AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (462.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Role of calpain system in meat tenderness: A review

Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, Christchurch, New Zealand
Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
Show Author Information

Abstract

Aging is a popular method used by meat industry for improving the sensory attributes of meat. Despite the advent of many novel technologies, aging has not lost its charm and is still widely used commercially as a post-mortem intervention for tenderization. Aging improves the tenderness of meat through disruption of the muscle structure by intracellular proteolytic systems. Muscles undergo various molecular changes that cause proteolysis of key myofibrillar and cytoskeletal proteins, disrupting the overall integrity of muscle cells. Although several endogenous proteolytic systems are capable of post-mortem proteolysis, a great body of scientific evidence supports a major role for the calpain system. Calpains are intracellular calcium-dependent cysteine proteases found in most eukaryotes. At least three calpains (μ- and m-calpains and calpain 3) and calpastatin, their specific endogenous inhibitor, are found in muscle. They are known to be involved in the proteolysis of functionally relevant structural proteins such as the myofibrillar proteins and cytoskeletal anchorage complexes. These ubiquitous proteases are also present in mitochondria and play important roles in a variety of pathophysiological conditions including apoptotic and necrotic cell death phenomena. This review discusses the role and contribution of the calpain system and the factors that influence calpain activity during aging.

References

[1]
D.L. Hopkins, G. Geesink, Protein Degradation Post Mortem and Tenderisation. Applied Muscle Biology and Meat Science, CRC Press: Taylor and Francis Group, 2009, pp. 149–173.
[2]

V. Sierra, M. Oliván, Role of mitochondria on muscle cell death and meat tenderization, Recent Pat. Endocr. Metab. Immune Drug Discov. 7 (2013) 120-129.

[3]

R.G. Taylor, G.H. Geesink, V.F. Thompson, M. Koohmaraie, D.E. Goll, Is Z-disk degradation responsible for postmortem tenderization? J. Anim. Sci. 73 (1995) 1351-1367.

[4]

T. Wheeler, M. Koohmaraie, Prerigor and postrigor changes in tenderness of ovine longissimus muscle, J. Anim. Sci. 72 (1994) 1232-1238.

[5]

G.H. Geesink, M. Koohmaraie, Effect of calpastatin on degradation of myofibrillar proteins by l-calpain under postmortem conditions, J. Anim. Sci. 77 (1999) 2685-2692.

[6]

A. Bekhit, M. Farouk, L. Cassidy, K. Gilbert, Effects of rigor temperature and electrical stimulation on venison quality, Meat Sci. 75 (2007) 564-574.

[7]

G.H. Geesink, A.D. Bekhit, R. Bickerstaffe, Rigor temperature and meat quality characteristics of lamb longissimus muscle, J. Anim. Sci. 78 (2000) 2842-2848.

[8]

C. Hertzman, U. Olsson, E. Tornberg, The influence of high temperature, type of muscle and electrical stimulation on the course of rigor, aging and tenderness of beef muscles, Meat Sci. 35 (1993) 119-141.

[9]

R. Warner, F. Dunshea, D. Gutzke, J. Lau, G. Kearney, Factors influencing the incidence of high rigor temperature in beef carcasses in Australia, Anim. Prod. Sci. 54 (2014) 363-374.

[10]

J.M. Thompson, D.L. Hopkins, D.N. D'Souza, P.J. Walker, S.R. Baud, D.W. Pethick, The impact of processing on sensory and objective measurements of sheep meat eating quality, Aust. J. Exp. Agric. 45 (2005) 561-573.

[11]

E.H. Lonergan, W. Zhang, S.M. Lonergan, Biochemistry of postmortem muscle-Lessons on mechanisms of meat tenderization, Meat Sci. 86 (2010) 184-195.

[12]

J.W. Savell, S.L. Mueller, B.E. Baird, The chilling of carcasses. Review, Meat Sci. 70 (2005) 449-459.

[13]

A.M. Fernández, C. Vieira, Effect of chilling applied to suckling lamb carcasses on hygienic, physicochemical and sensory meat quality, Meat Sci. 92 (2012) 569-574.

[14]

C. Vieira, A.M. Fernández, Effect of aging time on suckling lamb meat quality resulting from different carcass chilling regimes, Meat Sci. 96 (2014) 682-687.

[15]

M.P. Rees, G.R. Trout, R.D. Warner, Tenderness, aging rate and meat quality of pork M. longissimus thoracis et lumborum after accelerated boning, Meat Sci. 60 (2002) 113-124.

[16]

B.B. Marsh, Rigor mortis in beef, J. Sci. Food Agric. 5 (1954) 70-75.

