PDF (905.3 KB)
Collect
Submit Manuscript
Show Outline
Tables (10)
Table 1
Table 2
Table 3
Table 4
Table 5
Show 5 more tables Hide 5 tables
Research Article | Open Access

Therapeutic molecules for multiple human diseases identified from pigeon pea (Cajanus cajan L. Millsp.) through GC–MS and molecular docking

Deepu Mathew ()P. Lidiya JohnT.M. ManilaP. DivyasreeV.T.K. Sandhya Rajan
Finishing School in Biotechnology, Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, Kerala 680 656, India

Peer review under responsibility of Beijing Academy of Food Sciences.

Show Author Information

Abstract

Molecular mechanism behind the therapeutic potential of pigeon pea over the human diseases such as rheumatoid arthritis, breast cancer, type II diabetes, malaria, measles and sickle cell disease were revealed through docking of GC–MS identified phyto-compound ligands with candidate disease proteins. Of the 242 ligands, three dimensional structures of 47 compounds had to be drawn using ChemSketch and the remaining structures were retrieved from PubChem and docked with the active sites of candidate proteins. The molecules identified through docking were further subjected to ADMET analysis and promising drug candidates were identified for each disease. This paper presents a precise account of the chemoprofile of pigeon pea leaves, stems and seeds, interaction of these molecules with target proteins and suggests 26 highly potential molecules which are drug candidates for multiple human diseases. Pigeon pea seeds are especially proven as invaluable source for therapeutic molecules.

References

[1]

L.C. Okpala, E.N. Mamah, Functional properties of raw and processed pigeon pea (Cajanus cajan) flour, Int. J. Food Sci. Nutr. 52 (2001) 343-346, http://dx.doi.org/10.1080/09637480120057549.

[2]

O.I. Oyewole, A.A. Owoseni, E.O. Faboro, Studies on medicinal and toxicological properties of Cajanus cajan, Ricinus communis and Thymus vulgaris leaf extracts, J. Med. Plants Res. 4 (2010) 2004–2006, http://dx.doi.org/10.5897/jmpr10.363.

[3]

D. Pal, P. Mishra, N. Sachan, A.K. Ghosh, Biological activities and medicinal properties of Cajanus cajan (L.) Millsp, J. Adv. Pharm. Technol. Res. 2 (2011) 207–214, http://dx.doi.org/10.4103/2231-4040.90874.

[4]

S. Sharma, N. Agarwal, P. Verma, Pigeon pea (Cajanus cajan L.): a hidden treasure of regimenutrition, J. Funct. Environ. Bot. 1 (2011) 91–101, http://dx.doi.org/10.5958/j.2231-1742.1.2.010.

[5]
K.R. Kirtikar, B.D. Basu, Indian Medicinal Plants, International Book Distributing Company, Dehradun, India vol. 2, 2nd ed., International Book Distributing Company, Dehradun, India, 1998, pp. 340.
[6]

R. Sarkar, B. Hazra, S. Mandal, S. Biswas, N. Mandal, Assessment of in vitro antioxidant and free radical scavenging activity of Cajanus cajan, J. Complement. Integr. Med. 6 (2009) 97-103, http://dx.doi.org/10.2202/1553-3840.1248.

[7]

N. Wu, K. Fu, Y.J. Fu, Y.G. Zu, F.R. Chang, Y.H. Chen, X.L. Liu, Y. Kong, W. Liu, C.B. Gu, Antioxidant activities of extracts and main components of pigeon pea [Cajanus cajan (L.) Millsp.] leaves, Molecules 14 (2009) 1032–1043, http://dx.doi.org/10.3390/molecules14031032.

[8]

Y. Kong, Y.J. Fu, Y.G. Zu, W. Liu, W. Wang, X. Hua, M. Yang, Ethanol modified supercritical fluid extraction and antioxidant activity of cajaninstilbene acid and pinostrobin from pigeonpea [Cajanus cajan (L.) Millsp.], Food Chem. 117 (2009) 152–159, http://dx.doi.org/10.1016/j.foodchem.2009.03.091.

