AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Innovative strategies and nutritional perspectives for fortifying pumpkin tissue and other vegetable matrices with iron

Marina F. de Escalada Plaa,b( )Silvia K. Floresa,bCarolina E. Genevoisc,d
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Buenos Aires, Argentina
Universidad Nacional de Entre Ríos (UNER), Facultad de Bromatología, Gualeguaychú, Entre Ríos, Argentina
CONICET, Buenos Aires, Argentina

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

The present review article focuses on different technological strategies and nutritional perspectives having added advantage to human health in fortifying vegetables matrices with iron. An introduction to the main aspects related to iron deficiency consequences is resumed in order to understand the importance of developing new strategies for improving iron intake. In this sense, the tendencies and alternatives will also be discussed. Emerging technologies like impregnation or dry infusion are presented as sustainable options for obtaining structured fortified vegetables. A review about the usefulness of edible covers for stabilizing micronutrients and/or probiotic microorganisms in fortified matrices is also analysed. Since iron deficiency still continue to be a worldwide health issue, innovating in food fortification remains a challenge for researchers and food manufactures.

References

[1]
B. Thompson, L. Amoroso (Eds. ), Combating Micronutrient Deficiencies: Food-Based Approaches, Food and Agriculture Organization of the United Nations and CAB International, 2011.
[2]
Organization World Health, The Global Prevalence of Anaemia in 2011, 2015.
[3]
Iron deficiency anaemia, Assessment, Prevention, and Control, 2001, http://dx.doi.org/10.1016/j.paed.2017.08.004.
[4]

R.J. Stoltzfus, Defining iron-deficiency anemia in public health terms: a time for reflection, J. Nutr. 131 (2001) 565S–567S, http://dx.doi.org/10.1093/jn/131.2.697S.

[5]

N. Abbaspour, R. Hurrell, R. Kelishadi, Review on iron and its importance for human health, J. Res. Med. Sci. 19 (2014) 164–174.

[6]
R.F. Hurrell, Efficacy and Safety of Iron Fortification, Elsevier Inc., 2018, http://dx.doi.org/10.1016/b978-0-12-802861-2.00020-1.
[7]

S. Salovaara, A.S. Sanberg, T. Andlid, Organic acids influence iron uptake in the human epithelial cell line Caco-2, J. Agric. Food Chem. 50 (2002) 6233–6238.

[8]
C. Galanakis (Ed. ), Nutraceutical and functional food components: effects of innovative processing techniques, first edit., Academic Press, 2017.
[9]
A. Alegría, G. Garcia-Llatas, A. Cilla, Static digestion models: general introduction, in: Impact Food Bioact. Heal., Spring, Heidelberg, 2015, pp. 3–12, http://dx.doi.org/10.1007/978-3-319-16104-4.
[10]

R. Hurrell, I. Egli, Iron bioavailability and dietary reference values, Am. J. Clin. Nutr. 91 (2010) 1461–1467, http://dx.doi.org/10.3945/ajcn.2010.28674F.Am.

[11]

J.L. Finkelstein, J.D. Haas, S. Mehta, Iron-biofortified staple food crops for improving iron status: a review of the current evidence, Curr. Opin. Biotechnol. 44 (2017) 138–145, http://dx.doi.org/10.1016/j.copbio.2017.01.003.

[12]

H.E. Bouis, R.M. Welch, Biofortification-a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south, Crop Sci. 50 (2010) 20–32, http://dx.doi.org/10.2135/cropsci2009.09.0531.

[13]

R. Blanco-Rojo, M.P. Vaquero, Iron bioavailability from food fortification to precision nutrition. A review, Innov. Food Sci. Emerg. Technol. 51 (2019) 126–138, http://dx.doi.org/10.1016/j.ifset.2018.04.015.

[14]

N. Petry, E. Boy, J.P. Wirth, et al., Review: the potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification, Nutrients 7 (2015) 1144–1173, http://dx.doi.org/10.3390/nu7021144.

[15]

P.M.A. Ramzani, M. Khalid, M. Naveed, et al., Iron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soil, Plant Physiol. Biochem. 104 (2016) 284–293, http://dx.doi.org/10.1016/j.plaphy.2016.04.053.

[16]

A.W. de Valenç a, A. Bake, I.D. Brouwer, et al., Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa, Glob. Food Security 12 (2017) 8–14, http://dx.doi.org/10.1016/j.gfs.2016.12.001.