[17]

K. Rosenvold, U. Borup, M. Therkildsen, Stepwise chilling- Tender pork without compromising water-holding capacity, J. Anim. Sci. 88 (2010) 1830-1841.

[18]

M.P. Rees, G.R. Trout, R.D. Warner, The influence of the rate of pH decline on the rate of aging for pork. Ⅱ: interaction with chilling temperature, Meat Sci. 65 (2003) 805-818.

[19]

B. Leroy, S. Lambotte, O. Dotreppe, H. Lecocq, L. Istasse, A. Clinquart, Prediction of technological and organoleptic properties of beef Longissimus thoracis from near-infrared reflectance and transmission spectra, Meat Sci. 66 (2003) 45-54.

[20]

M.I. Khan, S. Jung, K.C. Nam, C. Jo, Postmortem aging of beef with a special reference to the dry aging, Korean J. Food Anim. Sci. 36 (2016) 159-169.

[21]
R.D. Smith, Dry Aging Beef for the Retail Channel, Thesis, A&M University, College station, Texas, 2007 http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/5739/etd-tamu-2007A-ANSC-Smith.pdf?sequence=1&isAllowed=y.
[22]

R.E. Campbell, M.C. Hunt, P. Levis, E. Chambers IV, Dry-aging effects on palatability of beef longissimus muscle, J. Food Sci. 66 (2001) 196-199.

[23]

R.A. Bowling, T.R. Dustin, G.C. Smith, J.W. Savell, Effect of cryogenic chilling on beef carcass grade, shrinkage and palatability characteristics, Meat Sci. 21 (1987) 67.

[24]

R.L. Joseph, Very fast chilling of beef and tenderness- A report from an EU concerted action, Meat Sci. 43 (1996) 217-227.

[25]

I.H. Hwang, C.E. Devine, D.L. Hopkins, The biochemical and physical effects of electrical stimulation on beef and sheep meat tenderness, Meat Sci. 65 (2003) 677-691.

[26]

M.F. Miller, G.W. Davis, C.B. Ramsey, Effect of subprimal fabrication and packaging methods on palatability and retail caselife of loin steaks from lean beef, J. Food Sci. 50 (1985) 1544-1546.

[27]

J.L. Melody, S.M. Lonergan, L.J. Rowe, T.W. Huiatt, M.S. Mayes, E. Huff-Lonergan, Early postmortem biochemical factors influence tenderness and water holding capacity of three porcine muscles, J. Anim. Sci. 82 (2004) 1195-1205.

[28]

J.V. Lochner, R.G. Kauffman, B.B. Marsh, Early-postmortem cooling rate and beef tenderness, Meat Sci. 4 (1980) 227-241.

[29]

N.J. Simmons, C.C. Daly, T.L. Cummings, S.K. Morgan, N.V. Johnson, A. Lombard, Reassessing the principles of electrical stimulation, Meat Sci. 80 (2008) 110-122.

[30]

K.R.M. Carlin, E. Huff-Lonergan, L.J. Rowe, S.M. Lonergan, Effect of oxidation, pH, and ionic strength on calpastatin inhibition of mu- and m-calpain, J. Anim. Sci. 84 (2006) 925-937.

[31]

G.K. Totland, H. Kryvi, E. Slinde, Composition of muscle fibre types and connective tissue in bovine M. semitendinosus and its relation to tenderness, Meat Sci. 23 (1988) 303-315.

[32]

A. Ouali, A. Talmant, Calpains and calpastatin distribution in bovine, porcine and ovine skeletal-muscles, Meat Sci. 28 (1990) 331-348.

[33]

M. Koohmaraie, Biochemical factors regulating the toughening and tenderisation process of meat, Meat Sci. 43 (1996) 193-201.

[34]
Y.L. Xiong, Protein functionality, in: W.K. Jensen, C. Devine, M. Dikeman (Eds.), Encyclopedia of Meat Sciences, Elsevier Academic Press, Oxford, UK, 2004, pp. 218–242.
[35]

S.C. Seideman, J.D. Crouse, H.R. Cross, The effect of sex condition and growth implants on bovine muscle fiber characteristics, Meat Sci. 17 (1986) 79-95.

[36]

Y.M. Choi, Y.C. Ryu, B.C. Kim, Influence of myosin heavy- and light chain isoforms on early postmortem glycolytic rate and pork quality, Meat Sci. 76 (2007) 281-288.

