AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Cytochrome P450 monooxygenase-mediated eicosanoid pathway: A potential mechanistic linkage between dietary fatty acid consumption and colon cancer risk

Weicang WangaJianan ZhangaGuodong Zhanga,b( )
Department of Food Science, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
Molecular and Cellular Biology Program, University of Massachusetts-Amherst, Amherst, MA, 01003, USA

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Human consumption of linoleic acid (LA, 18:2ω-6, abundant in vegetable oils) is very high. Animal experiments showed that excessive LA intake increased azoxymethane-induced colon tumorigenesis, however, the impact of excessive LA on colon cancer in human is not conclusive, making it difficult to make dietary recommendations for optimal intake of LA. Understanding the molecular mechanisms of LA on colon tumorigenesis could help to clarify its health effect, and facilitate development of mechanism-based strategies for preventing colon cancer. Recent studies show that the previously unappreciated cytochrome P450 monooxygenase-mediated eicosanoid pathway is upregulated in colon cancer and plays critical roles in its pathogenesis, and could contribute to the effects of dietary LA, as well as ω-3 fatty acids, on colon tumorigenesis. In this review, we will discuss recent studies about the roles of cytochrome P450 monooxygenases in fatty acid metabolism and its roles in colonic inflammation and colon cancer, and how this information could help us to clarify the health impacts of dietary fatty acids.

References

[1]

T. Blasbalg, J. Hibbeln, C. Ramsden, et al., Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century, Am. J. Clin. Nutr. 93 (2011) 950-962.

[2]
U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015 – 2020 Dietary Guidelines for Americans. 8th Edition. December 2015. Available at: http://health.gov/dietaryguidelines/2015/guidelines/.
[3]

R.J. Jandacek, Linoleic acid: a nutritional quandary, Healthcare (Basel) 5 (2) (2017).

[4]

R.T. Enos, K.T. Velazquez, J.L. McClellan, et al., High-fat diets rich in saturated fat protect against azoxymethane/dextran sulfate sodium-induced colon cancer, Am. J. Physiol. Gastrointest. Liver Physiol. 310 (11) (2016) G906-19.

[5]

B. Wu, R. Iwakiri, A. Ootani, et al., Dietary corn oil promotes colon cancer by inhibiting mitochondria-dependent apoptosis in azoxymethane-treated rats, Exp. Biol. Med. (Maywood) 229 (10) (2004) 1017-1025.

[6]

T. Fujise, R. Iwakiri, T. Kakimoto, et al., Long-term feeding of various fat diets modulates azoxymethane-induced colon carcinogenesis through Wnt/beta-catenin signaling in rats, Am. J. Physiol. Gastrointest. Liver Physiol. 292 (4) (2007) G1150-6.

[7]

B.S. Reddy, T. Tanaka, B. Simi, Effect of different levels of dietary trans fat or corn oil on azoxymethane-induced colon carcinogenesis in F344 rats, J. Natl. Cancer Inst. 75 (4) (1985) 791-798.

[8]

A. Tjonneland, K. Overvad, M.M. Bergmann, et al., Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case-control study within a European prospective cohort study, Gut 58 (12) (2009) 1606-1611.

[9]

N. Sakamoto, S. Kono, K. Wakai, et al., Dietary risk factors for inflammatory bowel disease: a multicenter case-control study in Japan, Inflamm. Bowel Dis. 11 (2) (2005) 154-163.

[10]

A.N. Ananthakrishnan, Environmental risk factors for inflammatory bowel disease, Gastroenterol. Hepatol. 9 (6) (2013) 367-374.

[11]

J.K. Hou, B. Abraham, H. El-Serag, Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature, Am. J. Gastroenterol. 106 (4) (2011) 563-573.

[12]

S. Rashvand, M.H. Somi, B. Rashidkhani, et al., Dietary fatty acid intakes are related to the risk of ulcerative colitis: a case-control study, Int. J. Colorectal Dis. 30 (9) (2015) 1255-1260.

[13]

A.R. Hart, R. Luben, A. Olsen, et al., Diet in the aetiology of ulcerative colitis: a European prospective cohort study, Digestion 77 (1) (2008) 57-64.

[14]

G.K. Pot, A. Geelen, E.M. van Heijningen, et al., Opposing associations of serum n-3 and n-6 polyunsaturated fatty acids with colorectal adenoma risk: an endoscopy-based case-control study, Int. J. Cancer 123 (8) (2008) 1974-1977.

[15]

M.W. Buczynski, D.S. Dumlao, E.A. Dennis, Thematic Review Series: Proteomics. An integrated omics analysis of eicosanoid biology, J. Lipid Res. 50 (6) (2009) 1015-1038.

[16]

C.D. Funk, Prostaglandins and leukotrienes: advances in eicosanoid biology, Science (New York, N.Y.) 294 (5548) (2001) 1871-1875.