[9]

A.C. Ezike, P.A. Akah, C.C. Okoli, C.B. Okpala, Experimental evidence for the antidiabetic activity of Cajanus cajan leaves in rats, J. Basic Clin. Pharm. 1 (2010) 81-84.

[10]

G.O. Ezeifeka, M.U. Orji, T.I. Mbata, A.O. Patrick, Antimicrobial activities of Cajanus cajan, Garcinia kola and Xylopia aethiopica on pathogenic microorganisms, Biotechnology 3 (2004) 41-43.

[11]

H. Pratima, P. Mathad, Antibacterial activity of various leaf extract of Cajanus cajan L, Bioscan 6 (2011) 111-114.

[12]

N. Wu, Y. Kong, Y. Fu, Y. Zu, Z. Yang, M. Yang, X. Peng, T. Efferth, In vitro antioxidant properties, DNA damage protective activity, and xanthine oxidase inhibitory effect of cajaninstilbene acid, a stilbene compound derived from pigeon pea [Cajanus cajan (L.) Millsp.] leaves, J. Agric. Food Chem. 59 (2010) 437–443, http://dx.doi.org/10.1021/jf103970b.

[13]

J.K. Grover, S. Yadav, V. Vats, Medicinal plants of India with anti-diabetic potential, J. Ethnopharmacol. 81 (2002) 81–100, http://dx.doi.org/10.1016/S0378-8741(02)00059-4.

[14]

A.A. Aiyedoja, O.A. Bello, Ethnobotanical potentials of common herbs in Nigeria: a case study of Enugu state, Educ. Res. Rev. 1 (2006) 16-22.

[15]

Q.F. Luo, L. Sun, J.Y. Si, D.H. Chen, Hypocholesterolemic effect of stilbenes containing extract-fraction from Cajanus cajan L. on diet-induced hypercholesterolemia in mice, Phytomedicine 15 (2008) 932–939, http://dx.doi.org/10.1016/j.phymed.2008.03.002.

[16]

G. Duker-Eshun, J.W. Jaroszewski, W.A. Asomaning, Antiplasmodial constituents of Cajanus cajan, Phytother. Res. 18 (2004) 128–133, http://dx.doi.org/10.1002/ptr.1375.

[17]

D.Y. Zhang, S. Zhang, Y.G. Zu, Y.J. Fu, Y. Kong, Y. Gao, J.T. Zhao, T. Efferth, Negative pressure cavitation extraction and antioxidant activity of genistein and genistin from the roots of pigeon pea [Cajanus cajan (L.) Millsp.], Sep. Purif. Technol. 74 (2010) 261-270, http://dx.doi.org/10.1016/j.seppur.2010.06.015.

[18]

Y.J. Fu, W. Liu, Y.G. Zu, M.H. Tong, S.M. Li, M.M. Yan, T. Efferth, H. Luo, Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanus cajan (L.) Millsp.] leaves, Food Chem. 111 (2008) 508-512, http://dx.doi.org/10.1016/j.foodchem.2008.04.003.

[19]

M. Luo, X. Liu, Y. Zu, Y. Fu, S. Zhang, L. Yao, T. Efferth, Cajanol, a novel anticancer agent from pigeon pea [Cajanus cajan (L.) Millsp.] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway, Chem. Biol. Interact. 188 (2010) 151-160, http://dx.doi.org/10.1016/j.cbi.2010.07.009.

[20]

Y.Y. Zheng, J. Yang, D.H. Chen, L. Sun, Effects of the stilbene extracts from Cajanus cajan L. on ovariectomy-induced bone loss in rats, Acta Pharm. Sin. 42 (2007) 562-565.