[37]

S.T. Joo, G.D. Kim, Y.H. Hwang, Y.C. Ryu, Control of fresh meat quality through manipulation of muscle fiber characteristics, Meat Sci. 95 (2013) 828-836.

[38]

Y.H. Hwang, G.D. Kim, J.Y. Jeong, S.J. Hur, S.T. Joo, The relationship between muscle fiber characteristics and meat quality traits of highly marbled Hanwoo (Korean native cattle) steers, Meat Sci. 86 (2010) 456-461.

[39]

S. Ozawa, T. Mitsuhashi, M. Mitsumoto, S. Matsumoto, N. Itoh, K. Itagaki, The characteristics of muscle fiber types of longissimus thoracis muscle and their influences on the quantity and quality of meat from Japanese Black steers, Meat Sci. 54 (2000) 65-70.

[40]

K.S. Kirchofer, C.B. Calkins, B.L. Gwartney, Fiber type composition of muscles of the beef chuck and round, J. Anim. Sci. 80 (2002) 2872-2878.

[41]

M. Rhee, T. Wheeler, S. Shackelford, M. Koohmaraie, Variation in palatability and biochemical traits within and among eleven beef muscles, J. Anim. Sci. 82 (2004) 534.

[42]

D.L. Hopkins, J.M. Thompson, The relationship between tenderness, proteolysis, muscle contraction and dissociation of actomyosin, Meat Sci. 57 (2001) 1-12.

[43]

G.A. Redmond, B. McGeehin, J.J. Sheridan, F. Butler, The effect of ultra-rapid chilling and subsequent aging on the calpain/calpastatin system and myofibrillar degradation in lambM. longissimus thoracis et lumborum, Meat Sci. 59 (2001) 293-301.

[44]

T.L. Wheeler, M. Koomaraie, The extent of proteolysis is independent of sarcomere length in lamb longissimus and psoas major, J. Anim. Sci. 77 (1999) 2444-2451.

[45]

A.D. Weaver, B.C. Bowker, D.E. Gerrard, Sarcomere length influences calpain mediated proteolysis of bovine myofibrils, J. Anim. Sci. 87 (2009) 2096-2103.

[46]

O. Sorheim, K.I. Hildrum, Muscle stretching techniques for improving meat tenderness, Trends Food Sci. Technol. 13 (2002) 127-135.

[47]

E. Dransfield, Optimization of tenderization, aging and tenderness, Meat Sci. 36 (1994) 105-121.

[48]

I. Jaime, J.A. Beltrán, P. Ceña, P. López-Lorenzo, P. Roncalés, Tenderization of lamb meat: effect of rapid temperature drop on muscle conditioning and aging, Meat Sci. 32 (1993) 357-366.

[49]

J.M. Hughes, S.K. Oiseth, P.P. Purslow, R.D. Warner, A structural approach to understanding the interactions between colour, water-holding capacity and tenderness, Meat Sci. 98 (2014) 520-532.

[50]

E. Huff-Lonergan, T. Mitsuhashi, D.D. Beekman, F.C. Parrish, D.G. Olson, R.M. Robson, Proteolysis of specific muscle structural proteins by mucalpain at low pH and temperature is similar to degradation in post-mortem bovine muscle, J. Anim. Sci. 74 (1996) 993-1008.

[51]

D.L. Hopkins, J.M. Thompson, The degradation of myofibrillar proteins in beef and lamb using denaturing electrophoresis–An overview, J. Muscle Foods. 13 (2002) 81-102.

[52]

A. Ouali, H.C. Herrera-Mendez, G. Coulis, S. Becila, A. Boudjellal, L. Aubry, Revisiting the conversion of muscle into meat and the underlying mechanisms, Meat Sci. 74 (2006) 44-58.

[53]

G.H. Geesink, S. Kuchay, A.H. Chishti, M. Koohmaraie, μ-Calpain is essential for postmortem proteolysis of muscle proteins, J. Anim. Sci. 84 (2006) 2834-2840.

[54]

M. Koohmaraie, G.H. Geesink, Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system, Meat Sci. 74 (2006) 34-43.

[55]
E. Huff-Lonergan, S.M. Lonergan, Postmortem mechanisms of meat tenderization: the roles of the structural proteins and the calpain system, in: Y.L. Xiong, C.T. Ho, F. Shahidi (Eds.), Quality Attributes of Muscle Foods., Kluwer Academic/Plenum Publishers, New York, 1999, pp. 229–251.
[56]

M. Koohmaraie, The role of Ca2+-dependent proteases (calpains) in postmortem proteolysis and meat tenderness, Biochimie 74 (1992) 239-245.

