AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Isolation, purification, structural characteristic and antioxidative property of polysaccharides from A. cepa L. var. agrogatum Don

Hongcheng Liua,b,1Hongxiu Fana,c,1Jing Zhanga,dShanshan Zhanga,dWenting Zhaoa,bTingting Liua,c( )Dawei Wanga,b( )
School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China
Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun, 130118, China
Key Laboratory of Technological Innovations for Grain Deep-processing and High-effeciency Utilization of By-products of Jilin Province, Changchun, 130118, China

1These authors contributed equally to this work.

Peer review under responsibility of KeAi Communications Co., Ltd

Show Author Information

Abstract

Allium cepa L. var. agrogatum Don (ALAP) is commonly consumed in China as well as other regions and has various beneficial health effects. A novel acidic polysaccharide (named ALAP-21) was obtained from ALAP by ultrasonic and microwave-assisted extraction and purification using DEAE-52 anion exchange and Sephadex G-100 columns. The monosaccharide composition, structural and antioxidative properties of ALAP-21 were investigated by GC–MS chromatography, FT-IR and NMR spectroscopies and three antioxidative activity tests in vitro. The results showed that ALAP-21 was a heteropolysaccharide composed of glucose, galacturonic acid, mannose, galactose, arabinose, rhamnose, xylose, fructose and glucuronic acid with a relative molar ratio of 26.282: 27.546: 11.400: 4.781: 2.467: 2.445: 3.622: 1.106: 1.753, owning (1→4)-α-D-Glcp, (1→4)-α-D-GalAp6Me3OA, (1→4)-β-D-Galp6OMe, (1→2)-α-L-Rhap, (1→4)-β-D-Manp glycosidic linkages. (1→4)-α-D-Glcp and (1→4)-α-D-GalAp6Me3OA residues might be the main components of the sugar chain backbone of ALAP-21. Furthermore, ALAP-21 exhibited high potential for DPPH radicals (82.02%), hydroxyl radicals (53.33%) and superoxide anion radicals (50.28%). These results provide a reference for further research and rational development of ALAP polysaccharides.

References

[1]

F. Jia, H. Li, H. Zhang, et al., Optimize conditions for extracting crude oil from Alliums cepa. L. var.agrogatum Don using response surface methodology, IERI Procedia 5 (2013) 304-311.

[2]
X. Jin, The Genetic Diversity of Forty Eighty Accessions of Allium cepa Var. Aggregatum, Northeast Agricultural University, Harbin, China 2013.
[3]

J. Zhao, S. Song, Y. Han, et al., Comparative analysis of nutritional quality between Allium cepa L.vAr. Agrogatum Don. And Allium cepa L, Journal of Northwest A & F University (Nat. Sci. Ed.) 43 (1) (2015) 106-110.

[4]

J. Zhao, S. Song, C. Zhao, et al., Research progress in health function and medicinal value of nutrient composition for tillered-onion, Science and Technology of Food Industry 34 (23) (2013) 365-372.

[5]

C. Colina-Coca, D. González-Peña, B. Ancos, et al., Dietary onion ameliorates antioxidant defence, inflammatory response, and cardiovascular risk biomarkers in hypercholesterolemic Wistar rats, J. Funct. Foods 36 (2017) 300-309.

[6]

Y. Tang, S. Jiao, J. Luo, et al., The extraction of organic sulfide from onion and its antimicrobial activities, China Condiment 37 (1) (2012) 17-21.

[7]

M.A. Vazquez-Prieto, R.M. Miatello, Organosulfur compounds and cardiovascular disease, Mol. Aspects Med. 31 (6) (2010) 540-545.

[8]

P. Putnik, D. Gabrić, S. Roohinejad, et al., An overview of organosulfur compounds from Allium spp.: from processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties, Food Chem. 276 (15) (2013) 680-691.

[9]

Q. Chen, X. Shao, P. Ling, et al., Recent advances in polysaccharides for osteoarthritis therapy, Eur. J. Med. Chem. 139 (2017) 926-935.

[10]

T. Liu, J. Zhang, Y. Liu, et al., Optimization of ultrasonic microwave-assisted extraction and structural analysis of water-soluble polysaccharide from tillering onion, Food Sci. 38 (22) (2017) 284-290.

[11]

Y. Ma, D. Zhu, K. Thakur, et al., Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion (Allium cepa L.), Int. J. Biol. Macromol. 111 (2018) 92-101.

[12]

J. Li, H. Xu, Y. Li, et al., Cellulose-assisted extraction and antioxidant activity of onion polysaccharides, Acta Bot. Boreal. -Occident. Sin. 30 (11) (2010) 2345-2350.