[21]

Y.-G. Zu, X.-L. Liu, Y.-J. Fu, N. Wu, Y. Kong, M. Wink, Chemical composition of the SFE-CO2 extracts from Cajanus cajan (L.) Huth and their antimicrobial activity in vitro and in vivo, Phytomedicine 17 (2010) 1095-1101, http://dx.doi.org/10.1016/j.phymed.2010.04.005.

[22]

Y. Kong, Z.-F. Wei, Y.-J. Fu, C.-B. Gu, C.-J. Zhao, X.-H. Yao, T. Efferth, Negative-pressure cavitation extraction of cajaninstilbene acid and pinostrobin from pigeon pea [Cajanus cajan (L.) Millsp.] leaves and evaluation of antioxidant activity, Food Chem. 128 (2011) 596-605, http://dx.doi.org/10.1016/j.foodchem.2011.02.079.

[23]

Y. Kong, Y.-J. Fu, Y.-G. Zu, F.-R. Chang, Y.-H. Chen, X.-L. Liu, J. Stelten, H.-M. Schiebel, Cajanuslactone, a new coumarin with anti-bacterial activity from pigeon pea [Cajanus cajan (L.) Millsp.] leaves, Food Chem. 121 (2010) 1150-1155, http://dx.doi.org/10.1016/j.foodchem.2011.02.079.

[24]

M.M. Iwu, A.O. Igboko, H. Onwubiko, U.E. Ndu, Effect of cajaminose from Cajanus cajan on gelation and oxygen affinity of sickle cell haemoglobin, J. Ethnopharmacol. 23 (1988) 99-104, http://dx.doi.org/10.1016/0378-8741(88)90118-3.

[25]

F.O.B. Akojie, L.W.M. Fung, Antisickling activity of hydroxybenzoic acids in Cajanus cajan, Planta Med. 58 (1992) 317-320, http://dx.doi.org/10.1055/s-2006-961475.

[26]

F. Aktan, iNOS-mediated nitric oxide production and its regulation, Life Sci. 75 (2004) 639-653, http://dx.doi.org/10.1016/j.lfs.2003.10.042.

[27]

G. Nagy, A. Koncz, T. Telarico, D. Fernandez, B. Érsek, E. Buzás, A. Perl, Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and sysemic lupus erythematosus, Arthritis Res. Ther. 12 (2010) 210-215, http://dx.doi.org/10.1186/ar3045.

[28]

R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, CA: Cancer J. Clin. 66 (2016) 7-30, http://dx.doi.org/10.3322/caac.21332.

[29]

L. Weiß, T. Efferth, Polo-like kinase 1 as target for cancer therapy, Exp. Hematol. Onc. 1 (2012) 38-43, http://dx.doi.org/10.1186/2162-3619-1-38.

[30]

R.A. Elling, R.V. Fucini, M.J. Romanowski, Structures of the wild-type and activated catalytic domains of Brachydanio rerio Polo-like kinase 1 (Plk1): changes in the active-site conformation and interactions with ligands, Acta Crystallogr. Sect. D: Biol. Crystallogr. 64 (2008) 909-918, http://dx.doi.org/10.1107/S0907444908019513.

[31]

M. Stumvoll, B.J. Goldstein, T.W. van Haeften, Type 2 diabetes: principles of pathogenesis and therapy, Lancet 365 (9467) (2005) 1333-1346, http://dx.doi.org/10.1016/S0140-6736(05)61032-X.

[32]

Y. Lin, Z. Sun, Current views on type 2 diabetes, J. Endocrinol. 204 (2010) 1-11, http://dx.doi.org/10.1677/JOE-09-0260.

[33]

T.-T. Zhang, J.-G. Jiang, Active ingredients of traditional Chinese medicine in the treatment of diabetes and diabetic complications, Expert Opin. Invest. Drugs 21 (2012) 1625-1642, http://dx.doi.org/10.1517/13543784.2012.713937.

[34]

R. Pathak, B.M. Bridgeman, Dipeptidyl peptidase-4 (DPP-4) inhibitors in the management of diabetes, Pharm. Therapeut. 35 (2010) 509-513.

