AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Isolation and identification of novel casein-derived bioactive peptides and potential functions in fermented casein with Lactobacillus helveticus

Mengzhu Fana,Tingting GuoaWanru LiaJing ChenaFushuo LiaChao WangaYi Shib,cDavid Xi-an LidShaohui Zhanga,b( )
School of Agriculture and Biology, Shanghai Jiao Tong University, China
Zhejiang Go Peptides Life Science and Healthcare Technology Co., Ltd., China
School of Systemic Biology and Medicine, Shanghai Jiao Tong University, China
Zhejiang Panda Dairy Group Co. Ltd., China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

The present study here establishes a complete and effective method for isolating, purifying and identifying extracellular and intracellular peptides, and also describes the characters and bioactivities of peptides from fermented casein with Lactobacillus helveticus. Intracellular peptides are much larger in quantity and more complex in composition than extracellular peptides, between which the correlation reveals proteolytic and metabolic mechanisms.In addition, totally 241 different peptide sequences were identified by Nano LC–MS/MS from casein (212) and Lactobacillus helveticus proteins (29). These casein-derived peptides mostly originated from β-casein, followed by αS1-casein, κ-casein, and αS2-casein, and came from extracell (69) and intracell (143), in which common peptides have a total of 27. Forty-four of the identified peptides were previously described as bioactive, including angiotensin-converting enzyme (ACE)-inhibitory, antioxidant, immunomodulating, antimicrobial, DPP-Ⅳ inhibitory, antiamnesic and anticancer effects and so on. Thirteen peptides with the potential of some biological activities are obtained, which were described in previous studies. A total of 47 novel peptides of 5 to 26 amino acids that were not disclosed were obtained. The new sources of natural bioactive peptides may have the very high application value as potential new peptide drugs for treatment human diseases. The product peptide DELQDKIHPF found in both extracell and intracell was quantitatively analyzed using the MRM mode of UPLC-U3Q, 23.1 and 9.76 ng/mL, respectively. The quantitative analysis of the potential bioactive peptide may also advance the production of peptide products in the future.

References

[1]

D.D. Kitts, K. Weiler, Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery, Curr. Pharm. Des. 9 (2003) 1309-1323.

[2]

E. Boelsma, J. Kloek, Lactotripeptides and antihypertensive effects: a critical review, Br. J. Nutr. 101 (2009) 776-786.

[3]

L. Ong, N.P. Shah, Release and identification of angiotensin-converting enzymeinhibitory peptides as influenced by ripening temperatures and probiotic adjuncts in cheddar cheeses, LWT Food Sci. Technol. 41 (2008) 1555-1566.

[4]

S. Rao, J. Sun, Y. Liu, H. Zeng, Y. Su, Y. Yang, ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme, Food Chem. 135 (2012) 1245-1252.

[5]

J.S. Hwang, Impact of processing on stability of angiotensin I-converting enzyme (ACE) inhibitory peptides obtained from tuna cooking juice, Food Res. Int. 43 (2010) 902-906.

[6]

Y. Gu, J. Wu, LC-MS/MS coupled with QSAR modeling in characterising of angiotensin I-converting enzyme inhibitory peptides from soybean proteins, Food Chem. 141 (2013) 2682-2690.

[7]

J. Chen, S. Liu, R. Ye, G. Cai, B. Ji, Y. Wu, Angiotensin-I converting enzyme (ACE) inhibitory tripeptides from rice protein hydrolysate: purification and characterization, J. Funct. Foods 5 (2013) 1684-1692.

[8]

B.L. White, T.H. Sanders, J.P. Davis, Potential ACE-inhibitory activity and nano LC-MS/ MS sequencing of peptides derived from aflatoxin contaminated peanut meal, LWT Food Sci. Technol. 56 (2014) 537-542.

[9]

C.C. Udenigwe, Y.S. Lin, W.C. Hou, R.E. Aluko, Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions, J. Funct. Foods 1 (2009) 199-207.

[10]

Z. Vaštag, L. Popović, S. Popović, V. Krimer, D. Peričin, Production of enzymatic hydrolysates with antioxidant and angiotensin-I converting enzyme inhibitory activity from pumpkin oil cake protein isolate, Food Chem. 124 (2011) 1316-1321.

