AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Antiviral effect of polyphenol rich plant extracts on herpes simplex virus type 1

Sayed A. El-ToumyaJosline Y. Saliba( )Walaa A. El-KashakbChristel MartycGilles BedouxcNathalie Bourgougnonc
Chemistry of Tannins Department, National Research Centre, Dokki, 12622 Cairo, Egypt
Chemistry of Natural Compounds Department, National Research Centre, Dokki, 12622 Cairo, Egypt
Centre de Recherché et d’enseignement Yves Coppens, Campus de Tohannic, BP 573, 56017 Vannes, France

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Evaluation of the anti-herpetic activity of 25 Egyptian plants extracts was investigated in vitro in this study. The antiviral activity against Herpes Simplex Virus type 1 (HSV-1) was done on Vero cell lines by cell viability. Only two plants extracts; namely Euphorbia coopire (Euphorbiaceae) and Morus alba (Moraceae) showed potent anti-herpetic activity and six other extracts showed moderate inhibition. In contrast, a bioassay monitored phytochemical exploration of these two plants led to the isolation of pure flavonoid compounds. The antiviral activity of the isolated compounds was also examined, among which seven pure compounds namely; 7-galloyl catechin, gallic acid, kaempferol 3-O-β-(6″-O-galloyl)-glucopyranoside, quercetin 3-O-β-(6″-O-galloyl)-glucopyranoside, curcumin, quercetin and kaempferol exhibited significant inhibition.

References

[1]

R.C. Brady, D.I. Bernstein, Treatment of herpes simplex virus infections, Antivir. Res. 61 (2004) 73–81.

[2]

J.M. Hill, M.J. Ball, D.M. Neumann, A.M. Azcuv, P.S. Bhattacharjee, S. Bouhanik, C. Clement, W.J. Lukiw, T.P. Foster, M. Kumar, H.E. Kafman, H.W. Thompson, The high prevalence of Herpes Simplex virus type 1 DNA in human trigeminal Ganglia is not a function of age or gender, J. Virol. 85 (2008) 8230–8234.

[3]

A.J.J. Wood, Antiviral drugs, N. Engl. J. Med. 340 (1999) 1255–1268.

[4]

P. Reusser, Antiviral therapy: current potions and challenges, Schweiz. Med. Wochenschr. 130 (2000) 101–112.

[5]

R. Snoeck, Antiviral therapy of herpes simplex, Int. J. Antimicrob. Agents 16 (2000) 157–159.

[6]

H.J. Field, Herpes simplex virus antiviral drug resistance current trends and future prospects, J. Clin. Virol. 21 (2001) 261–269.

[7]

M.J. Abad, J.A. Guerra, P. Bermejo, A. Irurzun, L. Carrasco, Search for antiviral activity in higher plant extracts, Phytother. Res. 14 (2000) 604–607.

[8]

M. Rajbhandari, U. Wegner, M. Julich, T. Schopke, R. Mentel, Screening of Nepalese medicinal plants for antiviral activity, J. Ethnopharmacol. 74 (2001) 251–255.

[9]

L.T. Lin, T.Y. Chen, C.Y. Chung, R.S. Noyce, T.B. Grindley, C. McCormick, T.C. Lin, G.H. Wang, C.C. Lin, C.D. Richardson, Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread, J. Virol. 85 (2011) 4386–4398.

[10]

Y.M. Lin, M.T. Flavin, R. Schure, F.C. Chen, R. Sidwell, D.L. Barnard, J.H. Huffman, E.R. Kern, Antiviral activities of biflavonoids, Planta Med. 65 (1999) 120–125.

[11]

S.F. Martin, The amaryllidaceae alkaloids, Alkaloids 30 (1987) 251–253.

[12]

J.B. Sindambiwe, M. Calomme, S. Geerts, L. Pieters, A.J. Vlietinck, D.A. Vanden Berghe, Evaluation of biological activities of triterpenoid saponins from Maesa lanceolata, J. Nat. Prod. 61 (1998) 585–590.

[13]

K.Z. Bourne, N. Bourne, S.F. Reising, L.R. Stanberry, Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2, Antivir. Res. 42 (1999) 219–226.

[14]

D.O. Andersen, N.D. Weber, S.G. Wood, B.G. Hughes, B.K. Murray, J.A. North, In vitro virucidal activity of selected anthraquinones and anthraquinone derivatives, Antivir. Res. 16 (1991) 185–196.

[15]

J.L. Charlton, Antiviral activity of lignans, J. Nat. Prod. 61 (1998) 1447–1451.

[16]

G. Ferrea, A. Canessa, F. Sampietro, M. Cruciani, G. Romussi, D. Bassetti, In vitro activity of a Combretum micranthum extract against herpes simplex virus types 1 and 2, Antivir. Res. 21 (1993) 317–325.

[17]

Y. Tasi, L.L. Cole, L.E. Davis, S.J. Lockwood, V. Simmons, G.C. Wild, Antiviral properties of garlic: in vitro effects on influenza B, herpes simplex and Coxsackie viruses, Planta Med. 51 (1985) 460–461.

[18]

T. Ikeda, J. Ando, A. Miyazono, M. Uyeda, Anti-herpes virus activity of solanum steroidal glycosides, Biol. Pharm. Bull. 23 (2000) 363–364.

[19]

C.A.J. Erdelmeier, J. Cinatl Jr., H. Rabenau, H.W. Doerr, A. Biber, E. Koch, Antiviral and antiphlogistic activities of Hamamelis irginiana bark, Planta Med. 62 (1996) 241–245.

[20]

L.J. Reed, H.A. Muench, A simple method of estimating fifty per cent endpoints, Am. J. Hyg. 27 (1938) 493–497.