[17]

D.C. Zeldin, Epoxygenase pathways of arachidonic acid metabolism, J. Biol. Chem. 276 (39) (2001) 36059-36062.

[18]

G. Zhang, S. Kodani, B.D. Hammock, Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer, Prog. Lipid Res. 53 (0) (2014) 108-123.

[19]

J.W. Newman, C. Morisseau, B.D. Hammock, Epoxide hydrolases: their roles and interactions with lipid metabolism, Prog. Lipid Res. 44 (1) (2005) 1-51.

[20]

D. Ye, D. Zhang, C. Oltman, et al., Cytochrome p-450 epoxygenase metabolites of docosahexaenoate potently dilate coronary arterioles by activating large-conductance calcium-activated potassium channels, J. Pharmacol. Exp. Ther. 303 (2) (2002) 768-776.

[21]

D. Wang, R.N. Dubois, The role of COX-2 in intestinal inflammation and colorectal cancer, Oncogene 29 (6) (2010) 781-788.

[22]

C.V. Rao, N.B. Janakiram, A. Mohammed, Lipoxygenase and Cyclooxygenase Pathways and Colorectal Cancer Prevention, Curr. Colorectal Cancer Rep. 8 (4) (2012) 316-324.

[23]

W. Wang, J. Yang, M.L. Edin, et al., Targeted metabolomics identifies the cytochrome P450 monooxygenase eicosanoid pathway as a novel therapeutic target of colon tumorigenesis, Cancer Res. 79 (8) (2019) 1822-1830.

[24]

A.E. Enayetallah, R.A. French, D.F. Grant, Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms, J. Mol. Histol. 37 (3-4) (2006) 133-141.

[25]

J.G. Jiang, C.L. Chen, J.W. Card, et al., Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors, Cancer Res. 65 (11) (2005) 4707-4715.

[26]

F.F. Chung, C.W. Mai, P.Y. Ng, et al., Cytochrome P450 2W1 (CYP2W1) in colorectal cancers, Curr. Cancer Drug Targets 16 (1) (2016) 71-78.

[27]

M. Kumarakulasingham, P.H. Rooney, S.R. Dundas, et al., Cytochrome p450 profile of colorectal cancer: identification of markers of prognosis, Clin. Cancer Res. 11 (10) (2005) 3758-3765.

[28]

W. Wang, J. Yang, M.L. Edin, et al., Targeted metabolomics identifies the cytochrome P450 monooxygenase eicosanoid pathway as a novel therapeutic target of colon tumorigenesis, Cancer Res. 79 (8) (2019) 1822-1830.

[29]

P. Vaupel, A. Mayer, Hypoxia in cancer: significance and impact on clinical outcome, Cancer Metastasis Rev. 26 (2) (2007) 225-239.

[30]

D. Panigrahy, M.L. Edin, C.R. Lee, et al., Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice, J. Clin. Invest. 122 (1) (2012) 178-191.

[31]

D. Zagorac, D. Jakovcevic, D. Gebremedhin, et al., Antiangiogenic effect of inhibitors of cytochrome P450 on rats with glioblastoma multiforme, J. Cereb. Blood Flow Metab. 28 (8) (2008) 1431-1439.

[32]

H. Jernstrom, E. Bageman, C. Rose, et al., CYP2C8 and CYP2C9 polymorphisms in relation to tumour characteristics and early breast cancer related events among 652 breast cancer patients, Br. J. Cancer 101 (11) (2009) 1817-1823.

[33]

M. De Palma, D. Biziato, T.V. Petrova, Microenvironmental regulation of tumour angiogenesis, Nat. Rev. Cancer 17 (8) (2017) 457-474.

[34]

C.L. Chaffer, R.A. Weinberg, A perspective on Cancer cell metastasis, Science (New York, N.Y.) 331 (6024) (2011) 1559-1564.

[35]

Y. Hanaki, H. Kamiya, M. Ohno, et al., Leukotoxin, 9, 10-epoxy-12-octadecenoate: a possible responsible factor in circulatory shock and disseminated intravascular coagulation, Jpn. J. Med. 30 (3) (1991) 224-228.

[36]

M. Hayakawa, K. Kosaka, S. Sugiyama, et al., Proposal of leukotoxin, 9,10-epoxy-12-octadecenoate, as a burn toxin, Biochem. Int. 21 (3) (1990) 573-579.

[37]

J.N. Hu, F. Taki, S. Sugiyama, et al., Neutrophil-derived epoxide, 9,10-epoxy-12-octadecenoate, induces pulmonary edema, Lung 166 (6) (1988) 327-337.

[38]

K. Kosaka, K. Suzuki, M. Hayakawa, et al., Leukotoxin, a linoleate epoxide: its implication in the late death of patients with extensive burns, Mol. Cell. Biochem. 139 (2) (1994) 141-148.