[11]

Z. Hafeez, C. Cakir-Kiefer, E. Roux, C. Perrin, L. Miclo, A. Dary-Mourot, Strategies of producing bioactive peptides from milk proteins to functionalize fermented milk products, Food Res. Int. 63 (2014) 71-80.

[12]

J. Otte, S.M. Shalaby, M. Zakora, A.H. Pripp, S.A. El-Shabrawy, Angiotensin-converting enzyme inhibitory activity of milk protein hydrolysates: effect of substrate, enzyme and time of hydrolysis, Int. Dairy J. 17 (2007) 488-503.

[13]

D. Martínez-Maqueda, B. Miralles, I. Recio, B. Hernandez-Ledesma, Antihypertensive peptides from food proteins: a review, Food Funct. 3 (2012) 350-361.

[14]

R. Rojas-Ronquillo, A. Cruz-Guerrero, A. Flores-Nájera, G. Rodríguez-Serrano, L. Gómez-Ruiz, J.P. Reyes-Grajeda, Antithrombotic and angiotensinconverting enzyme inhibitory properties of peptides released from bovine casein by Lactobacillus casei shirota, Int. Dairy J. 26 (2012) 147-154.

[15]

A. Garcia-Tejedor, B. Padilla, J.B. Salom, C. Belloch, P. Manzanares, Dairy yeasts produce milk proteinderived antihypertensive hydrolysates, Food Res. Int. 53 (2013) 203-208.

[16]

S. Otles, O. Cagindi, Kefir: a probiotic dairy-composition, nutritional and therapeutic aspects, Pak. J. Nutr. 2 (2003) 54-59.

[17]

A. Quirós, B. Hernández-Ledesma, M. Ramos, L. Amigo, I. Recio, Angiotensin-converting enzyme inhibitory activity of peptides derived from caprine kefir, J. Dairy Sci. 88 (2005) 3480-3487.

[18]

M. Kahala, E. Pahkala, A. Pihlanto-Leppälä, Peptides in fermented Finnish milk products, Agric. Sci. Finl. 2 (1993) 379-384.

[19]

B. Hernandez-Ledesma, M.D. Contreras, I. Recio, Antihypertensive peptides: production, bioavailability and incorporation into foods, Adv. Colloid Interface Sci. 165 (2011) 23-35.

[20]

M.R. Jensen, R.K. Vogensen, A. Ylva, Variation in caseinolytic properties of six cheese related Lactobacillus helveticus strains, International Dairy. J. 19 (2009) 661-668.

[21]

T. Wakai, N. Yamamoto, Antihypertensive peptides specific to Lactobacillus helveticus fermented milk, InTech (2012) 159-172.

[22]

N. Yamamoto, A. Akino, T. Takano, Purification and specificity of a cell-wall associated proteinase from Lactobacillus helveticus CP790, J. Biochem. 114 (1993) 740-745.

[23]

N. Yamamoto, Y. Masujima, T. Takano, Reduction of membrane-bound ATPase activity in a Lactobacium helveticus strain with slower growth at low pH, FEMS Microbiol. Lett. 138 (1996) 179-184.

[24]

H. Laan, W.N. Konings, Mechanism of proteinase release from Lactococcus lactissubsp. Cremoris Wg2, Appl. Environ. Microbiol. 55 (1989) 3101-3106.

[25]

J. Ebner, A.A. Arslan, M. Fedorova, R. Hoffmann, A. Küçükçetin, M. Pischetsrieder, Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains, J. Proteomics 117 (2015) 41-57.

[26]

H.E. Hatmi, Z. Jrad, T. Khorchani, J. Jardin, C. Poirson, C. Perrin, C. Cakir-Kiefer, G. Jean-Michel, Identification of bioactive peptides derived from caseins, glycosylation-dependent cell adhesion molecule-1 (GlyCAM-1), and peptidoglycan recognition protein-1 (PGRP-1) in fermented camel milk, Int. Dairy J. 56 (2016) 159-168.