[17]

M.L. García-Bañuelos, J.P. Sida-Arreola, E. Sánchez, Biofortification-promising approach to increasing the content of iron and zinc in staple food crops, J. Elemntol. (2014) 865–888, http://dx.doi.org/10.5601/jelem.2014.19.3.708.

[18]

M.A. Bryszewska, Comparison study of iron bioaccessibility from dietary supplements and microencapsulated preparations, Nutrients 11 (2019) 1–14, http://dx.doi.org/10.3390/nu11020273.

[19]

H. Mehansho, Symposium: food fortification in developing countries, J. Nutr. (2006) 1059–1063.

[20]

E. Habeych, V. Van Kogelenberg, L. Sagalowicz, et al., Strategies to limit colour changes when fortifying food products with iron, FRIN 88 (2016) 122–128, http://dx.doi.org/10.1016/j.foodres.2016.05.017.

[21]

C. Icard-Vernière, C. Picq, L. Courbis, et al., The type of fortificant and the leaf matrix both influence iron and zinc bioaccessibility in iron-fortified green leafy vegetable sauces from Burkina Faso, Food Funct. 7 (2016) 1103–1110, http://dx.doi.org/10.1039/c5fo01227a.

[22]

L. Hackl, C.I. Cercamondi, C. Zeder, et al., Cofortification of ferric pyrophosphate and citric acid/trisodium citrate into extruded rice grains doubles iron bioavailability through in situ generation of soluble ferric pyrophosphate citrate complexes, Am. J. Clin. Nutr. 103 (2016) 1252–1259, http://dx.doi.org/10.3945/ajcn.115.128173.

[23]

C.E. Genevois, M.F. de Escalada Pla, S.K. Flores, Application of edible coatings to improve global quality of fortified pumpkin, Innov. Food Sci. Emerg. Technol. 33 (2016) 506–514, http://dx.doi.org/10.1016/j.ifset.2015.11.001.

[24]

L. Leistner, L.G.M. Gorris, Food preservation by hurdle technology, Trends Food Sci. Technol. 6 (1995) 41–46, http://dx.doi.org/10.1016/S0924-2244(00)88941-4.

[25]

S.M. Alzamora, D. Salvatori, M.S. Tapia, et al., Novel functional foods from vegetable matrices impregnated with biologically active compounds, J. Food Eng. 67 (2005) 205–214, http://dx.doi.org/10.1016/j.jfoodeng.2004.05.067.

[26]

J.A. Abbott, J.D. Klein, A.T. Campbell, et al., Sensory and firmeness measurements of calcium- and heat-treated apples, J. Texture Stud. 31 (2000) 109–121, http://dx.doi.org/10.1111/j.1745-4603.2000.tb00287.x.

[27]

M.L. Gras, D. Vidal, N. Betoret, et al., Calcium fortification of vegetables by vacuum impregnation. Interactions with cellular matrix, J. Food Eng. 56 (2003) 279–284, http://dx.doi.org/10.1016/s0260-8774(02)00269-8.

[28]

M.M. Khin, W. Zhou, C.O. Perera, A study of the mass transfer in osmotic dehydration of coated potato cubes, J. Food Eng. 77 (2006) 84–95, http://dx.doi.org/10.1016/j.jfoodeng.2005.06.050.

[29]

Y. Zhao, J. Xie, Practical applications of vacuum impregnation in fruit and vegetable processing, Trends Food Sci. Technol. 15 (2004) 434–451, http://dx.doi.org/10.1016/j.tifs.2004.01.008.

[30]

C. Barrera, N. Betoret, P. Fito, Ca2+ and Fe2+ influence on the osmotic dehydration kinetics of apple slices (var. Granny Smith), J. Food Eng. 65 (2004) 9–14, http://dx.doi.org/10.1016/j.jfoodeng.2003.10.016.

[31]

N. Betoret, J. Martinez-Monzo, P.J. Fito, et al., Calcium and iron distribution in fortified vacuum-impregnated fruits determined by electron dispersion X-ray microanalysis, J. Food Sci. 70 (2005) E26–30, http://dx.doi.org/10.1111/j.1365-2621.2005.tb09033.x.

[32]

E.K. Hironaka, Y. Oda, H. Koaze, Iron enrichment of whole potato tuber by vacuum impregnation, LWT – Food Sci. Technol. (2014) 504–509, http://dx.doi.org/10.1016/j.lwt.2014.04.043.

[33]

M. Mashkour, Y. Maghsoudlou, M. Kashaninejad, et al., Effect of ultrasound pretreatment on iron fortification of potato using vacuum impregnation, J. Food Process. Preserv. 42 (2018) 1–10, http://dx.doi.org/10.1111/jfpp.13590.