[39]

T. Ozawa, M. Nishikimi, S. Sugiyama, et al., Cytotoxic activity of leukotoxin, a neutrophil-derived fatty acid epoxide, on cultured human cells, Biochem. Int. 16 (2) (1988) 369-373.

[40]

Y. Totani, Y. Saito, T. Ishizaki, et al., Leukotoxin and its diol induce neutrophil chemotaxis through signal transduction different from that of fMLP, Eur. Respir. J. 15 (1) (2000) 75-79.

[41]

J. Zheng, C.G. Plopper, J. Lakritz, et al., Leukotoxin-diol: a putative toxic mediator involved in acute respiratory distress syndrome, Am. J. Respir. Cell Mol. Biol. 25 (4) (2001) 434-438.

[42]

M.F. Moghaddam, D.F. Grant, J.M. Cheek, et al., Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase, Nat. Med. 3 (5) (1997) 562-566.

[43]

B. Zimmer, C. Angioni, T. Osthues, et al., The oxidized linoleic acid metabolite 12,13-DiHOME mediates thermal hyperalgesia during inflammatory pain, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863 (7) (2018) 669-678.

[44]

M.F. Sisemore, J. Zheng, J.C. Yang, et al., Cellular characterization of leukotoxin diol-induced mitochondrial dysfunction, Arch. Biochem. Biophys. 392 (1) (2001) 32-37.

[45]

A.Y. Taha, M. Hennebelle, J. Yang, et al., Regulation of rat plasma and cerebral cortex oxylipin concentrations with increasing levels of dietary linoleic acid, Prostaglandins Leukotrienes Essential Fatty Acids 138 (2018) 71-80.

[46]

P.K. Srivastava, V.K. Sharma, D.S. Kalonia, et al., Polymorphisms in human soluble epoxide hydrolase: effects on enzyme activity, enzyme stability, and quaternary structure, Arch. Biochem. Biophys. 427 (2) (2004) 164-169.

[47]

A.W. Dreisbach, S. Japa, A. Sigel, et al., The Prevalence of CYP2C8, 2C9, 2J2, and soluble epoxide hydrolase polymorphisms in African Americans with hypertension, Am. J. Hypertens. 18 (10) (2005) 1276-1281.

[48]

M. Spiecker, H. Darius, T. Hankeln, et al., Risk of coronary artery disease associated with polymorphism of the cytochrome P450 epoxygenase CYP2J2, Circulation 110 (15) (2004) 2132-2136.

[49]

C.R. Lee, K.E. North, M.S. Bray, et al., Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study, Hum. Mol. Genet. 15 (10) (2006) 1640-1649.

[50]

Q. Wei, P.A. Doris, M.V. Pollizotto, et al., Sequence variation in the soluble epoxide hydrolase gene and subclinical coronary atherosclerosis: interaction with cigarette smoking, Atherosclerosis 190 (1) (2007) 26-34.

[51]

M. Fornage, E. Boerwinkle, P.A. Doris, et al., Polymorphism of the soluble epoxide hydrolase is associated with coronary artery calcification in African-American subjects: the Coronary Artery Risk Development in Young Adults (CARDIA) study, Circulation 109 (3) (2004) 335-339.

[52]

B.D. Przybyla-Zawislak, P.K. Srivastava, J. Vazquez-Matias, et al., Polymorphisms in human soluble epoxide hydrolase, Mol. Pharmacol. 64 (2) (2003) 482-490.

[53]

D.P. Rose, J.M. Connolly, Omega-3 fatty acids as cancer chemopreventive agents, Pharmacol. Ther. 83 (3) (1999) 217-244.

[54]

C.N. Serhan, N.A. Petasis, Resolvins and protectins in inflammation resolution, Chem. Rev. 111 (10) (2011) 5922-5943.

[55]

P. Sapieha, A. Stahl, J. Chen, et al., 5-Lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of omega-3 polyunsaturated fatty acids, Sci. Transl. Med. 3 (69) (2011) 69ra12.

[56]

D. Bagga, L. Wang, R. Farias-Eisner, et al., Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion, Proc. Natl. Acad. Sci. U. S. A. 100 (4) (2003) 1751-1756.

[57]

M. Szymczak, M. Murray, N. Petrovic, Modulation of angiogenesis by omega-3 polyunsaturated fatty acids is mediated by cyclooxygenases, Blood 111 (7) (2008) 3514-3521.

[58]

C. Arnold, M. Markovic, K. Blossey, et al., Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of omega-3 fatty acids, J. Biol. Chem. 285 (43) (2010) 32720-32733.

[59]

R. Fischer, A. Konkel, H. Mehling, et al., Dietary Omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway, J. Lipid Res. 55 (6) (2014) 1150-1164.