[57]

M. Koohmaraie, G. Whipple, D.H. Kretchmar, J.D. Crouse, H.J. Mersmann, Postmortem proteolysis in longissimus muscle from beef, lamb and pork carcasses, J. Anim. Sci. 69 (1991) 617-624.

[58]

T.L. Kendall, M. Koohmaraie, J.R. Arbona, S.E. Williams, L.L. Young, Effect of pH and ionic strength on bovine m-calpain and calpastatin activity, J. Anim. Sci. 71 (1993) 96-104.

[59]

W.R. Dayton, W.J. Reville, D.E. Goll, M.H. Stromer, A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme, Biochemistry 15 (1976) 2159-2167.

[60]

M.P. Kent, M.J. Spencer, M. Koohmaraie, Postmortem proteolysis is reduced in transgenic mice overexpressing calpastatin, J. Anim. Sci. 82 (2004) 794-801.

[61]

O. Bohorov, P.J. Buttery, J.H.R.D. Correia, J.B. Soar, The effect of the β-2-adrenergic agonist clenbuterol or implantation with oestradiol plus trenbolone acetate on protein metabolism in wether lambs, British J. Nutr. 57 (1987) 99-107.

[62]

F.R. Dunshea, D.N. D'Souza, D.W. Pethick, G.S. Harper, R.D. Warner, Effects of dietary factors and other metabolic modifiers on quality and nutritional value of meat, Meat Sci. 71 (2005) 8-38.

[63]

G.H. Geesink, M. Koohmaraie, Postmortem proteolysis and calpain/calpastatin activity in callipyge and normal lamb biceps femoris during extended postmortem storage, J. Anim. Sci. 77 (1999) 1490-1501.

[64]

T.L. Wheeler, M. Koohmaraie, S.D. Shackelford, Effect of postmortem injection time and postinjection aging time on the calcium-activated tenderization process in beef, J. Anim. Sci. 75 (1997) 2652-2660.

[65]

M. Koohmaraie, J.D. Crouse, H.J. Mersmann, Acceleration of post-mortem tenderization in ovine carcasses through infusion of calcium chloride: Effect of concentration and ionic strength, J. Anim. Sci. 67 (1989) 934-942.

[66]

M.A. Sentandreu, G. Coulis, A. Ouali, Role of muscle endopeptidases and their inhibitors in meat tenderness, Trends Food Sci. Technol. 13 (2002) 400-421.

[67]

D. Croall, G. DeMartino, Calcium-activated neutral protease (calpain) system: Structure, function, and regulation, Physiol. Rev. 71 (1991) 813-847.

[68]

D.E. Goll, V.F. Thompson, H.Q. Li, W. Wei, J.Y. Cong, The calpain system, Physiol. Rev. 83 (2003) 731-801.

[69]
S.M. Cruzen, Characterization of the Skeletal Muscle calpain/calpastatin System in Growth Models in Swine and Cattle [Thesis]. Paper 13305, downloaded from, 2013 http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=4312&context=etd.
[70]

E.N. Moudilou, N. Mouterfi, J.M. Exbrayat, C. Brun, Calpains expression during Xenopus Laevis development, Tissue Cell 42 (2010) 275-281.

[71]

M.A. Ilian, R. Bickerstaffe, M.L. Greaser, Postmortem changes in myofibrillar-bound calpain 3 revealed by immunofluorescence microscopy, Meat Sci. 66 (2004) 231-240.

[72]

X.X. Xu, X. Shui, Z.H. Chen, C.Q. Shan, Y.N. Hou, Y.G. Cheng, Development and application of a real-time PCR method for pharmacokinetic and biodistribution studies of recombinant adenovirus, Mol. Biotechnol. 43 (2009) 130-137.

[73]

R.D. Tullio, M. Passalacqua, M. Averna, F. Salamino, E. Melloni, S. Pontremoli, Changes in intracellular localization of calpastatin during calpain activation, Biochem. 343 (1999) 467-472.

[74]
K. Suzuki, The structure of calpains and the calpain gene, in: R.L. Mellgren, T. Murachi (Eds.), Intracellular Calcium-Dependent Proteolysis, CRC Press, Boca Raton, 1990, pp. 25–35.
[75]
F. Toldra, M. Reig, Enzymes in meat and fish, in: R. Yada (Ed.), Improving and Tailoring Enzymes for Food Quality and Functionality, Woodhead Publishing, 2015, pp. 199–212, ISBN: 978-1-78242-285-3.
[76]

T. Nishimura, D.E. Goll, Binding of calpain fragments to calpastatin, J. Biol. Chem. 266 (1991) 11842-11850.

[77]

S. Strobl, C. Fernandez-Catalan, M. Braun, R. Huber, H. Masumoto, K. Nakagawa, A. Irie, H. Sorimachi, G. Bourenkow, H. Bartunik, K. Suzuki, W. Bode, The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium, Proc. Natl. Acad. Sci. 97 (2000) 588-592.