[27]

S. Català‐Clariana, F. Benavente, E. Giménez, Identification of bioactive peptides in hypoallergenic infant milk formulas by CE‐TOF‐MS assisted by semiempirical model of electromigration behavior, Electrophoresis 34 (2013) 1886-1894.

[28]

J. Á. G. Ruiz, M. Ramos, I. Recio, Angiotensin converting enzyme-inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion, Int. Dairy J. 14 (2004) 1075-1080.

[29]

M.M. Contreras, D. Sanchez, M. Á. Sevilla, Resistance of casein-derived bioactive peptides to simulated gastrointestinal digestion, Int. Dairy J. 32 (2013) 71-78.

[30]

O.H.R.N. Lowry, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193 (1951) 265-270.

[31]

M. Xing, L. Cui, B. Qian, L. Fu, Y. Gao, S. Zhang, Research on the determination of concentration of bioactive peptides derived from milk protein, China Dairy 37 (2009) 36-38.

[33]
R.Y. Yada, R.L. Jackman, Protein Structure-Function Relationships in Foods, new ed., Springer-Verlag, Inc, New York, 2012.
[34]

K. Savijoki, H. Ingmer, P. Varmanen, Proteolytic systems of lactic acid bacteria, Appl. Microbiol. Biot. 71 (2006) 394-406.

[35]

E.R.S. Kunji, I. Mierau, A. Hagting, B. Poolman, W.N. Konings, The proteolytic systems of lactic acid bacteria, Antonie Van Leeuwenkoek 70 (1996) 187-221.

[36]

Y. Jin, Y. Yu, Y. Qi, Y. Jin, Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion, J. Proteomics 141 (2016) 24-46.

[37]

J. Ebner, A.A.A. şçı, M. Fedorova, Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains, J. Proteomics 117 (2015) 41-57.

[38]

J. Á. Gómez-Ruiz, M. Ramos, I. Recio, Identification and formation of angiotensin-converting enzyme-inhibitory peptides in Manchego cheese by high-performance liquid chromatography–tandem mass spectrometry, J. Chromatogr. A 1054 (2004) 269-277.

[39]

J. Á. Gómez-Ruiz, M. Ramos, I. Recio, Angiotensin-converting enzyme-inhibitory peptides in manchego cheeses manufactured with different starter cultures, Int. Dairy J. 12 (2002) 697-706.

[40]

J.A. Goḿez-Ruiz, M. Ramos, I. Recio, Angiotensin-converting enzymeinhibitory peptides in Manchego cheeses manufactured with different starter cultures, International Dairy. J. 12 (2002) 697-706.

[41]

M.D.M. Contreras, R. Carrón, M.J. Montero, Novel casein-derived peptides with anti hypertensive activity, Int. Dairy. J. 19 (2009) 566-573.

[42]

F.C. Thomas, W. Mullen, R.T. Mastitomics, The integrated omics of bovine milk in an experimental model of streptococcus uberis mastitis: 1. High abundance proteins, acute phase proteins and peptidomics, Mol. BioSyst. 12 (2016) 2735-2747.

[43]

F. Baum, M. Fedorova, J. Ebner, Analysis of the endogenous peptide profile of milk: identification of 248 mainly casein-derived peptides, J. Proteome Res. 12 (2003) 5447-5462.

[44]

Oun Ki Go Eun Ha, Su-Mi Chang, Jo, Identification of antihypertensive peptides derived from Low molecular weight casein hydrolysates generated during fermentation by bifidobacterium longum KACC 91563, Korean J. For. Food Sci. Anim. Resour. 35 (2015) 738-747.

[45]

O.K. Chang, Émeline Roux, A.A. Awussi, Use of a free form of the streptococcus thermophilus cell envelope protease PrtS as a tool to produce bioactive peptides, Int. Dairy J. 38 (2014) 104-115.

[46]

M.P. Jensen, F.K. Vogensen, Y. Ardö, Variation in caseinolytic properties of six cheese related Lactobacillus helveticus strains, Int. Dairy J. 19 (2009) 661-668.

[47]

C. Wang, B. Wang, B. Li, Bioavailability of peptides from casein hydrolysate in vitro: amino acid compositions of peptides affect the antioxidant efficacy and resistance to intestinal peptidases, Food Res. Int. 81 (2015) 188-196.