[35]

N. Prabavathy, M. Vijayakumari, M. Minil, U. Sathiyaraj, S. Kavimani, Linagliptin-a novel DPP-IV inhibitor, Int. J. Pharma. Bio. Sci. 2 (2011) 438-442.

[36]

R.W. Snow, C.A. Guerra, A.M. Noor, H.Y. Myint, S.I. Hay, The global distribution of clinical episodes of Plasmodium falciparum malaria, Nature 434 (7030) (2005) 214-217, http://dx.doi.org/10.1038/nature03342.

[37]

C. Boss, O. Corminboeuf, C. Grisostomi, S. Meyer, A.F. Jones, L. Prade, C. Binkert, W. Fischli, T. Weller, D. Bur, Achiral, cheap, and potent inhibitors of plasmepsins I, II, and IV, Chem. Med. Chem. 1 (2006) 1341-1345, http://dx.doi.org/10.1002/cmdc.200600223.

[38]

V.M. Vashishtha, P. Choudhury, C.P. Bansal, S.G. Gupta, Measles control strategies in India: position paper of Indian Academy of Pediatrics, Indian Pediatr. 50 (2013) 561-564, http://dx.doi.org/10.1007/s13312-013-0165-2.

[39]

U.U. Nwodo, A.A. Ngene, C.U. Iroegbu, O.A.L. Onyedikachi, V.N. Chigor, A.I. Okoh, In vivo evaluation of the antiviral activity of Cajanus cajan on measles virus, Arch. Virol. 156 (2011) 1551-1557, http://dx.doi.org/10.1007/s00705-011-1032-x.

[40]

E. Kraus, S. Schneider-Schaulies, M. Miyasaka, T. Tamatani, J. Sedgwick, Augmentation of major histocompatibility complex class I and ICAM-1 expression on glial cells following measles virus infection: evidence for the role of type-1 interferon, Eur. J. Immunol. 22 (1992) 175-182, http://dx.doi.org/10.1002/eji.1830220126.

[41]

S.O. Wawryk, J.R. Novotny, I.P. Wicks, D. Wilkinson, D. Maher, E. Salvaris, K. Welch, J. Fecondo, A.W. Boyd, The role of the LFA-1/ICAM-1 interaction in human leukocyte homing and adhesion, Immunol. Rev. 108 (1989) 135-161, http://dx.doi.org/10.1111/j.1600-065X.1989.tb00016.x.

[42]

S.L. Vankayala, J.C. Hargis, H.L. Woodcock, Unlocking the binding and reaction mechanism of hydroxyurea substrates as biological nitric oxide donors, J. Chem. Inf. Model. 52 (2012) 1288-1297, http://dx.doi.org/10.1021/ci300035c.

[43]

J.O. Onah, P.I. Akubue, G.B. Okide, The kinetics of reversal of pre-sickled erythrocytes by the aqueous extract of Cajanus cajan seeds, Phytother. Res. 16 (2002) 748–750, http://dx.doi.org/10.1002/ptr.1026.

[44]

N.A. Imaga, Phytomedicines and nutraceuticals: alternative therapeutics for sickle cell anemi, Sci. World J. (2013) http://dx.doi.org/10.1155/2013/269659, Article ID 269659.

[45]

M.H. Odièvre, E. Verger, A.C. Silva-Pinto, J. Elion, Pathophysiological insights in sickle cell disease, Indian J. Med. Res. 134 (2011) 532-537.

[46]

M.D.L. de Castro, L.E. García-Ayuso, Soxhlet extraction of solid materials: an outdated technique with a promising innovative future, Anal. Chim. Acta 369 (1998) 1-10, http://dx.doi.org/10.1016/S0003-2670(98)00233-5.