[78]

P. Tompa, Y. Emori, H. Sorimachi, K. Suzuki, P. Friedrich, Domain Ⅲ of calpain is a Ca2+-regulated phospholipid-binding domain, Biochem. Biophys. Res. Commun. 280 (2001) 1333-1339.

[79]

K. Suzuki, S. Hata, Y. Kawabata, H. Sorimachi, Structure, activation, and biology of calpain, Diabetes. 53 (2004) S12-S18.

[80]

R.L. Campbell, P.L. Davies, Structure–function relationships in calpains, Biochem. 447 (2012) 335-351.

[81]

P. Raynaud, M. Gillard, T. Parr, R. Bardsley, V. Amarger, H. Levéziel, Correlation between bovine calpastatin mRNA transcripts and protein isoforms, Arch. Biochem. Biophys. 440 (2005) 46-53.

[82]

A. Wendt, V.F. Thompson, D.E. Goll, Interaction of calpastatin with calpain: A review, J. Biol. Chem. 385 (2004) 465-472.

[83]

H. Sorimachi, S. Imajoh-Ohmi, Y. Emori, H. Kawasaki, S. Ohno, Y. Minami, K. Suzuki, Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle, J. Biol. Chem. 264 (1989) 20106-20111.

[84]

R. Ravulapalli, B.G. Diaz, R.L. Campbell, P.L. Davies, Homodimerization of calpain 3 penta-EF-hand domain, Biochem. 388 (2005) 585-591.

[85]

R.A. Hanna, R.L. Campbell, P.L. Davies, Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin, Nature. 456 (2008) 409-412.

[86]

J.S. Elce, P.L. Davies, C. Hegadorn, D.H. Maurice, J.S.C. Arthur, The effects of truncations of the small subunit on m-calpain activity and heterodimer formation, Biochem. 326 (1997) 31-38.

[87]

C.M. Hosfield, J.S. Elce, P.L. Davies, Z.C. Jia, Crystal structure of calpain reveals the structural basis for Ca2+-dependent protease activity and a novel mode of enzyme activation, EMBO J. 18 (1999) 6880-6889.

[88]

T. Moldoveanu, C.M. Hosfield, D. Lim, J.S. Elce, Z. Jia, P.L. Davies, A Ca2+ switch aligns the active site of calpain, Cell. 108 (2002) 649-660.

[89]

Y. Benyamin, The structural basis of calpain behaviour, FEBS J. 273 (2006) 3413-3414.

[90]

F. Salamino, R. De, P. Tullio, P.L. Mengotti, E. Viotti, S. Melloni, Pontremoli, Site-directed activation of calpain is promoted by a membrane-associated natural activator protein, Biochem. 290 (1993) 191-197.

[91]

T.C. Saido, M. Shibata, T. Takenawa, H. Murofushi, K. Suzuki, Positive regulation of mu-calpain action by polyphosphoinositides, J. Biol. Chem. 267 (1992) 24585-24590.

[92]

Y.X. Fan, Y. Zhang, H.B. Shen, LabCaS: Labeling calpain substrate cleavage sites from amino acid sequence using conditional random fields, Proteins: Struct. Funct. Bioinf. 81 (2013) 622-634.

[93]

D.A. duVerle, Y. Ono, H. Sorimachi, H. Mamitsuka, Calpain cleavage prediction using multiple kernel learning, PLoS ONE 6 (2011) e19035.

[94]

H. Sorimachi, H. Mamitsuka, Y. Ono, Understanding the substrate specificity of conventional calpains, Biol. Chem. 393 (2012) 853-871.

[95]

H. Kawasaki, S. Kawashima, Regulation of the calpain calpastatin system by membranes, Mol. Membr. Biol. 13 (1996) 217-224.

[96]

R. De. Tullio, M. Averna, R. Stifanese, T. Parr, R.G. Bardsley, S. Pontremoli, E. Melloni, Multiple rat brain calpastatin forms are produced by distinct starting points and alternative splicing of the N-terminal exons, Arch. Biochem. Biophy. 465 (2007) 148-156.

