Therapeutic molecules for multiple human diseases identified from pigeon pea (Cajanus cajan L. Millsp.) through GC–MS and molecular docking
Deepu Mathew(), P. Lidiya John, T.M. Manila, P. Divyasree, V.T.K. Sandhya Rajan
Finishing School in Biotechnology, Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, Kerala 680 656, India
Peer review under responsibility of Beijing Academy of Food Sciences.
Show Author Information
Hide Author Information
Abstract
Molecular mechanism behind the therapeutic potential of pigeon pea over the human diseases such as rheumatoid arthritis, breast cancer, type II diabetes, malaria, measles and sickle cell disease were revealed through docking of GC–MS identified phyto-compound ligands with candidate disease proteins. Of the 242 ligands, three dimensional structures of 47 compounds had to be drawn using ChemSketch and the remaining structures were retrieved from PubChem and docked with the active sites of candidate proteins. The molecules identified through docking were further subjected to ADMET analysis and promising drug candidates were identified for each disease. This paper presents a precise account of the chemoprofile of pigeon pea leaves, stems and seeds, interaction of these molecules with target proteins and suggests 26 highly potential molecules which are drug candidates for multiple human diseases. Pigeon pea seeds are especially proven as invaluable source for therapeutic molecules.
No abstract is available for this article. Click the button above to view the PDF directly.
References
[1]
L.C. Okpala, E.N. Mamah, Functional properties of raw and processed pigeon pea (Cajanus cajan) flour, Int. J. Food Sci. Nutr. 52 (2001) 343-346, http://dx.doi.org/10.1080/09637480120057549.
O.I. Oyewole, A.A. Owoseni, E.O. Faboro, Studies on medicinal and toxicological properties of Cajanus cajan, Ricinus communis and Thymus vulgaris leaf extracts, J. Med. Plants Res. 4 (2010) 2004–2006, http://dx.doi.org/10.5897/jmpr10.363.
D. Pal, P. Mishra, N. Sachan, A.K. Ghosh, Biological activities and medicinal properties of Cajanus cajan (L.) Millsp, J. Adv. Pharm. Technol. Res. 2 (2011) 207–214, http://dx.doi.org/10.4103/2231-4040.90874.
S. Sharma, N. Agarwal, P. Verma, Pigeon pea (Cajanus cajan L.): a hidden treasure of regimenutrition, J. Funct. Environ. Bot. 1 (2011) 91–101, http://dx.doi.org/10.5958/j.2231-1742.1.2.010.
K.R. Kirtikar, B.D. Basu, Indian Medicinal Plants, International Book Distributing Company, Dehradun, India vol. 2, 2nd ed., International Book Distributing Company, Dehradun, India, 1998, pp. 340.
[6]
R. Sarkar, B. Hazra, S. Mandal, S. Biswas, N. Mandal, Assessment of in vitro antioxidant and free radical scavenging activity of Cajanus cajan, J. Complement. Integr. Med. 6 (2009) 97-103, http://dx.doi.org/10.2202/1553-3840.1248.
N. Wu, K. Fu, Y.J. Fu, Y.G. Zu, F.R. Chang, Y.H. Chen, X.L. Liu, Y. Kong, W. Liu, C.B. Gu, Antioxidant activities of extracts and main components of pigeon pea [Cajanus cajan (L.) Millsp.] leaves, Molecules 14 (2009) 1032–1043, http://dx.doi.org/10.3390/molecules14031032.
Y. Kong, Y.J. Fu, Y.G. Zu, W. Liu, W. Wang, X. Hua, M. Yang, Ethanol modified supercritical fluid extraction and antioxidant activity of cajaninstilbene acid and pinostrobin from pigeonpea [Cajanus cajan (L.) Millsp.], Food Chem. 117 (2009) 152–159, http://dx.doi.org/10.1016/j.foodchem.2009.03.091.
A.C. Ezike, P.A. Akah, C.C. Okoli, C.B. Okpala, Experimental evidence for the antidiabetic activity of Cajanus cajan leaves in rats, J. Basic Clin. Pharm. 1 (2010) 81-84.
G.O. Ezeifeka, M.U. Orji, T.I. Mbata, A.O. Patrick, Antimicrobial activities of Cajanus cajan, Garcinia kola and Xylopia aethiopica on pathogenic microorganisms, Biotechnology 3 (2004) 41-43.