[47]

N. Schauer, D. Steinhauser, S. Strelkov, D. Schomburg, G. Allison, T. Moritz, K. Lundgren, U. Roessner-Tunali, M.G. Forbes, L. Willmitzer, A.R. Fernie, GC–MS libraries for the rapid identification of metabolites in complex biological samples, FEBS Lett. 579 (2005) 1332-1337, http://dx.doi.org/10.1016/j.febslet.2005.01.029.

[48]

G. Wu, D.H. Robertson, C.L. Brooks, M. Vieth, Detailed analysis of grid based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm, J. Comput. Chem. 24 (2003) 1549-1562, http://dx.doi.org/10.1002/jcc.10306.

[49]

N. Roy, A. Narayanankutty, P.A. Nazeem, V. Ravisankar, T.D. Babu, D. Mathew, Plant phenolics ferulic acid and p-coumaric acid inhibit colorectal cancer cell proliferation through EGFR down-regulation, Asian Pac. J. Cancer Prev. 17 (2016) 4019-4023.

[50]

P. James, S.P. Davis, V. Ravisankar, P.A. Nazeem, D. Mathew, Novel antidiabetic molecules from the medicinal plants of Western Ghats of India, identified through wide-spectrum in silico analyses, J. Herbs Spices Med. Plants 23 (2017) 249-262, http://dx.doi.org/10.1080/10496475.2017.1315675.

[51]

M.T.H. Khan, Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modeling approaches, Curr. Drug Metab. 11 (2010) 285-295, http://dx.doi.org/10.2174/138920010791514306.

[52]

U. Norinder, C.A. Bergström, Prediction of ADMET properties, Chem. Med. Chem. 1 (2006) 920-937, http://dx.doi.org/10.1002/cmdc.200600155.

[53]

A. Gurib-Fakim, Medicinal plants: traditions of yesterday and drugs of tomorrow, Mol. Aspects Med. 27 (2006) 1-93, http://dx.doi.org/10.1016/j.mam.2005.07.008.

[54]

G.M. Shepherd, Hypersensitivity reactions to drugs: evaluation and management, Mount Sinai J. Med. 70 (2003) 113-125.

[55]

C.T. Keith, A.A. Borisy, B.R. Stockwell, Multicomponent therapeutics for networked systems, Nat. Rev. Drug Discov. 4 (2005) 71-78, http://dx.doi.org/10.1038/nrd1609.

[56]

Y. Zu, Y. Fu, W. Wang, N. Wu, W. Liu, Y. Kong, H.M. Schiebel, G. Schwarz, P. Schnitzler, J. Reichling, Comparative study on the antiherpetic activity of aqueous and ethanolic extracts derived from Cajanus cajan (L.) Millsp, Forschende Komplementärmedizin/complement, Med. Res. 17 (2010) 15-20, http://dx.doi.org/10.1159/000263619.

[57]

G.I. Ekeke, F.O. Shode, The reversion of sickled cells by Cajanus cajan, Planta Med. 51 (1985) 504-507, http://dx.doi.org/10.1055/s-2007-969576.

[58]

M.M. Iwu, O.A. Igboko, H. Onwubiko, U.E. Ndu, Anti-sickling properties of Cajanus cajan: effect on haemoglobin gelation and oxygen affinity, Planta Med. 52 (1986) 431-432.

[59]

A.O. Akinsulie, E.O. Temiye, A.S. Akanmu, F.E.A. Lesi, C.O. Whyte, Clinical evaluation of extract of Cajanus cajan (Ciklavit®) in sickle cell anaemia, J. Trop. Pediatr. 51 (2005) 200-205, http://dx.doi.org/10.1093/tropej/fmh097.

[60]

J. Okpuzor, O. Adebesin, H. Ogbunugafor, I. Amadi, The potential of medicinal plants in sickle cell disease control: a review, Int. J. Biomed. Health Sci. 4 (2008) 47-55.

[61]

M. Sahu, V. Singh, S. Yadav, K.K. Harris, Plant extracts with antisickling propensities: a feasible succour towards sickle cell disease management—a mini review, J. Phytol. 4 (2012) 24-29.