[34]

A.C. Miano, P. Esteves, D. Augusto, The ultrasound assisted hydration as an opportunity to incorporate nutrients into grains, Food Res. Int. 106 (2018) 928–935, http://dx.doi.org/10.1016/j.foodres.2018.02.006.

[35]

M.L. Rojas, I. Dutra Alvim, P. Esteves Duarte Augusto, Incorporation of microencapsulated hydrophilic and lipophilic nutrients into foods by using ultrasound as a pre-treatment for drying: a prospective study, Ultrason – Sonochem. 54 (2019) 153–161, http://dx.doi.org/10.1016/j.ultsonch.2019.02.004.

[36]

F.M. Yılmaz, S. Ersus Bilek, Ultrasound-assisted vacuum impregnation on the fortification of fresh-cut apple with calcium and black carrot phenolics, Ultrason. Sonochem. 48 (2018) 509–516, http://dx.doi.org/10.1016/j.ultsonch.2018.07.007.

[37]

M.F. de Escalada Pla, C.A. Campos, L.N. Gerschenson, et al., Pumpkin (Cucurbita moschata Duchesne ex Poiret) mesocarp tissue as a food matrix for supplying iron in a food product, J. Food Eng. 92 (2009) 361–369, http://dx.doi.org/10.1016/j.jfoodeng.2008.11.013.

[38]
S. Alzamora, S. Guerrero, A. Nieto, et al., Combined preservation technologies for fruits and vegetables: training manual, Food and Agriculture Organization of the United Nations, Rome: Italy, 2003.
[39]

C. Genevois, S. Flores, M. De Escalada Pla, Effect of iron and ascorbic acid addition on dry infusion process and final color of pumpkin tissue, LWT – Food Sci. Technol. 58 (2014), http://dx.doi.org/10.1016/j.lwt.2014.03.020.

[40]

P.G. León, A.M. Rojas, Gellan gum films as carriers of L-(+)-ascorbic acid, Food Res. Int. 40 (2007) 565–575, http://dx.doi.org/10.1016/j.foodres.2006.10.021.

[41]

A.M. Rojas, L.N. Gerschenson, Ascorbic acid destruction in aqueous model systems: an additional discussion, J. Sci. Food Agric. 81 (2001) 1433–1439, http://dx.doi.org/10.1002/jsfa.961.

[42]

E.S. Lago-Vanzela, P. do Nascimento, E.A.F. Fontes, et al., Edible coatings from native and modified starches retain carotenoids in pumpkin during drying, LWT – Food Sci. Technol. 50 (2013) 420–425, http://dx.doi.org/10.1016/j.lwt.2012.09.003.

[43]

C.E. Genevois, M.F. De Escalada Pla, S.K. Flores, Application of edible coatings to improve global quality of fortified pumpkin, Innov. Food Sci. Emerg. Technol. 33 (2016), http://dx.doi.org/10.1016/j.ifset.2015.11.001.

[44]
United States Department of Agriculture, Food Composition Database, Retrieved from https://ndb.nal.usda.gov/ndb/nutrients/indexn.d., 2018.
[45]

P. Alzate, S. Miramont, S. Flores, et al., Effect of the potassium sorbate and carvacrol addition on the properties and antimicrobial activity of tapioca starch – hydroxypropyl methylcellulose edible films, Starch - Stärke 69 (2016), 1600251.

[46]

D. Phan The, F. Debeaufort, A. Voilley, et al., Biopolymer interactions affect the functional properties of edible films based on agar, cassava starch and arabinoxylan blends, J. Food Eng. 90 (2009) 548–558, http://dx.doi.org/10.1016/j.jfoodeng.2008.07.023.

[47]

C.A. Campos, L.N. Gerschenson, S.K. Flores, Development of edible films and coatings with antimicrobial activity, Food Bioprocess Technol. 4 (2011) 849–875, http://dx.doi.org/10.1007/s11947-010-0434-1.

[48]

R.K. Dhall, Advances in edible coatings for fresh fruits and vegetables: a review, Crit. Rev. Food Sci. Nutr. 53 (2013) 435–450, http://dx.doi.org/10.1080/10408398.2010.541568.

[49]

D. Lin, Y. Zhao, Innovations in the development and application of edible coating for fresh and minimally processed fruits and vegetables, Compr. Rev. Food Sci. Food Saf. 6 (2007) 60–75, http://dx.doi.org/10.1111/j.1541-4337.2007.00018.x.

