howard, G.S. Plastow, K.W. Siggens, Detection of Listeria species and Listeria monocytogenes using polymerase chain reaction, Lett. Appl. Microbiol. 11 (3) (1990) 158-162.

[234]

V. Chenal-Francisque, L. Diancourt, T. Cantinelli, V. Passet, C. Tran-Hykes, H. Bracq-Dieye, A. Leclercq, C. Pourcel, M. Lecuit, S. Brisse, Optimized Multilocus variable-number tandem-repeat analysis assay and its complementarity with pulsed-field gel electrophoresis and multilocus sequence typing for Listeria monocytogenes clone identification and surveillance, J. Clin. Microbiol. 51 (6) (2013) 1868-1880.

[235]

J.L. Halpin, N.M. Garrett, E.M. Ribot, L.M. Graves, K.L. Cooper, Re-evaluation, optimization, and multilaboratory validation of the PulseNet-standardized pulsed-field gel electrophoresis protocol for Listeria monocytogenes, Foodborne Pathog. Dis. 7 (3) (2010) 293-298.

[236]

L.M. Graves, B. Swaminathan, PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis, Int. J. Food Microbiol. 65 (1–2) (2001) 55-62.

[237]

D. Montero, M. Bodero, G. Riveros, L. Lapierre, A. Gaggero, R.M. Vidal, M. Vidal, Molecular epidemiology and genetic diversity of Listeria monocytogenes isolates from a wide variety of ready-to-eat foods and their relationship to clinical strains from listeriosis outbreaks in Chile, Front. Microbiol. 6 (2015) 384.

[238]

D. Nucera, S. Lomonaco, D.M. Bianchi, L. Decastelli, M.A. Grassi, M.T. Bottero, T. Civera, A five year surveillance report on PFGE types of Listeria monocytogenes isolated in Italy from food and food related environments, Int. J. Food Microbiol. 140 (2–3) (2010) 271-276.

[239]

M.K. Miettinen, K.J. Bjorkroth, H.J. Korkeala, Characterization of Listeria monocytogenes from an ice cream plant by serotyping and pulsed-field gel electrophoresis, Int. J. Food Microbiol. 46 (3) (1999) 187-192.

[240]

C. Salcedo, L. Arreaza, B. Alcala, L. de la Fuente, J.A. Vazquez, Development of a multilocus sequence typing method for analysis of Listeria monocytogenes clones, J. Clin. Microbiol. 41 (2) (2003) 757-762.

[241]

W. Zhang, B.M. Jayarao, S.J. Knabel, Multi-virulence-locus sequence typing of Listeria monocytogenes, Appl. Environ. Microbiol. 70 (2) (2004) 913-920.

[242]

S. Doijad, S. Lomonaco, K. Poharkar, S. Garg, S. Knabel, S. Barbuddhe, B. Jayarao, Multi-virulence-locus sequence typing of 4b Listeria monocytogenes isolates obtained from different sources in India over a 10-year period, Foodborne Pathog. Dis. 11 (7) (2014) 511-516.

[243]

M.C. Maiden, Multilocus sequence typing of bacteria, Annu. Rev. Microbiol. 60 (2006) 561-588.

[244]

J.L. Bruce, R.J. Hubner, E.M. Cole, C.I. McDowell, J.A. Webster, Sets of EcoRI fragments containing ribosomal RNA sequences are conserved among different strains of Listeria monocytogenes, Proc. Natl. Acad. Sci. U. S. A. 92 (11) (1995) 5229-5233.

[245]

R.J. Hubner, E.M. Cole, J.L. Bruce, C.I. McDowell, J.A. Webster, Types of Listeria monocytogenes predicted by the positions of EcoRI cleavage sites relative to ribosomal RNA sequences, Proc. Natl. Acad. Sci. U. S. A. 92 (11) (1995) 5234-5238.

[246]

A. Audurier, A.G. Taylor, B. Carbonnelle, J. McLauchlin, A phage typing system for Listeria monocytogenes and its use in epidemiological studies, Clin. Invest. Med. 7 (4) (1984) 229-232.

[247]

J. McLauchlin, A. Audurier, A.G. Taylor, The evaluation of a phage-typing system for Listeria monocytogenes for use in epidemiological studies, J. Med. Microbiol. 22 (4) (1986) 357-365.

[248]

A.G. Taylor, J. McLauchlin, H.T. Green, M.B. Macauley, A. Audurier, Hospital cross-infection with Listeria monocytogenes confirmed by phage-typing, Lancet 2 (8255) (1981) 1106.

[249]

M.J. Loessner, M. Busse, Bacteriophage typing of Listeria species, Appl. Environ. Microbiol. 56 (6) (1990) 1912-1918.

[250]

M.J. Loessner, Improved procedure for bacteriophage typing of Listeria strains and evaluation of new phages, Appl. Environ. Microbiol. 57 (3) (1991) 882-884.

[251]

S. Jasinska, Bacteriophages of lysogenic strains of listeria monocytogenes, Acta Microbiol. Pol. 13 (1964) 29-43.

[252]

C.P. Sword, M.J. Pickett, The isolation and characterization of bacteriophages from Listeria monocytogenes, J. Gen. Microbiol. 25 (1961) 241-248.

[253]

L.A. Estela, J.N. Sofos, Comparison of conventional and reversed phage typing procedures for identification of Listeria spp, Appl. Environ. Microbiol. 59 (2) (1993) 617-619.

[254]

M. Rudol, S. Scherer, High incidence of Listeria monocytogenes in European red smear cheese, Int. J. Food Microbiol. 63 (1–2) (2001) 91-98.