[62]

A. Egunyomi, J.O. Moody, O.M. Eletu, Antisickling activities of two ethnomedicinal plant recipes used for the management of sickle cell anaemia in Ibadan Nigeria, Afr. J. Biotechnol. 8 (2009) 20-25.

[63]

G.I. Ekeke, F.O. Shode, Phenylalanine is the predominant antisickling agent in Cajanus cajan seed extract, Planta Med. 56 (1990) 41-43, http://dx.doi.org/10.1055/s-2006-960880.

[64]

A.A. Uwakwe, M.C. Monanu, G.I. Ekeke, Effects of the extract of Cajanus cajan seeds on HbSS erythrgcyte Glutathione-S-transferase activity, Nutr. Res. 16 (1996) 1459-1465, http://dx.doi.org/10.1016/0271-5317(96)00158-3.

[65]

A.A. Bosman, S. Combrinck, R. Roux-Van der Merwe, B.M. Botha, R.I. McCrindle, P.J. Houghton, Isolation of an anthelmintic compound from Leucosidea sericea, S. Afr. J. Bot. 70 (2004) 509-511, http://dx.doi.org/10.1016/S0254-6299(15)30189-7.

[66]

L.G. Magalhães, G.J. Kapadia, L.R. da Silva Tonuci, S.C. Caixeta, N.A. Parreira, V. Rodrigues, A.A. Da Silva Filho, In vitro schistosomicidal effects of some phloroglucinol derivatives from Dryopteris species against Schistosoma mansoni adult worms, Parasitol. Res. 106 (2010) 395-401, http://dx.doi.org/10.1007/s00436-009-1674-8.

[67]

V. Sundman, J. Sundman, Bacterial growth inhibiting effect of some phloroglucinol derivatives, Acta Pathol. Microbiol. Scand. 53 (1961) 345-355, http://dx.doi.org/10.1111/j.1699-0463.1961.tb00418.x.

[68]

G.J. Kapadia, H. Tokuda, T. Konoshima, M. Takasaki, J. Takayasu, H. Nishino, Anti-tumor promoting activity of Dryopteris phlorophenone derivatives, Cancer Lett. 105 (1996) 161-165, http://dx.doi.org/10.1016/0304-3835(96)04275-9.

[69]
C. Gerhäuser, N. Frank, New promising chemopreventive agents andmechanisms, in: H.U. Vainio, E.K. Hietanen (Eds.), Mechanisms in Carcinogenesis and Cancer Prevention, Springer, Berlin, Heidelberg, 2003, pp.289–305, ISBN: 978-3-642-07859-0.
[70]

L. Runeberg, Uncoupling of oxidative phosphorylation in rat liver mitochondria with desaspidin and related phlorobutyrophenone derivatives, Biochem. Pharmacol. 11 (1962) 237-242, http://dx.doi.org/10.1016/0006-2952(62)90079-5.

[71]

J.J. Nair, A.O. Aremu, J. Van Staden, Anti-inflammatory effects of Leucosidea sericea (Rosaceae) and identification of the active constituents, S. Afr. J. Bot. 80 (2012) 75-76, http://dx.doi.org/10.1016/j.sajb.2012.02.009.

[72]

T. Mohamed, P.P.N. Rao, 2,4-Disubstituted quinazolines as amyloid-β aggregation inhibitors with dual cholinesterase inhibition and antioxidant properties: development and structure-activity relationship (SAR) studies, Eur. J. Med. Chem. 126 (2017) 823-843, http://dx.doi.org/10.1016/j.ejmech.2016.12.005.

[73]

N.M.A. Gawad, H.H. Georgey, R.M. Youssef, N.A. El-Sayed, Synthesis and antitumor activity of some 2, 3-disubstituted quinazolin-4 (3H)-ones and 4, 6-disubstituted- 1, 2, 3, 4-tetrahydroquinazolin-2H-ones, Eur. J. Med. Chem. 45 (2010) 6058-6067, http://dx.doi.org/10.1016/j.ejmech.2010.10.008.