[50]

S. Flores, L. Famá, A.M. Rojas, et al., Physical properties of tapioca-starch edible films: influence of filmmaking and potassium sorbate, Food Res. Int. 40 (2007) 257–265, http://dx.doi.org/10.1016/j.foodres.2006.02.004.

[51]
R.M. Raybaudi Massilia, J. Mosqueda Melgar, Polysaccharides as carriers and protectors of additives and bioactive compounds in foods, in: D.N. Karunaratne (Ed. ), The Complex World of Polysaccharides, 2012, pp. 429–454, http://dx.doi.org/10.5772/502061.
[52]

A.E. Quirós-Sauceda, J.F. Ayala-Zavala, G.I. Olivas, et al., Edible coatings as encapsulating matrices for bioactive compounds: a review, Food Sci. Techonol. 51 (2014) 1674–1685, http://dx.doi.org/10.1007/s13197-013-1246-x.

[53]

D. Mridula, J. Pooja, Preparation of iron-fortified rice using edible coating materials, Int. J. Food Sci. Technol. 49 (2013) 246–252, http://dx.doi.org/10.1111/ijfs.12305.

[54]
M.D. De’Nobili, C. Genevois, A.M. Rojas, et al., Stabilization of L-(+)-ascorbic acid in an iron fortified vegetable product (Cucurbita moschata Duchesne ex poiret) using an alginate coating, 2017.
[55]

S. Jothisaraswathi, B. Babu, R. Rengasamy, Seasonal studies on alginate and its composition Ⅱ: Turbinaria conoides (J. Ag.) Kütz. (Fucales, Phaeophyceae), J. Appl. Phycol. 18 (2006) 161–166, http://dx.doi.org/10.1007/s10811-006-9089-8.

[56]

B. Nayak, K.M. Nair, In vitro bioavailability of iron from wheat flour fortified with ascorbic acid, EDTA and sodium hexametaphosphate, with or without iron, Food Chem. 80 (2003) 545–550, http://dx.doi.org/10.1016/S0308-8146(02)00341-2.

[57]

M.N. García-Casal, M. Layrisse, J.P. Peña-Rosas, et al., Iron absorption from elemental iron-fortified corn flakes in humans. Role of vitamins A and C, Nutr. Res. 23 (2003) 451–463, http://dx.doi.org/10.1016/S0271-5317(02)00557-2.

[58]

C. Pérez, S.K. Flores, A.A. Marangoni, et al., Development of a high methoxyl pectin edible film for retention of L-(+)-ascorbic acid, J. Agric. Food Chem. 57 (2009) 6844–6855, http://dx.doi.org/10.1021/jf804019x.

[59]

M.D. DeŃobili, L.M. Curto, J.M. Delfino, et al., Performance of alginate films for retention of L-(+)-ascorbic acid, Int. J. Pharm. 450 (2013) 95–103, http://dx.doi.org/10.1016/j.ijpharm.2013.04.027.

[60]

T.A. Oelschlaeger, Mechanisms of probiotic actions – a review, Int. J. Med. Microbiol. 300 (2010) 57–62, http://dx.doi.org/10.1016/j.ijmm.2009.08.005.

[61]

C. Genevois, M. de Escalada Pla, S. Flores, Novel strategies for fortifying vegetable matrices with iron and Lactobacillus casei simultaneously, LWT – Food Sci. Technol. 79 (2017) 34–41, http://dx.doi.org/10.1016/j.lwt.2017.01.019.

[62]

M.R. Silva, G. Dias, C.L.L.F. Ferreira, et al., Growth of preschool children was improved when fed an iron-fortified fermented milk beverage supplemented with Lactobacillus acidophilus, Nutr. Res. 28 (2008) 226–232, http://dx.doi.org/10.1016/j.nutres.2008.02.002.

[63]

N. Scheers, L. Rossander-Hulthen, I. Torsdottir, et al., Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe3+), Eur. J. Nutr. 55 (2015) 373–382, http://dx.doi.org/10.1007/s00394-015-0857-6.

[64]

C.E. Genevois, A.P. Castellanos Fuentes, S.K. Flores, et al., Functional and organoleptic characterization of a dairy-free dessert containing a novel probiotic food ingredient, Food Funct. 9 (2018), http://dx.doi.org/10.1039/c8fo00805a.