N. Wu, Y. Kong, Y. Fu, Y. Zu, Z. Yang, M. Yang, X. Peng, T. Efferth, In vitro antioxidant properties, DNA damage protective activity, and xanthine oxidase inhibitory effect of cajaninstilbene acid, a stilbene compound derived from pigeon pea [Cajanus cajan (L.) Millsp.] leaves, J. Agric. Food Chem. 59 (2010) 437–443, http://dx.doi.org/10.1021/jf103970b.
J.K. Grover, S. Yadav, V. Vats, Medicinal plants of India with anti-diabetic potential, J. Ethnopharmacol. 81 (2002) 81–100, http://dx.doi.org/10.1016/S0378-8741(02)00059-4.
Q.F. Luo, L. Sun, J.Y. Si, D.H. Chen, Hypocholesterolemic effect of stilbenes containing extract-fraction from Cajanus cajan L. on diet-induced hypercholesterolemia in mice, Phytomedicine 15 (2008) 932–939, http://dx.doi.org/10.1016/j.phymed.2008.03.002.
D.Y. Zhang, S. Zhang, Y.G. Zu, Y.J. Fu, Y. Kong, Y. Gao, J.T. Zhao, T. Efferth, Negative pressure cavitation extraction and antioxidant activity of genistein and genistin from the roots of pigeon pea [Cajanus cajan (L.) Millsp.], Sep. Purif. Technol. 74 (2010) 261-270, http://dx.doi.org/10.1016/j.seppur.2010.06.015.
M. Luo, X. Liu, Y. Zu, Y. Fu, S. Zhang, L. Yao, T. Efferth, Cajanol, a novel anticancer agent from pigeon pea [Cajanus cajan (L.) Millsp.] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway, Chem. Biol. Interact. 188 (2010) 151-160, http://dx.doi.org/10.1016/j.cbi.2010.07.009.
Y.Y. Zheng, J. Yang, D.H. Chen, L. Sun, Effects of the stilbene extracts from Cajanus cajan L. on ovariectomy-induced bone loss in rats, Acta Pharm. Sin. 42 (2007) 562-565.
Y.-G. Zu, X.-L. Liu, Y.-J. Fu, N. Wu, Y. Kong, M. Wink, Chemical composition of the SFE-CO2 extracts from Cajanus cajan (L.) Huth and their antimicrobial activity in vitro and in vivo, Phytomedicine 17 (2010) 1095-1101, http://dx.doi.org/10.1016/j.phymed.2010.04.005.
M.M. Iwu, A.O. Igboko, H. Onwubiko, U.E. Ndu, Effect of cajaminose from Cajanus cajan on gelation and oxygen affinity of sickle cell haemoglobin, J. Ethnopharmacol. 23 (1988) 99-104, http://dx.doi.org/10.1016/0378-8741(88)90118-3.
G. Nagy, A. Koncz, T. Telarico, D. Fernandez, B. Érsek, E. Buzás, A. Perl, Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and sysemic lupus erythematosus, Arthritis Res. Ther. 12 (2010) 210-215, http://dx.doi.org/10.1186/ar3045.
R.A. Elling, R.V. Fucini, M.J. Romanowski, Structures of the wild-type and activated catalytic domains of Brachydanio rerio Polo-like kinase 1 (Plk1): changes in the active-site conformation and interactions with ligands, Acta Crystallogr. Sect. D: Biol. Crystallogr. 64 (2008) 909-918, http://dx.doi.org/10.1107/S0907444908019513.
M. Stumvoll, B.J. Goldstein, T.W. van Haeften, Type 2 diabetes: principles of pathogenesis and therapy, Lancet 365 (9467) (2005) 1333-1346, http://dx.doi.org/10.1016/S0140-6736(05)61032-X.
T.-T. Zhang, J.-G. Jiang, Active ingredients of traditional Chinese medicine in the treatment of diabetes and diabetic complications, Expert Opin. Invest. Drugs 21 (2012) 1625-1642, http://dx.doi.org/10.1517/13543784.2012.713937.
N. Prabavathy, M. Vijayakumari, M. Minil, U. Sathiyaraj, S. Kavimani, Linagliptin-a novel DPP-IV inhibitor, Int. J. Pharma. Bio. Sci. 2 (2011) 438-442.