[74]

P.P. Kung, M.D. Casper, K.L. Cook, L. Wilson-Lingardo, L.M. Risen, T.A. Vickers, R. Ranken, L.B. Blyn, J.R. Wyatt, P.D. Cook, D.J. Ecker, Structure-activity relationships of novel 2-substituted quinazoline antibacterial agents, J. Med. Chem. 42 (1999) 4705-4713, http://dx.doi.org/10.1021/jm9903500.

[75]

P.M. Chandrika, T. Yakaiah, A.R.R. Rao, B. Narsaiah, N.C. Reddy, V. Sridhar, J.V. Rao, Synthesis of novel 4, 6-disubstituted quinazoline derivatives, their anti-inflammatory and anti-cancer activity (cytotoxic) against U937 leukemia cell lines, Eur. J. Med. Chem. 43 (2008) 846-852, http://dx.doi.org/10.1016/j.ejmech.2007.06.010.

[76]

L.R. Singh, K.P. Singh, M. Pande, M.S. Yar, Synthesis and anti-microbial screening of some novel quinazolinone derivatives, Int. J. Pharm. Chem. Biol. Sci. 3 (2013) 1269-1275.

[77]

T.P. Selvam, P.V. Kumar, Quinazoline marketed drugs, Res. Pharm. 1 (2011) 1-21.

[78]

S.I. Ahmad, M. Capoor, F. Khatoon, Phytochemical analysis and growth inhibiting effects of Cinnamomum cassia bark on some pathogenic fungal isolates, J. Chem. Pharm. Res. 5 (2013) 25-32.

[79]
K.A. Jacobson, B.J. Bradbury, J. Baumgold, The United States of America as represented by the Secretary of The Department Of Health and Human Services, N-methyl-N-[4-(1-pyrrolidinyl)-2-butynyl] amide congeners as muscarinic agents, U.S. Patent 5 (274) (1993) 121.
[80]
G.C.Y. Chiou, Topical treatment of ocular hypertension, glaucoma, ischemic retinopathy and age-related macular degeneration with ophthalmic formulation of dopamine antagonists, U.S. Patent Application 09/796, 987 (2001).
[81]

C. Esteve, A. Nueda, J.L. Díaz, J. Beleta, A. Cárdenas, E. Lozoya, M.I. Cadavid, M.I. Loza, H. Ryder, B. Vidal, New pyrrolopyrimidin-6-yl benzenesulfonamides: potent A 2B adenosine receptor antagonists, Bioorg. Med. Chem. Lett. 16 (2006) 3642-3645, http://dx.doi.org/10.1016/j.bmcl.2006.04.074.

[82]
S.H. Snyder, J.W. Daly, R.F. Bruns, Adenosine receptor antagonists. The Johns Hopkins University, U.S. Patent 4,769,377 (1988).
[83]

U. Sahoo, S. Biswal, S. Sethy, H.K.S. Kumar, M. Banerjee, Imidazole and its biological activities: a review, Asian J. Res. Chem. 5 (2012) 171-182.

[84]

F.A. Bassyouni, H.A. Tawfik, A.R. Hamed, M.M. Soltan, M. ElHefnawi, A.A. ElRashedy, M.E. Moharam, M.A. Rehim, Synthesis, antioxidant, and antimicrobial activities of new 2-(1,5,6-trimethyl-1H-benzo [d] imidazole-2-carbonyl)-2,3-dihydro-1H-pyrazole-4-carbonitriles,(1,3,4-oxadiazol-2-yl)-1H-benzo [d] imidazol-5-yl)(phenyl) methanones, and (1,3,4-oxadiazol-2-yl)-1, 5-dihydro-[1,2,4] triazolo [1,5-a] pyridine-8-carbonitriles (QSAR and molecular docking analysis), Egypt. Pharm. J. 11 (2012), http://dx.doi.org/10.7123/01.EPJ.0000422113.69898.e0.