[65]

A.L. Tang, G. Wilcox, K.Z. Walker, et al., Phytase activity from Lactobacillus spp. in calcium-fortified soymilk, J. Food Sci. 75 (2010) 373–376, http://dx.doi.org/10.1111/j.1750-3841.2010.01663.x.

[66]

Z. Khodaii, M.N. Zadeh, J. Kamali, et al., Enhanced iron absorption from lactic acid fermented bread (an in vivo/ex vivo study), Gene Rep. 15 (2019), http://dx.doi.org/10.1016/j.genrep.2019.100389.

[67]

H.Y. Song, A.F. El Sheikha, D.M. Hu, The positive impacts of microbial phytase on its nutritional applications, Trends Food Sci. Technol. 86 (2019) 553–562, http://dx.doi.org/10.1016/j.tifs.2018.12.001.

[68]

G.B. Shivanna, G. Venkateswaran, Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation, Sci. World J. (2014) 1–6, http://dx.doi.org/10.1155/2014/392615.

[69]

S. Gaind, S. Singh, Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720, Int. Biodeterior. Biodegrad. 99 (2015) 15–22, http://dx.doi.org/10.1016/j.ibiod.2014.12.013.

[70]

L.T. Ribeiro Corrêa, M.V. de Queiroz, E.F. de Araújo, Cloning, recombinant expression and characterization of a new phytase from Penicillium chrysogenum, Microbiol. Res. (2015) 205–212, http://dx.doi.org/10.1016/j.micres.2014.06.005.

[71]

A.S. Sandberg, L.R. Hulthen, M. Türk, Dietary Aspergillus niger phytase increases iron absorption in humans, Hum. Clin. Nutr. 126 (1996) 476–480, http://dx.doi.org/10.1093/jn/126.2.476.

[72]

M. Hoppe, G. Önning, A. Berggren, et al., Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: a double-isotope cross-over single-blind study in women of reproductive age, Br. J. Nutr. 114 (2015) 1195–1202, http://dx.doi.org/10.1017/S000711451500241X.

[73]
M. Solioz, M. Mermod, H.K. Abicht, et al., Responses of lactic acid bacteria to heavy metal stress, in: E. Tsakalidou, K. Papadimitriou (Eds. ), Stress Responses Lact. Acid Bact., Springer, Heidelberg, 2011, pp. 163–195, http://dx.doi.org/10.1007/978-0-387-92771-8.
[74]
G. Vinderola, P. Burns, J. Reinheimer, Probiotics in nondairy products, in: F. Mariotti (Ed. ), Veg. Plant-Based Diets Heal. Dis. Prev., Academic Press, 2017, pp. 809–835, http://dx.doi.org/10.1016/B978-0-12-803968-7.00044-[00044-7]7.
[75]
S. Flores, M. de Escalada Pla, A. Miletti, et al., Edible coating technology for the stabilization of functional foods based on pumpkin, 2018.
[76]

F. Ghibaudo, E. Gerbino, V. Campo DallÓrto, et al., Pectin-iron capsules: novel system to stabilise and deliver lactic acid bacteria, J. Funct. Foods 39 (2017) 299–305, http://dx.doi.org/10.1016/j.jff.2017.10.028.

[77]

F. Ghibaudo, E. Gerbino, G. Copello, et al., Pectin-decorated magnetite nanoparticles as both iron delivery systems and protective matrices for probiotic bacteria, Colloids Surf. B Biointerfaces (2019), http://dx.doi.org/10.1016/j.colsurfb.2019.04.049.

[78]

H.H. Gahruie, M.H. Eskandari, G. Mesbahi, et al., Scientific and technical aspects of yogurt fortification: a review, Food Sci. Hum. Wellness 4 (2015) 1–8, http://dx.doi.org/10.1016/j.fshw.2015.03.002.

[79]
B.S. ISO 4120: 2004. Sensory Analysis - Methodology - Triangle Test. British Standard n. d.
[80]
B.S. ISO 4121: 2003. Sensory analysis - Guidelines for the use of quantitative response scales. British Standard n. d.
Food Science and Human Wellness
Pages 103-111
Cite this article:
de Escalada Pla MF, Flores SK, Genevois CE. Innovative strategies and nutritional perspectives for fortifying pumpkin tissue and other vegetable matrices with iron. Food Science and Human Wellness, 2020, 9(2): 103-111. https://doi.org/10.1016/j.fshw.2020.02.005

552

Views

32

Downloads

15

Crossref

N/A

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 02 September 2019
Revised: 30 January 2020
Accepted: 14 February 2020
Published: 22 February 2020
© 2020 "Society information". Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return