[48]

A. Tapal, G.E. Vegarud, A. Sreedhara, In vitro human gastro-intestinal enzyme digestibility of globulin isolate from oil palm (Elaeis guineensis var. tenera) kernel meal and the bioactivity of the digest, RSC Adv. 6 (2016) 20219-20229.

[49]
JWP Boots, Protein hydrolysate enriched in peptides inhibiting DPP-Ⅳ and their use: U.S. Patent 8,273,710[P]. 2012-9-25.
[50]

A.B. Nongonierma, R.J. Fitzgerald, Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides, Trends Food Sci. Technol. 50 (2016) 26-43.

[51]

V. Gagnaire, S. Carpino, C. Pediliggieri, Uncommonly thorough hydrolysis of peptides during ripening of ragusano cheese revealed by tandem mass spectrometry, J. Agric. Food Chem. 59 (2011) 12443-12452.

[52]

M. Hayes, C. Stanton, G.F. Fitzgerald, R.P. Ross, Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part Ⅱ: bioactive peptide functions, Biotechnol. J. 2 (2007) 435-449.

[53]

E. Lahov, W. Regelson, Antibacterial and immunostimulating caseinderived substances from milk: casecidin, isracidin peptides, Food Chem. Toxicol. 34 (1996) 131-145.

[54]

L. Juillerat-Jeanneret, M.C. Robert, M.A. Juillerat, Peptides from lactobacillus hydrolysates of bovine milk caseins inhibit prolyl-peptidases of human colon cells, J. Agric. Food Chem. 59 (2010) 370-377.

[55]

L. Gútiez, J. Borrero, J.J. Jiménez, Controlled enterolysin A-mediated lysis and production of angiotensin converting enzyme-inhibitory bovine skim milk hydrolysates by recombinant lactococcus lactis, Int. Dairy J. 34 (2014) 100-103.

[56]

A.B. Nongonierma, C. Mazzocchi, S. Paolella, Release of dipeptidyl peptidase Ⅳ (DPP-Ⅳ) inhibitory peptides from milk protein isolate (MPI) during enzymatic hydrolysis, Food Res. Int. 94 (2017) 79-89.

[57]

M. Hayes, R.P. Ross, G.F. Fitzgerald, C. Hill, C. Stanton, Casein-derived antimicrobial peptides generated by lactobacillus acidophilus DPC6026, Appl. Environ. Microbiol. 72 (2006) 2260-2264.

[58]

V.P. Shanmugam, S. Kapila, T.K. Sonfack, Antioxidative peptide derived from enzymatic digestion of buffalo casein, Int. Dairy J. 42 (2014) 1-5.

[59]

H. Uenishi, T. Kabuki, Y. Seto, A. Serizawa, H. Nakajima, Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats, Int. Dairy J. 22 (2012) 24-30.

[60]

T.K. Dalsgaard, L.B. Larsen, Effect of photo-oxidation of major milk proteins on protein structure and hydrolysis by chymosin, Int. Dairy J. 19 (2009) 362-371.

[61]

J. Amiot, L. Germain, S. Turgeon, M. Lemay, Peptides from milk protein hydrolysates to improve the growth of human keratinocytes in culture, Int. Dairy J. 14 (2004) 619-626.

[62]
H. Meisel, D.J. Walsh, B. Murray, R.J. FitzGerald, ACE inhibitory peptides, in: Y. Mine, F. Shahidi (Eds.), Nutraceutical Proteins and Peptides in Health and Disease, CRC Taylor & Francis Group, Boca Raton, London, New York, 2019, 269-315.
[63]

P.V. Padghan, B. Mann, R. Sharma, Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks (Lassi) fermented by lactobacillus acidophillus with consideration of incubation period and simmering treatment, Int.J. Peptide Res. Ther. 23 (2017) 69-79.

[64]

A.L. Capriotti, C. Cavaliere, S. Piovesana, Recent trends in the analysis of bioactive peptides in milk and dairy products, Anal. Bioanal. Chem. 408 (2016) 2677-2685.