[85]

G. Aguirre, M. Boiani, H. Cerecetto, A. Gerpe, M. González, Y.F. Sainz, A. Denicola, C.O. de Ocáriz, J.J. Nogal, D. Montero, J.A. Escario, Novel antiprotozoal products: imidazole and Benzimidazole N-oxide derivatives and related compounds, Arch. Pharm. 337 (2004) 259-270, http://dx.doi.org/10.1002/ardp.200300840.

[86]

E.C. Torres-Santos, D.L. Moreira, M.A.C. Kaplan, M.N. Meirelles, B. Rossi-Bergmann, Selective effect of 2′, 6′-dihydroxy-4′-methoxychalcone isolated from Piper aduncum on Leishmania amazonensis, Antimicrob. Agents Chemother. 43 (1999) 1234-1241.

[87]

K. Shindo, M. Kato, A. Kinoshita, A. Kobayashi, Y. Koike, Analysis of antioxidant activities contained in the Boesenbergia pandurata Schult. rhizome, Biosci. Biotechnol. Biochem. 70 (2006) 2281-2284, http://dx.doi.org/10.1271/bbb.60086.

[88]

R.J. Anto, K. Sukumaran, G. Kuttan, M.N.A. Rao, V. Subbaraju, R. Kuttan, Anticancer and antioxidant activity of synthetic chalcones and related compounds, Cancer Lett. 97 (1995) 33-37, http://dx.doi.org/10.1016/0304-3835(95)03945-S.

[89]

A.L. Okunade, C.D. Hufford, A.M. Clark, D. Lentz, Antimicrobial properties of the constituents of Piper aduncum, Phytother. Res. 11 (1997) 142-144, http://dx.doi.org/10.1002/(SICI)1099-1573(199703)11:2<142:AID-PTR61>3.0.CO;2-Y.

[90]

B. Dewindt, K. van Eemeren, K. Andries, Antiviral capsid-binding compounds can inhibit the adsorption of minor receptor rhinoviruses, Antiviral Res. 25 (1994) 67-72, http://dx.doi.org/10.1016/0166-3542(94)90094-9.

[91]

M. Chen, S.B. Christensen, L. Zhai, M.H. Rasmussen, T.G. Theander, S. Frøkjaer, B. Steffansen, J. Davidsen, A. Kharazmi, The novel oxygenated chalcone, 2, 4-dimethoxy-4'-butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo, J. Infect. Dis. 176 (1997) 1327-1333, http://dx.doi.org/10.1086/514129.

[92]

H. Kuwahara, A. Kanazawa, D. Wakamatu, S. Morimura, K. Kida, T. Akaike, H. Maeda, Antioxidative and antimutagenic activities of 4-vinyl-2, 6-dimethoxyphenol (canolol) isolated from canola oil, J. Agric. Food Chem. 52 (2004) 4380-4387, http://dx.doi.org/10.1021/jf040045.

[93]

X. Cao, T. Tsukamoto, T. Seki, H. Tanaka, S. Morimura, L. Cao, T. Mizoshita, H. Ban, T. Toyoda, H. Maeda, M. Tatematsu, 4-Vinyl-2, 6-dimethoxyphenol (canolol) suppresses oxidative stress and gastric carcinogenesis in Helicobacter pylori-infected carcinogen-treated Mongolian gerbils, Int. J. Cancer 122 (2008) 1445-1454, http://dx.doi.org/10.1002/ijc.23245.

Food Science and Human Wellness
Pages 202-216
Cite this article:
Mathew D, Lidiya John P, Manila T, et al. Therapeutic molecules for multiple human diseases identified from pigeon pea (Cajanus cajan L. Millsp.) through GC–MS and molecular docking. Food Science and Human Wellness, 2017, 6(4): 202-216. https://doi.org/10.1016/j.fshw.2017.09.003
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return