C. Boss, O. Corminboeuf, C. Grisostomi, S. Meyer, A.F. Jones, L. Prade, C. Binkert, W. Fischli, T. Weller, D. Bur, Achiral, cheap, and potent inhibitors of plasmepsins I, II, and IV, Chem. Med. Chem. 1 (2006) 1341-1345, http://dx.doi.org/10.1002/cmdc.200600223.
V.M. Vashishtha, P. Choudhury, C.P. Bansal, S.G. Gupta, Measles control strategies in India: position paper of Indian Academy of Pediatrics, Indian Pediatr. 50 (2013) 561-564, http://dx.doi.org/10.1007/s13312-013-0165-2.
E. Kraus, S. Schneider-Schaulies, M. Miyasaka, T. Tamatani, J. Sedgwick, Augmentation of major histocompatibility complex class I and ICAM-1 expression on glial cells following measles virus infection: evidence for the role of type-1 interferon, Eur. J. Immunol. 22 (1992) 175-182, http://dx.doi.org/10.1002/eji.1830220126.
S.O. Wawryk, J.R. Novotny, I.P. Wicks, D. Wilkinson, D. Maher, E. Salvaris, K. Welch, J. Fecondo, A.W. Boyd, The role of the LFA-1/ICAM-1 interaction in human leukocyte homing and adhesion, Immunol. Rev. 108 (1989) 135-161, http://dx.doi.org/10.1111/j.1600-065X.1989.tb00016.x.
J.O. Onah, P.I. Akubue, G.B. Okide, The kinetics of reversal of pre-sickled erythrocytes by the aqueous extract of Cajanus cajan seeds, Phytother. Res. 16 (2002) 748–750, http://dx.doi.org/10.1002/ptr.1026.
N.A. Imaga, Phytomedicines and nutraceuticals: alternative therapeutics for sickle cell anemi, Sci. World J. (2013) http://dx.doi.org/10.1155/2013/269659, Article ID 269659.
M.D.L. de Castro, L.E. García-Ayuso, Soxhlet extraction of solid materials: an outdated technique with a promising innovative future, Anal. Chim. Acta 369 (1998) 1-10, http://dx.doi.org/10.1016/S0003-2670(98)00233-5.
N. Schauer, D. Steinhauser, S. Strelkov, D. Schomburg, G. Allison, T. Moritz, K. Lundgren, U. Roessner-Tunali, M.G. Forbes, L. Willmitzer, A.R. Fernie, GC–MS libraries for the rapid identification of metabolites in complex biological samples, FEBS Lett. 579 (2005) 1332-1337, http://dx.doi.org/10.1016/j.febslet.2005.01.029.
G. Wu, D.H. Robertson, C.L. Brooks, M. Vieth, Detailed analysis of grid based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm, J. Comput. Chem. 24 (2003) 1549-1562, http://dx.doi.org/10.1002/jcc.10306.
N. Roy, A. Narayanankutty, P.A. Nazeem, V. Ravisankar, T.D. Babu, D. Mathew, Plant phenolics ferulic acid and p-coumaric acid inhibit colorectal cancer cell proliferation through EGFR down-regulation, Asian Pac. J. Cancer Prev. 17 (2016) 4019-4023.
P. James, S.P. Davis, V. Ravisankar, P.A. Nazeem, D. Mathew, Novel antidiabetic molecules from the medicinal plants of Western Ghats of India, identified through wide-spectrum in silico analyses, J. Herbs Spices Med. Plants 23 (2017) 249-262, http://dx.doi.org/10.1080/10496475.2017.1315675.
M.T.H. Khan, Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modeling approaches, Curr. Drug Metab. 11 (2010) 285-295, http://dx.doi.org/10.2174/138920010791514306.
A. Gurib-Fakim, Medicinal plants: traditions of yesterday and drugs of tomorrow, Mol. Aspects Med. 27 (2006) 1-93, http://dx.doi.org/10.1016/j.mam.2005.07.008.