[97]

D.A. Mohrhauser, K.R. Underwood, A.D. Weaver, In vitro degradation of bovine myofibrils is caused by μ-calpain, not caspase-3, J. Anim. Sci. 89 (2011) 798-808.

[98]

J.R. Ji, K. Takahashi, Changes in concentration of sarcoplasmic free calcium during post-mortem aging of meat, Meat Sci. 73 (2006) 395-403.

[99]

M. Koohmaraie, A.S. Babiker, A.L. Schroeder, R.A. Merkel, T.R. Duston, Acceleration of postmortem tenderization in ovine carcasses through activation of Ca2+-dependent proteases, J. Food Sci. 53 (1988) 1638-1641.

[100]

M. Koohmaraie, S.C. Seidemann, J.E. Schollmeyer, T.R. Dutson, J.D. Crouse, Effect of post-mortem storage on Ca++-dependent proteases, their inhibitor and myofibril fragmentation, Meat Sci. 19 (1987) 187-196.

[101]

P.L. Sensky, T. Parr, R.G. Bardsley, P.J. Buttery, The relationship between plasma epinephrine concentration and the activity of the calpain enzyme system in porcine longissimus muscle, J. Anim. Sci. 74 (1996) 380-387.

[102]

J.P. Camou, J.A. Marchello, V.F. Thompson, S.W. Mares, D.E. Goll, Effect of postmortem storage on activity of μ- and m-calpain in five bovine muscles, J. Anim. Sci. 85 (2007) 2670-2681.

[103]

W.G. Zhang, S.M. Lonergan, M.A. Gardner, E. Huff-Lonergan, Contribution of postmortem changes of integrin, desmin and mu-calpain to variation in water holding capacity of pork, Meat Sci. 74 (2006) 578-585.

[104]

U.J.P. Zimmerman, W.W. Schlaepfer, Two-stage autolysis of the catalytic subunit initiates activation of calpain I, Biochimica et Biophysica Acta: Protein Struct. Mol. Enzymol. 1078 (1991) 192-198.

[105]

C. Parkes, A.A. Kembhavi, A.J. Barrett, Calpain inhibition by peptide epoxides, Biochem. 230 (1985) 509-516.

[106]

T. Edmunds, P.A. Nagainis, S.K. Sathe, V.F. Thompson, D.E. Goll, Comparison of the autolyzed and unautolyzed forms of μ- and m-calpain from bovine skeletal muscle, Biochimica et Biophysica Acta: Protein Struct. Mol. Enzymol. 1077 (1991) 197-208.

[107]

M.L. Boehm, T.L. Kendall, V.F. Thompson, D.E. Goll, Changes in the calpains and calpastatin during postmortem storage of bovine muscle, J. Anim. Sci. 76 (1998) 2415-2434.

[108]

Y. Ono, K. Kakinuma, F. Torii, A. Irie, K. Nakagawa, S. Labeit, K. Abe, K. Suzuki, H. Sorimachi, Possible regulation of the conventional calpain system by skeletal muscle specific calpain, p94/calpain 3, J. Biol. Chem. 279 (2004) 2761-2771.

[109]

B.E. García Díaz, S. Gauthier, P.L. Davies, Ca2+ Dependency of calpain 3 (p94) activation, Biochem. 45 (2006) 3714-3722.

[110]

I. Kramerova, E. Kudryashova, B. Wu, C. Ottenheijm, H. Granzier, M.J. Spencer, Novel role of calpain-3 in the triad-associated protein complex regulating calcium release in skeletal muscle, Hum. Mol. Genet. 17 (2008) 3271-3280.

[111]

I. Kramerova, E. Kudryashova, J.G. Tidball, M.J. Spencer, Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro, Hum. Mol. Gen. 13 (2004) 1373-1388.

[112]

H. Sorimachi, K. Kinbara, S. Kimura, M. Takahashi, S. Ishiura, N. Sasagawa, N. Sorimachi, H. Shimada, K. Tagawa, K. Maruyama, K. Suzuki, Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence, J. Biol. Chem. 270 (1995) 31158-31162.

[113]

R. Taylor, C. Tassy, M. Briand, N. Robert, Y. Briand, A. Ouali, Proteolytic activity of proteasome on myofibrillar structures, Mol. Biol. Reports. 21 (1995) 71-73.

[114]

Y. Ono, K. Ojima, F. Torii, E. Takaya, N. Doi, K. Nakagawa, S. Hata, K. Abe, H. Sorimachi, Skeletal muscle-specific calpain is an intracellular Na+-dependent protease, J. Biol. Chem. 285 (2010) 22986-22998.