[13]

Q. Liu, X. Ge, L. Chen, et al., Purification and analysis of the composition and antioxidant activity of polysaccharides from Helicteres angustifolia L, Int. J. Biol. Macromol. 107 (2018) 2262-2268.

[14]

D. Zhang, S. Li, Q. Xiong, et al., Extraction, characterization and biological activities of polysaccharides from Amomum villosum, Carbohyd. Polym. 95 (1) (2013) 114-122.

[15]

T. Masuko, A. Minami, N. Iwasaki, et al., Carbohydrate analysis by a phenol–sulfuric acid method in microplate format, Anal. Biochem. 339 (1) (2005) 69-72.

[16]

H. Feng, J. Fan, S. Yang, et al., Antiviral activity of phosphorylated Radix cyathulae officinalis polysaccharide against Canine Parvovirus in vitro, Int. J. Biol. Macromol. 107 (2017) 511-518.

[17]

N. Blumenkrantz, G. Asboe-Hansen, New method for quantitative determination of uronic acids, Anal. Biochem. 54 (2) (1973) 484-489.

[18]

G. Liu, H. Wang, J. Zhou, et al., Analysis of monosaccharides composition in polysaccharide of Tricholoma matsutake by precolumn derivatization and capillary gas chromatography, Chin. J. Exp. Tradit. Med. Formul. 17 (21) (2011) 62-64.

[19]

G. Mahendran, B.D. Ranjitha Kumari, Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham) Mabb. Fruit extracts, Food Sci. Hum. Wellness 5 (4) (2016) 207-218.

[20]

H. Zhang, S. Nie, S. Cui, et al., Characterization of a bioactive polysaccharide from Ganoderma atrum: Re-elucidation of the fine structure, Carbohyd. Polym. 158 (2017) 58-67.

[21]

J. Xie, F. Zhang, Z. Wang, et al., Preparation, characterization and antioxidant activities of acetylated polysaccharides from Cyclocarya paliurus leaves, Carbohyd. Polym. 133 (2015) 596-604.

[22]

Y. Liu, Y. Du, J. Wang, et al., Structural analysis and antioxidant activities of polysaccharide isolated from Jinqian mushroom, Int. J. Biol. Macromol. 64 (2014) 63-68.

[23]

Z. Wang, J. Xie, M. Shen, et al., Carboxymethylation of polysaccharide from Cyclocarya paliurus and their characterization and antioxidant properties evaluation, Carbohyd. Polym. 136 (2016) 988-994.

[24]

J. Yan, L. Zhu, Y. Qu, et al., Analyses of active antioxidant polysaccharides from four edible mushrooms, Int. J. Biol. Macromol. 123 (2019) 945-956.

[25]

Q. Liu, X. Ge, L. Chen, et al., Purification and analysis of the composition and antioxidant activity of polysaccharides from Helicteres angustifolia L, Int. J. Biol. Macromol. 107 (2018) 2262-2268.

[26]

G. Li, C. Liu, D. Wang, et al., Eco-friendly and cleaner process using online microwave-assisted steam extraction coupled with solid-phase extraction for trace analysis of sulfonamides in animal feed, Chem. Res. Chin. Univ. (6) (2018) 893-898.

[27]

X. Guo, X. Guo, M. Zhang, et al., Comparative detection of lactose and sucrose in milk powder by Lane-Eynon’s method and high performance liquid chromatography with refractive index detector, Food Sci. 37 (12) (2016) 139-143.

[28]

Z. Guadalupe, O. Martínez-Pinilla, Á. Garrido, et al., Quantitative determination of wine polysaccharides by gas chromatography–mass spectrometry (GC–MS) and size exclusion chromatography (SEC), Food Chem. 131 (1) (2012) 367-374.

[29]

V.V. Golovchenko, D.S. Khramova, R.G. Ovodova, et al., Structure of pectic polysaccharides isolated from onion Allium cepa L. Using a simulated gastric medium and their effect on intestinal absorption, Food Chem. 134 (4) (2012) 1813-1822.

[30]

J.B. Lee, S. Miyake, R. Umetsu, et al., Anti-influenza A virus effects of fructan from Welsh onion (Allium fistulosum L.), Food Chem. 134 (4) (2012) 2164-2168.

[31]

L.F. Ballesteros, M.A. Cerqueira, J.A. Teixeiraa, et al., Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides, Int. J. Biol. Macromol. 106 (2018) 647-655.

[32]

Z. Košťálová, Z. Hromádková, Structural characterisation of polysaccharides from roasted hazelnut skins, Food Chem. 286 (15) (2019) 179-184.

[33]

S. Bagchi, K.J. Kumar, Studies on water soluble polysaccharides from Pithecellobium dulce (Roxb.) Benth. Seeds, Carbohyd. Polym. 138 (2016) 215-221.