Y. Zu, Y. Fu, W. Wang, N. Wu, W. Liu, Y. Kong, H.M. Schiebel, G. Schwarz, P. Schnitzler, J. Reichling, Comparative study on the antiherpetic activity of aqueous and ethanolic extracts derived from Cajanus cajan (L.) Millsp, Forschende Komplementärmedizin/complement, Med. Res. 17 (2010) 15-20, http://dx.doi.org/10.1159/000263619.
J. Okpuzor, O. Adebesin, H. Ogbunugafor, I. Amadi, The potential of medicinal plants in sickle cell disease control: a review, Int. J. Biomed. Health Sci. 4 (2008) 47-55.
M. Sahu, V. Singh, S. Yadav, K.K. Harris, Plant extracts with antisickling propensities: a feasible succour towards sickle cell disease management—a mini review, J. Phytol. 4 (2012) 24-29.
A. Egunyomi, J.O. Moody, O.M. Eletu, Antisickling activities of two ethnomedicinal plant recipes used for the management of sickle cell anaemia in Ibadan Nigeria, Afr. J. Biotechnol. 8 (2009) 20-25.
A.A. Bosman, S. Combrinck, R. Roux-Van der Merwe, B.M. Botha, R.I. McCrindle, P.J. Houghton, Isolation of an anthelmintic compound from Leucosidea sericea, S. Afr. J. Bot. 70 (2004) 509-511, http://dx.doi.org/10.1016/S0254-6299(15)30189-7.
L.G. Magalhães, G.J. Kapadia, L.R. da Silva Tonuci, S.C. Caixeta, N.A. Parreira, V. Rodrigues, A.A. Da Silva Filho, In vitro schistosomicidal effects of some phloroglucinol derivatives from Dryopteris species against Schistosoma mansoni adult worms, Parasitol. Res. 106 (2010) 395-401, http://dx.doi.org/10.1007/s00436-009-1674-8.
V. Sundman, J. Sundman, Bacterial growth inhibiting effect of some phloroglucinol derivatives, Acta Pathol. Microbiol. Scand. 53 (1961) 345-355, http://dx.doi.org/10.1111/j.1699-0463.1961.tb00418.x.
G.J. Kapadia, H. Tokuda, T. Konoshima, M. Takasaki, J. Takayasu, H. Nishino, Anti-tumor promoting activity of Dryopteris phlorophenone derivatives, Cancer Lett. 105 (1996) 161-165, http://dx.doi.org/10.1016/0304-3835(96)04275-9.
C. Gerhäuser, N. Frank, New promising chemopreventive agents andmechanisms, in: H.U. Vainio, E.K. Hietanen (Eds.), Mechanisms in Carcinogenesis and Cancer Prevention, Springer, Berlin, Heidelberg, 2003, pp.289–305, ISBN: 978-3-642-07859-0.
L. Runeberg, Uncoupling of oxidative phosphorylation in rat liver mitochondria with desaspidin and related phlorobutyrophenone derivatives, Biochem. Pharmacol. 11 (1962) 237-242, http://dx.doi.org/10.1016/0006-2952(62)90079-5.
J.J. Nair, A.O. Aremu, J. Van Staden, Anti-inflammatory effects of Leucosidea sericea (Rosaceae) and identification of the active constituents, S. Afr. J. Bot. 80 (2012) 75-76, http://dx.doi.org/10.1016/j.sajb.2012.02.009.
T. Mohamed, P.P.N. Rao, 2,4-Disubstituted quinazolines as amyloid-β aggregation inhibitors with dual cholinesterase inhibition and antioxidant properties: development and structure-activity relationship (SAR) studies, Eur. J. Med. Chem. 126 (2017) 823-843, http://dx.doi.org/10.1016/j.ejmech.2016.12.005.
P.M. Chandrika, T. Yakaiah, A.R.R. Rao, B. Narsaiah, N.C. Reddy, V. Sridhar, J.V. Rao, Synthesis of novel 4, 6-disubstituted quinazoline derivatives, their anti-inflammatory and anti-cancer activity (cytotoxic) against U937 leukemia cell lines, Eur. J. Med. Chem. 43 (2008) 846-852, http://dx.doi.org/10.1016/j.ejmech.2007.06.010.
L.R. Singh, K.P. Singh, M. Pande, M.S. Yar, Synthesis and anti-microbial screening of some novel quinazolinone derivatives, Int. J. Pharm. Chem. Biol. Sci. 3 (2013) 1269-1275.