[115]

T. Parr, P.L. Sensky, G.P. Scothern, R.G. Bardsley, P.J. Buttery, J.D. Wood, C. Warkup, Skeletal muscle-specific calpain and variable post-mortem tenderization in porcine longissimus muscle, J. Anim. Sci. 77 (1999) 661-668.

[116]

M.A. Ilian, J.D. Morton, M.P. Kent, C.E. Le Couteur, J. Hickford, R. Cowley, R. Bickerstaffe, Intermuscular variation in tenderness: Association with the ubiquitous and muscle-specific calpains, J. Anim. Sci. 79 (2001) 122-132.

[117]

G.H. Geesink, R.G. Taylor, M. Koohmaraie, Calpain 3/p94 is not involved in postmortem proteolysis, J. Anim. Sci. 83 (2005) 1646-1652.

[118]

E. Lazarides, B.D. Hubbard, Immunological characterisation of the subunit of the 100 A filament from muscle cell, Proc. Natl. Acad. Sci. U. S. A. 73 (1976) 4344-4348.

[119]

D. Paulin, Z. Li, Desmin: A major intermediate filament protein essential for the structural integrity and function of muscle, Exp. Cell Res. 301 (2004) 1-7.

[120]

M. Christensen, P. Henckel, P.P. Purslow, Effect of muscle type on the rate of post-mortem proteolysis in pigs, Meat Sci. 66 (2004) 595-601.

[121]

S.F. Hwan, E. Bandman, Studies of desmin and α-actinin degradation in bovine semitendinosous muscle, J. Food Sci. 54 (1989) 1426-1430.

[122]

L. Kristensen, P.P. Purslow, The effect of aging on the water-holding capacity of pork: role of cytoskeletal proteins, Meat Sci. 58 (2001) 17-23.

[123]

E. Morrisson, M. Mielche, P.P. Purslow, Immunolocalisation of intermediate filaments proteins in porcine meat. Fibre type and muscle-specificity variations during conditioning, Meat Sci. 50 (1998) 91-104.

[124]

V. Verrez-Bagnis, J. Noel, C. Sautereau, J. Fleurence, Desmin degradation in postmortem fish muscle, J. Food Sci. 64 (1999) 240-242.

[125]

S. Kitamura, S. Muroya, S. Tanabe, T. Okumura, K. Chikuni, T. Nishimura, Mechanism of production of troponin T fragments during postmortem aging of porcine muscle, J. Agric. Food Chem. 53 (2005) 4178-4181.

[126]

C.P. Baron, S. Jacobsen, P.P. Purslow, Cleavage of desmin by cysteine proteases: Calpains and cathepsin B, Meat Sci. 68 (2004) 447-456.

[127]

R. Lametsch, P. Roepstorff, H.S. Møller, E. Bendixen, Identification of myofibrillar substrates for μ-calpain, Meat Sci. 68 (2004) 515-521.

[128]

A. Schafer, K. Rosenvold, P.P. Purslow, H.J. Andersen, P. Henckel, Physiological and structural events post mortem of importance for drip loss in pork, Meat Sci. 61 (2002) 355-366.

[129]

C.M. Kemp, T. Parr, Advances in apoptotic mediated proteolysis in meat tenderisation, Meat Sci. 92 (2012) 252-259.

[130]

S. Muroya, P. Ertbjerg, L. Pomponio, M. Christensen, Desmin and troponin T are degraded faster in type Ⅱb muscle fibers than in type Ⅰ fibers during postmortem aging of porcine muscle, Meat Sci. 86 (2010) 764-769.

[131]

S.E. Harris, E. Huff-Lonergan, S.M. Lonergan, W.R. Jones, D. Rankins, Antioxidant status affects color stability and tenderness of calcium chloride injected beef, J. Anim. Sci. 79 (2001) 666-677.

[132]

I.F. Penny, E. Dransfield, Relationship between toughness and troponin T in conditioned beef, Meat Sci. 3 (1979) 135-141.

[133]

A. Iwanowska, E. Iwanska, B. Grzes, B. Mikolajczak, E. Pospiech, S. Rosochacki, E. Juszczuk-Kubiak, A. Lyczynski, Changes in proteins and tenderness of meat from young bulls of four breeds at three ages over 10 days of cold storage, Anim. Sci. Papers Reports. 28 (2010) 13-25.

[134]

A. Lana, L. Zolla, Proteolysis in meat tenderization from the point of view of each single protein: A proteomic perspective, J. Proteomics 147 (2016) 85-97.