[65]

C. De Gobba, G. Tompa, J. Otte, Bioactive peptides from caseins released by cold active proteolyticenzymes from Arsukibacterium ikkense, Food Chem. 165 (2014) 205-215.

[66]

M. Coste, V. Rochet, J. Leonil, D. Molle, S. Bouhallab, D. Tome, Identification of C-terminal peptides of bovine b-casein that enhance proliferation of rat lymphocytes, Immunol. Lett. 33 (1992) 41-46.

[67]

B. Hernandez-Ledesma, L. Amigo, M. Ramos, I. Recio, Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion, J. Agric. Food. Chem. 52 (2004) 1504-1510.

[68]

B. Hernandez-Ledesma, B. Miralles, L. Amigo, M. Ramos, I. Recio, Identification of antioxidant and ACE-inhibitory peptides in fermented milk, J. Sci. Food Agric. 85 (2005) 1041-1048.

[69]

B.N.P. Sah, T. Vasiljevic, S. Mckechnie, Antioxidant peptides isolated from synbiotic yoghurt exhibit antiproliferative activities against HT-29 colon cancer cells, Int. Dairy J. 63 (2016) 99-106.

[70]

M.C. Krizkova, S.H. Kuckova, J. Santrucek, Peptide mass mapping as an effective tool for historical mortar analysis, Constr. Build. Mater. 50 (2014) 219-225.

[71]

T. Matsui, K. Matsumoto, Antihypertensive peptides from natural resources, Adv. Phytomed. 2 (2006) 255-271.

[72]

P. Kalyankar, Y. Zhu, G. O'Cuinn, Investigation of the substrate specificity of glutamyl endopeptidase using purified bovine β‑casein and synthetic peptides, J. Agric. Food Chem. 61 (2013) 3193-3204.

[73]

A. Quirós, M.C.M. Del, M. Ramos, Stability to gastrointestinal enzymes and structure–activity relationship of β-casein-peptides with antihypertensive properties, Peptides 30 (2009) 1848-1853.

[74]
B. Petrat-Melin, T.T. Thu Le, H.S. Møller, Characterizing the in vitro digestionand biological activity of bovine casein variants, in: ConferenceAbstract,11th International Symposium on Milk Genomics and HumanHealth, 2014.
[75]

S. Toelstede, T. Hofmann, Quantitative studies and Taste Re-engineering experiments toward the decoding of the nonvolatile sensometabolome of Gouda cheese, J. Agric. Food Chem. 56 (2008) 5299-5307.

[76]

T. Saito, T. Nakamura, H. Kitazuwa, Y. Kawai, T. Itoh, Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese, J. Dairy Sci. 83 (2000) 1434-1440.

[77]

Y. Jinsmaa, M. Yoshikawa, Enzymatic release of neocasomorphin and β-casomorphin from bovine β-casein, Peptides 20 (1999) 957.

[78]

H. Zhao, F. Zhou, L. Wang, Characterization of a bioactive peptide with cytomodulatory effect released from casein, Eur. Food Res. Technol. 238 (2014) 315-322.

[79]

M. Hayes, C. Stanton, G.F. Fitzgerald, R.P. Ross, Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part Ⅱ: bioactive peptide functions, Biotechnol. J. 2 (2007) 435-449.

[80]

M.J. Ojeda, A. Cereto-Massagué, C. Valls, G. Pujadas, DPP-Ⅳ, An important target for antidiabetic functional food design, Food Inf. 22 (2014) 177-212.

[81]

S. Pisanu, D. Pagnozzi, M. Pes, Differences in the peptide profile of raw and pasteurised ovine milk cheese and implications for its bioactive potential, Int. Dairy J. 42 (2014) 26-33.

[82]

M. Asano, N. Nio, Y. Ariyoshi, Inhibition of prolyl endopeptidase by synthetic beta-casein peptides and their derivatives with a C-terminal prolinol or prolinal, Biosci. Biotechnol. Biochem. 56 (1992) 976-977.

[83]

A. García-Tejedor, L. Sánchez-Rivera, I. Recio, Dairy debaryomyces hansenii strains produce the antihypertensive casein-derived peptides LHLPLP and HLPLP, LWT - Food Sci. Technol. 61 (2014) 550-556.