[60]

A. Zivkovic, J. Yang, K. Georgi, et al., Serum oxylipin profiles in IgA nephropathy patients reflect kidney functional alterations, Metabolomics 8 (6) (2012) 1102-1113.

[61]

A.H. Keenan, T.L. Pedersen, K. Fillaus, et al., Basal omega-3 fatty acid status affects fatty acid and oxylipin responses to high-dose n3-HUFA in healthy volunteers, J. Lipid Res. 53 (8) (2012) 1662-1669.

[62]

G.C. Shearer, W.S. Harris, T.L. Pedersen, et al., Detection of omega-3 oxylipins in human plasma and response to treatment with omega-3 acid ethyl esters, J. Lipid Res. 51 (8) (2010) 2074-2081.

[63]

D.B. Jump, The biochemistry of n-3 polyunsaturated fatty acids, J. Biol. Chem. 277 (11) (2002) 8755-8758.

[64]

M.G. Malkowski, E.D. Thuresson, K.M. Lakkides, et al., Structure of eicosapentaenoic and linoleic acids in the cyclooxygenase site of prostaglandin endoperoxide H synthase-1, J. Biol. Chem. 276 (40) (2001) 37547-37555.

[65]

O. Laneuville, D.K. Breuer, N. Xu, et al., Fatty acid substrate specificities of human prostaglandin-endoperoxide H synthase-1 and −2: formation of 12-hydroxy-(9Z,13E/Z,15Z)-octadecatrienoic acids from α-linolenic acid, J. Biol. Chem. 270 (33) (1995) 19330-19336.

[66]

G. Zhang, D. Panigrahy, L.M. Mahakian, et al., Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis, Proc. Natl. Acad. Sci. U. S. A. 110 (16) (2013) 6530-6535.

[67]

W. Wang, J. Zhu, F. Lyu, et al., Omega-3 polyunsaturated fatty acids-derived lipid metabolites on angiogenesis, inflammation and cancer, Prostaglandins Other Lipid Mediat. 1 (13-115) (2014) 13-20.

[68]

W. Wang, J. Yang, Y. Nimiya, et al., ω-3 polyunsaturated fatty acids and their cytochrome P450-derived metabolites suppress colorectal tumor development in mice, J. Nutr. Biochem. 48 (2017) 29-35.

[69]

R. Yanai, L. Mulki, E. Hasegawa, et al., Cytochrome P450-generated metabolites derived from omega-3 fatty acids attenuate neovascularization, Proc. Natl. Acad. Sci. U. S. A. 111 (26) (2014) 9603-9608.

[70]

E. Hasegawa, S. Inafuku, L. Mulki, et al., Cytochrome P450 monooxygenase lipid metabolites are significant second messengers in the resolution of choroidal neovascularization, Proc. Natl. Acad. Sci. U. S. A. 114 (36) (2017) E7545-E7553.

[71]

R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2018, CA Cancer J. Clin. 68 (1) (2018) 7-30.

[72]

S. Ogino, J.A. Nowak, T. Hamada, et al., Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology, Annu. Rev. Pathol. 14 (2019) 83-103.

[73]

T. Hamada, J.A. Nowak, , et al., Integration of microbiology, molecular pathology, and epidemiology: a new paradigm to explore the pathogenesis of microbiome-driven neoplasms, J. Pathol. 247 (5) (2019) 615-628.

[74]

S. Ogino, A.T. Chan, C.S. Fuchs, et al., Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field, Gut 60 (3) (2011) 397-411.

[75]

M. Song, R. Nishihara, Y. Cao, et al., Marine omega-3 polyunsaturated fatty acid intake and risk of colorectal cancer characterized by tumor-infiltrating T cells, JAMA Oncol. 2 (9) (2016) 1197-1206.

[76]

R.S. Mehta, R. Nishihara, Y. Cao, et al., Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue, JAMA Oncol. 3 (7) (2017) 921-927.

[77]

K. Mima, Y. Sukawa, R. Nishihara, et al., Fusobacterium nucleatum and t cells in colorectal carcinoma, JAMA Oncol. 1 (5) (2015) 653-661.

[78]

M.R. Rubinstein, X. Wang, W. Liu, et al., Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin, Cell Host Microbe 14 (2) (2013) 195-206.

Food Science and Human Wellness
Pages 337-343
Cite this article:
Wang W, Zhang J, Zhang G. Cytochrome P450 monooxygenase-mediated eicosanoid pathway: A potential mechanistic linkage between dietary fatty acid consumption and colon cancer risk. Food Science and Human Wellness, 2019, 8(4): 337-343. https://doi.org/10.1016/j.fshw.2019.11.002

467

Views

25

Downloads

5

Crossref

N/A

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 12 September 2019
Revised: 01 November 2019
Accepted: 07 November 2019
Published: 14 November 2019
© 2019 “Society information”.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return