[255]

N. Marquet-Van der Mee, A. Audurier, Proposals for optimization of the international phage typing system for Listeria monocytogenes: combined analysis of phage lytic spectrum and variability of typing results, Appl. Environ. Microbiol. 61 (1) (1995) 303-309.

[256]

K. Vongkamjan, S. Roof, M.J. Stasiewicz, M. Wiedmann, Persistent Listeria monocytogenes subtypes isolated from a smoked fish processing facility included both phage susceptible and resistant isolates, Food Microbiol. 35 (1) (2013) 38-48.

[257]

L.S. Burall, C.J. Grim, M.K. Mammel, A.R. Datta, Whole genome sequence analysis using JSpecies tool establishes clonal relationships between listeria monocytogenes strains from epidemiologically unrelated listeriosis outbreaks, PLoS One 11 (3) (2016) e0150797.

[258]

A.W. Pightling, F. Pagotto, Genome sequence of listeria monocytogenes strain HPB5415, collected during a 2008 listeriosis outbreak in Canada, G enome Announc 3 (3) (2015).

[259]

A.W. Pightling, N. Petronella, F. Pagotto, The Listeria monocytogenes Core-Genome Sequence Typer (LmCGST): a bioinformatic pipeline for molecular characterization with next-generation sequence data, BMC Microbiol. 15 (2015) 224.

[260]

A.W. Pightling, H. Rand, E. Strain, F. Pagotto, Genome sequence of the listeria monocytogenes food isolate HPB913, collected in Canada in 1993, Genome Announc 4 (5) (2016).

[261]

A.W. Pightling, H. Rand, E. Strain, F. Pagotto, Genome sequence of listeria monocytogenes strain HPB2088 (Serotype 1/2a), an environmental isolate collected in Canada in 1994, Genome Announc 4 (4) (2016).

[262]

W. Ruppitsch, A. Pietzka, K. Prior, S. Bletz, H.L. Fernandez, F. Allerberger, D. Harmsen, Mellmann A: defining and evaluating a core genome multilocus sequence typing scheme for whole-Genome sequence-Based typing of listeria monocytogenes, J. Clin. Microbiol. 53 (9) (2015) 2869-2876.

[263]

J.C. Kwong, K. Mercoulia, T. Tomita, M. Easton, H.Y. Li, D.M. Bulach, T.P. Stinear, T. Seemann, B.P. Howden, Prospective whole-Genome sequencing enhances national surveillance of Listeria monocytogenes, J. Clin. Microbiol. 54 (2) (2016) 333-342.

[264]

P. Hyden, A. Pietzka, F. Allerberger, B. Springer, C. Sensen, W. Ruppitsch, Draft genome sequence of a 94-year-old Listeria monocytogenes isolate, SLCC208, Genome Announc 4 (1) (2016).

[265]

P. Hyden, A. Pietzka, A. Lennkh, A. Murer, B. Springer, M. Blaschitz, A. Indra, S. Huhulescu, F. Allerberger, W. Ruppitsch, et al., Whole genome sequence-based serogrouping of Listeria monocytogenes isolates, J. Biotechnol. 235 (2016) 181-186.

[266]

A. Moura, A. Criscuolo, H. Pouseele, M.M. Maury, A. Leclercq, C. Tarr, J.T. Bjorkman, T. Dallman, A. Reimer, V. Enouf, et al., Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes, Nat. Microbiol. 2 (2016) 16185.

[267]

P.C. Woo, S.K. Lau, J.L. Teng, H. Tse, K.Y. Yuen, Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories, Clin. Microbiol. Infect. 14 (10) (2008) 908-934.

[268]

S. Chakravorty, D. Helb, M. Burday, N. Connell, D. Alland, A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria, J. Microbiol. Methods 69 (2) (2007) 330-339.

[269]

A.N. Pyde, P.N. Rao, A. Jain, D. Sonid, S. Saketd, S. Ahmedd, S. Vuree, A. Nayarisserie, Identification and characterization of foodborne pathogen Listeria monocytogenes strain Pyde1 and Pyde2 using 16S rRNA gene sequencing, J. Pharm. Res. 6 (7) (2013) 736741.

[270]

R.S. Hellberg, K.G. Martin, A.L. Keys, C.J. Haney, Y. Shen, Smiley RD: 16S rRNA partial gene sequencing for the differentiation and molecular subtyping of Listeria species, Food Microbiol. 36 (2) (2013) 231-240.

[271]

S. Hagens, M.J. Loessner, Application of bacteriophages for detection and control of foodborne pathogens, Appl. Microbiol. Biotechnol. 76 (3) (2007) 513-519.

[272]

M. Schmelcher, M.J. Loessner, Application of bacteriophages for detection of foodborne pathogens, Bacteriophage 4 (1) (2014) e28137.

[273]

J. Bai, Y.T. Kim, S. Ryu, J.H. Lee, Biocontrol and rapid detection of food-borne pathogens using bacteriophages and endolysins, Front. Microbiol. 7 (2016) 474.

[274]

R. Perez Pulido, M.J. Grande Burgos, A. Galvez, R. Lucas Lopez, Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria, Crit. Rev. Biotechnol. 36 (5) (2016) 851-861.

Food Science and Human Wellness
Pages 97-120
Cite this article:
Chen J-Q, Regan P, Laksanalamai P, et al. Prevalence and methodologies for detection, characterization and subtyping of Listeria monocytogenes and L. ivanovii in foods and environmental sources. Food Science and Human Wellness, 2017, 6(3): 97-120. https://doi.org/10.1016/j.fshw.2017.06.002

536

Views

10

Downloads

45

Crossref

N/A

Web of Science

46

Scopus

0

CSCD

Altmetrics

Received: 31 January 2017
Revised: 10 May 2017
Accepted: 23 June 2017
Published: 08 August 2017
© 2017 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return