[34]

Y. Xu, N. Liu, X. Fu, et al., Structural characteristics, biological, rheological and thermal properties of the polysaccharide and the degraded polysaccharide from raspberry fruits, Int. J. Biol. Macromol. 132 (2019) 109-118.

[35]

D. Wang, D. Wang, T. Yan, et al., Nanostructures assembly and the property of polysaccharide extracted from Tremella Fuciformis fruiting body, Int. J. Biol. Macromol. 137 (2019) 751-760.

[36]

Y. Sun, F. Shan, T. Yan, et al., NMR analysis of polysaccharide ASP3 from Angelica sinensis (Oliv.) Diels and it’s hydrolysis products, Chem. J. Chinese U. 30 (9) (2009) 1739-1743.

[37]

Z. Zhang, F. Wang, M. Wang, et al., A comparative study of the neutral and acidic polysaccharides from Allium macrostemon Bunge, Carbohyd. Polym. 117 (2015) 980-987.

[38]

M.I. Dammak, Y.B. Salem, A. Belaid, et al., Partial characterization and antitumor activity of a polysaccharide isolated from watermelon rinds, Int. J. Biol. Macromol. 136 (2019) 632-641.

[39]

J.Y. Yeh, L.H. Hsieh, K.T. Wu, et al., Antioxidant properties and antioxidant compounds of various extracts from the edible basidiomycete Grifola frondosa (Maitake), Molecules 16 (2011) 3197-3211.

[40]

N. Smirnoff, Q.J. Cumbes, Hydroxyl radical scavenging activity of compatible solutes, Phytochemistry 28 (4) (1989) 1057-1060.

[41]

W. Raza, K. Makeen, Y. Wang, et al., Optimization, purification, characterization and antioxidant activity of an extracellular polysaccharide produced by Paenibacillus polymyxa SQR-21, Bioresour. Technol. Rep. 102 (10) (2019) 6095-6103.

[42]

H. Chen, Y. Ju, J. Li, et al., Antioxidant activities of polysaccharides from Lentinus edodes and their significance for disease prevention, Int. J. Biol. Macromol. 50 (1) (2012) 214-218.

[43]

H. Cheng, G. Huang, Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide, Int. J. Biol. Macromol. 114 (2018) 415-419.

[44]

Y. Wang, Z. Yang, X. Wei, Antioxidant activities potential of tea polysaccharide fractions obtained by ultra filtration, Int. J. Biol. Macromol. 50 (3) (2012) 558-564.

[45]

H. Cheng, S. Feng, X. Jia, et al., Structural characterization and antioxidant activities of polysaccharides extracted from Epimedium acuminatum, Carbohyd. Polym. 92 (1) (2013) 63-68.

[46]

R.S.P. Rao, G. Muralikrishna, Water soluble feruloyl arabinoxylans from rice and ragi: changes upon malting and their consequence on antioxidant activity, Phytochemistry 67 (1) (2006) 91-99.

[47]

M.K. Patel, B. Tanna, H. Gupta, et al., Physicochemical, scavenging and anti-proliferative analyses of polysaccharides extracted from psyllium (Plantago ovata Forssk) husk and seeds, Int. J. Biol. Macromol. 133 (2019) 190-201.

[48]

M. Wu, Y. Wu, M. Qu, et al., Evaluation of antioxidant activities of water-soluble polysaccharides from brown alga Hizikia fusiformis, Int. J. Biol. Macromol. 56 (2013) 28-33.

[49]

G. Chen, M. Wang, M. Xie, et al., Evaluation of chemical property, cytotoxicity and antioxidant activity in vitro and in vivo of polysaccharides from Fuzhuan brick teas, Int. J. Biol. Macromol. 116 (2018) 120-127.

[50]

V.E. Nikitina, O.M. Tsivileva, A.N. Pankratov, et al., Lentinula edodes biotechnology – from lentinan to lectins, Food Technol. Biotech. 45 (3) (2007) 230-237.

[51]

S.P. Wasser, Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides, Appl. Microbiol. Biot. 60 (3) (2007) 258-274.

Food Science and Human Wellness
Pages 71-79
Cite this article:
Liu H, Fan H, Zhang J, et al. Isolation, purification, structural characteristic and antioxidative property of polysaccharides from A. cepa L. var. agrogatum Don. Food Science and Human Wellness, 2020, 9(1): 71-79. https://doi.org/10.1016/j.fshw.2019.12.006

449

Views

24

Downloads

32

Crossref

N/A

Web of Science

39

Scopus

0

CSCD

Altmetrics

Received: 08 October 2019
Revised: 04 December 2019
Accepted: 17 December 2019
Published: 27 December 2019
© 2020 "Society information".

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return