[84]
Uluko Hankie, Effects of Ultrasound and Microwave Pretreatments onFunctional Properties of Milk Protein Concentrate Hydrolysates, Ph.D. thesis, Chinese Academy of Agricultural Sciences, China, 2014.
[85]

C.G. Rizzello, I. Losito, M. Gobbetti, Antibacterial activities of peptides from the Water-soluble extracts of Italian cheese varieties, J. Dairy Sci. 88 (2005) 2348-2360.

[86]
C. Van der Ven, Biochemical and Functional Characterisation of Casein andWhey Protein Hydrolysates. A Study on Correlations between Biochemicaland Functional Properties Using Multivariate Data Analysis, Ph.D. thesis, Wageningen University, The Netherlands, 2002.
[87]

M. Schurink, W.J. van Berkel, H.J. Wichers, Improvement of lipoxygenase inhibition by octapeptides, Peptides 28 (2007) 2268-2275.

[88]

X. Mao, J. Ni, W. Sun, Value-added utilization of yak milk casein for the production of angiotensin-I-converting enzyme inhibitory peptides, Food Chem. 103 (2007) 1282-1287.

[89]

I. Shinoda, A. Fushimi, H. Kato, H. Okai, S. Fukui, Bitter taste of synthetic C-terminal tetradecapeptide of bovine beta-casein, H-pro196 Val-leu-gly-pro-Val-arg-gly-pro-phe-pro-Ile-Ile-Val209-OH, and its related peptides, Agric. Biol. Chem. 49 (1985) 2587-2596.

[90]
I. Boldogh, J.G. Stanton, J.A. Georgiades, T.K. Hughes, M. Kruzel, Use of colostrinin, constituent peptides thereof, and analogs thereof as inhibitors of apoptosis and other cellular damage: U.S. Patent 7,119,064[P]. 2006-10-10.
[91]

M. Hayes, C. Stanton, H. Slattery, O. O'Sullivan, C. Hill, G.F. Fitzgerald, Casein fermentate of lactobacillus animalis DPC6134 contains a range of novel propeptide angiotensin-converting enzyme inhibitors, Appl. Environ. Microbiol. 73 (2007) 4658-4667.

[92]

J.A. Gómez-Ruiz, G. Taborda, L. Amigo, M. Ramos, E. Molina, Sensory and mass spectrometric analysis of the peptidic fraction Lower than one thousand daltons in manchego cheese, J. Dairy Sci. 90 (2007) 4966-4973.

[93]
M.L. Kruzel, Therapeutic use of peptides: U.S. Patent 138,762[P]. 2009-11-19.
[94]

D. Solanki, S. Hati, A. Sakure, in silico and in vitro analysis of novel angiotensin I-converting enzyme (ACE) inhibitory bioactive peptides derived from fermented camel milk (camelus dromedarius), Int. J. Peptide Res. Ther. (2017) 1-19.

[95]
R.J. FitzGerald, B.A. Murray, D.J. Walsh, Hypotensive Peptides from Milk Proteins, vol. 134, 2004, pp. 980S–988S, http://www.jn.nutrition.org.
[96]

E.A. Perpetuo, L. Juliano, I. Lebrun, Biochemical and pharmacological aspects of two bradykinin-potentiating peptides obtained from tryptic hydrolysis of casein, J. Protein Chem. 22 (2003) 601-606.

[97]

S.V. Silva, A. Pihlanto, F.X. Malcata, Bioactive peptdes in ovine and caprine cheese like systems prepared with proteases from Cynara cardunculus, J. Dairy Sci. 89 (2006) 3336-3344.

[98]
H. Meisel, D.J. Walsh, B. Murray, R.J. FitzGerald, ACE inhibitory peptides, in: Y. Mine, F. Shahidi (Eds.), Nutraceutical Proteins and Peptides in Health andDisease, CRC Taylor & Francis Group, Boca Raton, London, New York, 2006, pp. 269–315.
[99]

E. Sommella, G. Pepe, G. Ventre, F. Pagano, G.M. Conte, C. Ostacolo, M. Manfra, G.C. Tenore, M. Russo, E. Novellino, P. Campiglia, Detailed peptide profiling of "Scotta": from a dairy waste to a source of potential health-promoting compounds, Dairy Sci. Technol. 96 (2016) 1-9.