S.I. Ahmad, M. Capoor, F. Khatoon, Phytochemical analysis and growth inhibiting effects of Cinnamomum cassia bark on some pathogenic fungal isolates, J. Chem. Pharm. Res. 5 (2013) 25-32.
K.A. Jacobson, B.J. Bradbury, J. Baumgold, The United States of America as represented by the Secretary of The Department Of Health and Human Services, N-methyl-N-[4-(1-pyrrolidinyl)-2-butynyl] amide congeners as muscarinic agents, U.S. Patent 5 (274) (1993) 121.
[80]
G.C.Y. Chiou, Topical treatment of ocular hypertension, glaucoma, ischemic retinopathy and age-related macular degeneration with ophthalmic formulation of dopamine antagonists, U.S. Patent Application 09/796, 987 (2001).
[81]
C. Esteve, A. Nueda, J.L. Díaz, J. Beleta, A. Cárdenas, E. Lozoya, M.I. Cadavid, M.I. Loza, H. Ryder, B. Vidal, New pyrrolopyrimidin-6-yl benzenesulfonamides: potent A 2B adenosine receptor antagonists, Bioorg. Med. Chem. Lett. 16 (2006) 3642-3645, http://dx.doi.org/10.1016/j.bmcl.2006.04.074.
G. Aguirre, M. Boiani, H. Cerecetto, A. Gerpe, M. González, Y.F. Sainz, A. Denicola, C.O. de Ocáriz, J.J. Nogal, D. Montero, J.A. Escario, Novel antiprotozoal products: imidazole and Benzimidazole N-oxide derivatives and related compounds, Arch. Pharm. 337 (2004) 259-270, http://dx.doi.org/10.1002/ardp.200300840.
K. Shindo, M. Kato, A. Kinoshita, A. Kobayashi, Y. Koike, Analysis of antioxidant activities contained in the Boesenbergia pandurata Schult. rhizome, Biosci. Biotechnol. Biochem. 70 (2006) 2281-2284, http://dx.doi.org/10.1271/bbb.60086.
R.J. Anto, K. Sukumaran, G. Kuttan, M.N.A. Rao, V. Subbaraju, R. Kuttan, Anticancer and antioxidant activity of synthetic chalcones and related compounds, Cancer Lett. 97 (1995) 33-37, http://dx.doi.org/10.1016/0304-3835(95)03945-S.
B. Dewindt, K. van Eemeren, K. Andries, Antiviral capsid-binding compounds can inhibit the adsorption of minor receptor rhinoviruses, Antiviral Res. 25 (1994) 67-72, http://dx.doi.org/10.1016/0166-3542(94)90094-9.
M. Chen, S.B. Christensen, L. Zhai, M.H. Rasmussen, T.G. Theander, S. Frøkjaer, B. Steffansen, J. Davidsen, A. Kharazmi, The novel oxygenated chalcone, 2, 4-dimethoxy-4'-butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo, J. Infect. Dis. 176 (1997) 1327-1333, http://dx.doi.org/10.1086/514129.
H. Kuwahara, A. Kanazawa, D. Wakamatu, S. Morimura, K. Kida, T. Akaike, H. Maeda, Antioxidative and antimutagenic activities of 4-vinyl-2, 6-dimethoxyphenol (canolol) isolated from canola oil, J. Agric. Food Chem. 52 (2004) 4380-4387, http://dx.doi.org/10.1021/jf040045.
X. Cao, T. Tsukamoto, T. Seki, H. Tanaka, S. Morimura, L. Cao, T. Mizoshita, H. Ban, T. Toyoda, H. Maeda, M. Tatematsu, 4-Vinyl-2, 6-dimethoxyphenol (canolol) suppresses oxidative stress and gastric carcinogenesis in Helicobacter pylori-infected carcinogen-treated Mongolian gerbils, Int. J. Cancer 122 (2008) 1445-1454, http://dx.doi.org/10.1002/ijc.23245.
Mathew D, Lidiya John P, Manila T, et al. Therapeutic molecules for multiple human diseases identified from pigeon pea (Cajanus cajan L. Millsp.) through GC–MS and molecular docking. Food Science and Human Wellness, 2017, 6(4): 202-216. https://doi.org/10.1016/j.fshw.2017.09.003