[21]

C. Le Contel, P. Galea, F. Silvy, I. Hirsch, K.C. Chermann, Identification of the β2m-derived epitope responsible for neutralization of HⅣ isolates, Cell. Pharmacol. AIDS Sci. 3 (1996) 68–73.

[22]

C. McLaren, M.N. Ellis, G.A. Hunter, A colorimetric assay or the measurement of the sensitivity of Herpes simplex viruses to antiviral agents, Antivir. Res. 3 (1983) 223–234.

[23]

M. Langlois, J.P. Allard, F. Nugier, M. Aymard, A rapid and automated colorimetric assay for evaluating in the sensitivity of Herpes simplex strains to antiviral drugs, J. Biol. Stand. 14 (1986) 201–211.

[24]
J.B. Hudson, Antiviral Compounds from Plants, CRC Press, Boca Raton,Ann Arbor, Boston, Florida, 1990, pp. 119–131.
[25]

M. Mukhtar, M. Arshad, M. Ahmad, R.J. Pomerantz, B. Wigdahl, Antiviral potentials of medicinal plants, Virus Res. 131 (2008) 111–120.

[26]
D.A. Vanden Berghe, A.J. Vlietinek, Screening methods for antibacterial and antiviral agents from higher plants, in: K. Hostettmann (Ed.), Methods in Biochemistry, vol. 6, Academic Press, London, 1991, p. 47.
[27]

M.M.R. Gomes, D.M. Cerqueira, D.Q. Falcão, F.S. Menezes, M.D. Wigg, G.S. Mendes, F.O. Martins, J.F.M. Silva, R.M. Kuster, M.T.V. Romanos, In vitro anti-HSV-2 activity of isoquercetin from Hyptis fasciculata Benth, Virus Rev. Res. 13 (2008) 1–15.

[28]

L.R.R. Martins, M.A. Brenzan, C.V. Nakamura, B.P. Dias Filho, T.U. Nakamura, D.A.G. Cortez, In vitro antiviral activity from Acanthospermum australe on herpes virus and poliovirus, Pharm. Biol. 49 (2011) 26–31.

[29]

P. Schnitzler, A. Neuner, S. Nolkemper, C. Zundel, H. Nowack, K.H. Sensch, J. Reichling, Antiviral activity and mode of action of propolis extracts and selected compounds, Phytother. Res. 24 (2009) S20-S28.

[30]

A.P. Almeida, M.M.F.S. Miranda, I.C. Simoni, M.D. Wigg, M.H.C. Lagrota, S.S. Costa, Flavonol monoglycosides isolated from the antiviral fractions of Persea Americana (Lauraceae) leaf infusion, Phytother. Res. 12 (1998) 562–567.

[31]

S.Y. Lyu, J.Y. Rhim, W.B. Park, Antiherpetic activities of flavonoids against Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro, Arch. Pharmacol. Res. 28 (2005) 1293–1301.

[32]

M.T. Khan, A. Ather, K.D. Thompson, R. Gambari, Extracts and molecules from medicinal plants against herpes simplex viruses, Antivir. Res. 67 (2005) 107–119.

[33]

M. Debiaggi, F. Tateo, L. Pagani, M. Luini, E. Romero, Effects of propolis flavonoids on virus infectivity and replication, Microbiologica 13 (1990) 207–213.

[34]

P.K. Agrawal, NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides, Phytochemistry 31 (1992) 3307–3330.

[35]

K.R. Markham, Technique of Flavonoid Identification, Academic Press,London, 1982.

[36]

T. Tanaka, G. Nonaka, I. Nishioka, 7-O-Galloyl-(+)-catechin and 3-O-galloylprocyanidin B-3 from Sanguisorba officinalis, Phytochemistry 22 (1983) 2575–2578.

[37]

S.A.A. El-Toumy, K.A. Mahdy, Polyphenols from Acacia nilotica leaves and evaluation of antihyperglycaemic effect of aqueous extract, Bull. Fac. Pharm. 42 (2004) 317–325.

[38]

S. Funayama, H. Hikino, Hypotensive principles of Diospyros kaki leaves, Chem. Pharm. Bull. 27 (1979) 2865–2868.

[39]

H.Y. Kim, B.H. Moon, H.J. Lee, D.H. Choi, Flavonol glycosides from the leaves of Eucommia ulmoides O. with glycation inhibitory activity, J. Ethnopharmacol. 93 (2004) 227–230.

[40]

T. Masuda, K. Iritani, S. Yonemori, Y. Oyoma, Y. Takeda, Isolation and antioxidant activity of galloyl flavonol glycosides from the seashore plant, Pemphis acidula, Biosci. Biotechnol. Biochem. 65 (2001) 1302–1309.

[41]

K.R. Markham, B. Ternai, R. Stanley, H. Geiger, T.R. Mabry, 13C NMR studies of flavonoids-Ⅲ: naturally occurring flavonoid glycosides and their acylated derivatives, Tetrahedron 34 (1978) 1389–1397.

Food Science and Human Wellness
Pages 91-101
Cite this article:
El-Toumy SA, Salib JY, El-Kashak WA, et al. Antiviral effect of polyphenol rich plant extracts on herpes simplex virus type 1. Food Science and Human Wellness, 2018, 7(1): 91-101. https://doi.org/10.1016/j.fshw.2018.01.001

385

Views

16

Downloads

60

Crossref

N/A

Web of Science

62

Scopus

0

CSCD

Altmetrics

Received: 08 December 2016
Revised: 23 August 2017
Accepted: 15 January 2018
Published: 15 February 2018
© 2018 “Society information”.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return