[100]

G. Picariello, P. Ferranti, O. Fierro, Peptides surviving the simulated gastrointestinal digestion of milk proteins:biological and toxicological implications, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 878 (2010) 295-308.

[101]

J.R. Reid, C.H. Moore, G.G. Midwinter, G.G. Pritchard, Action of a cell wall proteinase from lactococcus lactis subsp. Cremoris SK11 on bovine αs1-casein, Appl. Microbiol. Biotechnol. 35 (1991) 222-227.

[103]
H. Belitz, W. Grosch, P. Schieberle, Food Chemistry, 4th ed., Springer-Verlag, Berlin, 2009.
[104]

W. Galia, C. Perrin, M. Genay, A. Dary, Variability and molecular typing of streptococcus thermophilus strains displaying different proteolytic and acidifying properties, Int. Dairy J. 19 (2009) 89-95.

[105]

E.R.S. Kunji, I. Mierau, A. Hagting, B. Poolman, W.N. Konings, The proteotytic systems of lactic acid bacteria, Antonie Van Leeuwenhoek 70 (1996) 187-221.

[106]

V. Juillard, H. Laan, E.R. Kunji, The extracellular PI-type proteinase of lactococcus lactis hydrolyzes beta-casein into more than one hundred different oligopeptides, J. Bacteriol. 177 (1995) 3472-3478.

[107]

G.G. Pritchard, T. Coolbear, The physiology and biochemistry of the proteolytic system in lactic acid bacteria, FEMS Microbiol. Rev. 12 (1993) 179-206.

[108]

P.D. Minkiewicz, D. Jerzy, A. Iwaniak, M. Dziuba, M. Darewicz, BIOPEP database and other programs for processing bioactive peptide sequences, J. AOAC Int. 91 (2008) 965-980.

[109]

A. Iwaniak, A.I.J. Dziuba, BIOPEP-PBIL tool for the analysis of the structure of biologically active motifs derived from food proteins, Food Technol. Biotechnol. 49 (2011) 118-127.

[110]

A. Pihlanto-Leppälä, Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides, Trends Food Sci. Technol. 11 (2000) 347-356.

[111]

H.U. Demuth, C.H. McIntosh, R.A. Pederson, Type 2 diabetes-therapy with dipeptidyl peptidase IV inhibitors, Biochim. Biophys. Acta 1751 (2005) 33-44.

[112]

S. Maruyama, H. Suzuki, A peptide inhibitor of angiotensin I-converting enzyme in the tryptic hydrolysate of casein, Agric. Biol. Chem. 46 (1982) 1393-1394.

[113]

A. Pihlanto-Leppälä, T. Rokka, H. Korhonen, Angiotensin I converting enzyme inhibitory peptides derived from bovine milk proteins, Int. Dairy J. 8 (1998) 325-331.

[114]
S. Zhang, S. Lu, G. Sun, L. Ma, J. Zhou, D. Li, Xi, D. Zhan, Bioactive polypeptide DELQ and preparation method as well as application thereof : U.S. Patent 20,160,200,762[P]. 2016-7-14.
[115]

M. Gobetti, P. Ferranti, E. Smacchi, F. Goffredi, F. Addeo, Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. Cremoris FT4, Appl. Environ. Microbiol. 66 (2000) 3898-3904.

Food Science and Human Wellness
Pages 156-176
Cite this article:
Fan M, Guo T, Li W, et al. Isolation and identification of novel casein-derived bioactive peptides and potential functions in fermented casein with Lactobacillus helveticus. Food Science and Human Wellness, 2019, 8(2): 156-176. https://doi.org/10.1016/j.fshw.2019.03.010

552

Views

25

Downloads

59

Crossref

N/A

Web of Science

60

Scopus

0

CSCD

Altmetrics

Received: 15 February 2018
Accepted: 09 March 2019
Published: 01 April 2019
© 2019 “Society information”.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return