[135]

L.J. Rowe, K.R. Maddock, A. Trenkle, S.M. Lonergan, E. Huff-Lonergan, Effects of oxidation on beef tenderness and calpain activity, J. Anim. Sci. 81 (2003) 74.

[136]

X. Sun, K.J. Chen, E.P. Berg, D.J. Newman, C.A. Schwartz, W.L. Keller, K.R.M. Carlin, Prediction of troponin-T degradation using color image texture features in 10 d aged beef longissimus steaks, Meat Sci. 96 (2014) 837-842.

[137]

K.L. Thomson, G.E. Gardner, N. Simmons, J.M. Thompson, Length of exposure to high post-rigor temperatures affects the tenderisation of the beef M. Longissmus dorsi, Australian J. Exp. Agric. 48 (2008) 1442-1450.

[138]

A. White, A. O'Sullivan, D.J. Troy, E.E. O'Neill, Manipulation of the pre-rigor glycolytic behaviour of bovine M-longissimus dorsi in order to identify causes of inconsistencies in tenderness, Meat Sci. 73 (2006) 151-156.

[139]

I.H. Hwang, B.Y. Park, S.H. Cho, J.M. Lee, Effects of muscle shortening and proteolysis on Warner-Bratzler shear force in beef longissimus and semitendinosus, Meat Sci. 68 (2004) 497-505.

[140]

M. Du, X. Li, Z. Li, M. Li, L. Gao, D. Zhang, Phosphorylation inhibits the activity of μ-calpain at different incubation temperatures and Ca2+ concentrations in vitro, Food Chem. 228 (2017) 649-655.

[141]

D.A. Mohrhauser, S.M. Lonergan, E. Huff-Lonergan, K.R. Underwood, A.D. Weaver, Calpain-1 activity in bovine muscle is primarily influenced by temperature, not pH decline, J. Anim. Sci. 2 (2014) 1261-1270.

[142]

L. Pomponio, P. Ertbjerg, The effect of temperature on the activity of μ- and m-calpain and calpastatin during post-mortem storage of porcine Longissimus muscle, Meat Sci. 91 (2012) 50-55.

[143]

V.F. Thompson, D.E. Goll, W.C. Kleese, Effects of autolysis on the catalytic properties of the calpains, Biol. Chem. Hoppe-Seyler 371 (1990) 177-185.

[144]

L. Pomponio, R. Lametsch, A.H. Karlsson, L.N. Costa, A. Grossi, P. Ertbjerg, Evidence for post-mortem m-calpain autolysis in porcine muscle, Meat Sci. 80 (2008) 761-764.

[145]

S. Barbut, A.A. Sosnicki, S.M. Lonergan, T. Knapp, D.C. Ciobanu, L.J. Gatcliffe, E. Huff-Lonergan, E.W. Wilson, Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat, Meat Sci. 79 (2008) 46-63.

[146]

G. Bee, A.L. Anderson, S.M. Lonergan, E. Huff-Lonergan, Rate and extent of pH decline affect proteolysis of cytoskeletal proteins and water-holding capacity in pork, Meat Sci. 76 (2007) 359-365.

[147]

R. Lametsch, S. Lonergan, E. Huff-Lonergan, Disulfide bond within mu-calpain active site inhibits activity and autolysis, Biochimica et Biophysica Acta-Proteins Proteomics. 1784 (2008) 1215-1221.

[148]

Q. Chen, J. Huang, F. Huang, M. Huang, G. Zhou, Influence of oxidation on the susceptibility of purified desmin to degradation by μ-calpain, caspase-3 and -6, Food Chem. 150 (2014) 220-226.

[149]

M. Xue, F. Huang, M. Huang, G. Zhou, Influence of oxidation on myofibrillar proteins degradation from bovine via μ-calpain, Food Chem. 134 (2012) 106-112.

[150]

L.J. Rowe, K.R. Maddock, S.M. Lonergan, E. Huff-Lonergan, Oxidative environments decrease tenderization of beef steaks through inactivation of μ-calpain, J. Anim. Sci. 82 (2004) 3254-3266.

Food Science and Human Wellness
Pages 196-204
Cite this article:
Bhat Z, Morton JD, Mason SL, et al. Role of calpain system in meat tenderness: A review. Food Science and Human Wellness, 2018, 7(3): 196-204. https://doi.org/10.1016/j.fshw.2018.08.002

406

Views

15

Downloads

161

Crossref

N/A

Web of Science

167

Scopus

0

CSCD

Altmetrics

Received: 17 June 2018
Revised: 07 August 2018
Accepted: 17 August 2018
Published: 22 August 2018
© 2018 “Society information”.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return