AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (900.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The intervention effects of Lactobacillus casei LC2W on Escherichia coli O157:H7 -induced mouse colitis

Guangqiang WangaHongyu TangaYing ZhangaXiang XiaobYongjun XiaaLianzhong Aia( )
Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China

Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Show Author Information

Abstract

This study investigated the intervention effects of Lactobacillus casei LC2W in murine (SPF C57BL/c) challenge infection models induced by Escherichia coli O157: H7. Mice were fed streptomycin with water for 3 days prior to intragastric gavage by E. coli O157:H7 (Control) or L. casei LC2W together with E. coli O157:H7 (Intervention) to explore the role of L. casei LC2W by biochemical indicators, histological evaluation, expression of colonic pro-inflammatory and intestinal barrier factors related to enteritis. Results showed that the administration of L. casei LC2W was able to alleviate the symptoms of colitis induced by E. coli O157:H7, exhibiting lower weight loss as well as more intact colon tissue. Furthermore, L. casei LC2W could down-regulate the expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and protect the intestinal barrier function by improving the level of MUC2, ZO-1 and E-cadherin 1 compared to the control group. These results demonstrate that L. casei LC2W can reduce the severity of E. coli O157:H7 infection, and suggest L.casei LC2W may maintain the immune balance and intestinal barrier to reduce colitis. In addition, we found the effect of intervention is similar to that of prevention, which is better than that of treatment.

References

[1]

M.C. Berin, A. Darfeuille-Michaud, L.J. Egan, et al., Role of EHEC O157: H7 virulence factors in the activation of intestinal epithelial cell NF-κB and MAP kinase pathways and the upregulated expression of interleukin 8, Cell. Microbiol. 4 (10) (2002) 635–648, http://dx.doi.org/10.1046/j.1462-5822.2002.00218.x.

[2]

A. Arbeloa, C.V. Oates, O. Marches, et al., Enteropathogenic and enterohemorrhagic Escherichia coli type Ⅲ secretion effector EspV induces radical morphological changes in eukaryotic cells, Infect. Immun. 79 (3) (2011) 1067–1076, http://dx.doi.org/10.1128/IAI.01003-10.

[3]

P. Castellano, C. Belfiore, G. Vignolo, Combination of bioprotective cultures with EDTA to reduce Escherichia coli O157: H7 in frozen ground-beef patties, Food Control 22 (8) (2011) 1461–1465, http://dx.doi.org/10.1016/j.foodcont.2011.02.018.

[4]

R.A. Mir, I.T. Kudva, Antibiotic-resistant Shiga toxin-producing Escherichia coli: an overview of prevalence and intervention strategies, Zoonoses Public Health 66 (1) (2019) 1–13, http://dx.doi.org/10.1111/zph.12533.

[5]

S. Bhatt, M. Egan, B. Critelli, et al., The evasive enemy: insights into the virulence and epidemiology of the emerging attaching and effacing pathogen Escherichia albertii, Infect. Immun. 87 (1) (2019), http://dx.doi.org/10.1128/IAI.00254-18.

[6]

Q.H. Yu, Z.S. Wang, Q.A. Yang, Ability of Lactobacillus to inhibit enteric pathogenic bacteria adhesion on Caco-2 cells, World J Microb Biot 27 (4) (2011) 881–886, http://dx.doi.org/10.1007/s11274-010-0530-4.

[7]

B.A. Amezquita-Lopez, B. Quinones, M. Soto-Beltran, et al., Antimicrobial resistance profiles of Shiga toxin-producing Escherichia coli O157 and Non-O157 recovered from domestic farm animals in rural communities in northwestern Mexico, Antimicrob. Resist. Infect. Control 5 (2016) 1, http://dx.doi.org/10.1186/s13756-015-0100-5.

[8]

B. Sanchez, S. Delgado, A. Blanco-Miguez, et al., Probiotics, gut microbiota, and their influence on host health and disease, Mol. Nutr. Food Res. 61 (1) (2017), http://dx.doi.org/10.1002/mnfr.201600240.

[9]

P. Hutt, J. Shchepetova, K. Loivukene, et al., Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens, J. Appl. Microbiol. 100 (6) (2006) 1324–1332, http://dx.doi.org/10.1111/j.1365-2672.2006.02857.x.

[10]

P.K. Gopal, J. Prasad, J. Smart, et al., In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli, Int. J. Food Microbiol. 67 (3) (2001) 207–216, http://dx.doi.org/10.1016/s0168-1605(01)00440-8.

[11]

X. Zhu, Y. Zhao, Y. Sun, et al., Purification and characterisation of plantaricin ZJ008, a novel bacteriocin against Staphylococcus spp. from Lactobacillus plantarum ZJ008, Food Chem. 165 (2014) 216–223, http://dx.doi.org/10.1016/j.foodchem.2014.05.034.

[12]

L. Makras, V. Triantafyllou, D. Fayol-Messaoudi, et al., Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds, Res. Microbiol. 157 (3) (2006) 241–247, http://dx.doi.org/10.1016/j.resmic.2005.09.002.

[13]

A. Oldak, D. Zielinska, Bacteriocins from lactic acid bacteria as an alternative to antibiotics, Postepy Hig. Med. Dosw. Online 71 (0) (2017) 328–338, http://dx.doi.org/10.5604/01.3001.0010.3817.

[14]

X. Ni, D. Zeng, H. Yu, et al., Ability of pig Lactobacilli strains to inhibit Salmonella typhi-murzum DT104 adhesion and Invasion on pig intestinal epithelial IPEC-J2 cells, Microbiology 35 (7) (2008) 1072–1077.

[15]

Y. Wu, C. Zhu, Z. Chen, et al., Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells, Vet. Immunol. Immunopathol. 172 (2016) 55–63, http://dx.doi.org/10.1016/j.vetimm.2016.03.005.

[16]

G. Wang, Y. Zhang, X. Song, et al., Lactobacillus casei LC2W can inhibit the colonization of Escherichia coli O157: H7 in vivo and reduce the severity of colitis, Food Funct. 10 (9) (2019) 5843–5852, http://dx.doi.org/10.1039/c9fo01390c.

[17]

E.A. Wadolkowski, J.A. Burris, A.D. O'Brien, Mouse model for colonization and disease caused by enterohemorrhagic Escherichia coli O157: H7, Infect. Immun. 58 (8) (1990) 2438–2445.

[18]

M.H. Grayson, L.E. Camarda, S.A. Hussain, et al., Intestinal microbiota disruption reduces regulatory T cells and increases respiratory viral infection mortality through increased IFN gamma production, Front. Immunol. 9 (2018) 1587, http://dx.doi.org/10.3389/fimmu.2018.01587.

[19]

J.T. Wang, H.Q. Chen, B. Yang, et al., Lactobacillus plantarum ZS2058 produces CLA to ameliorate DSS-induced acute colitis in mice, RSC Adv. 6 (18) (2016) 14457–14464, http://dx.doi.org/10.1039/C5RA24491A.

[20]

S. Bouzari, E. Farhang, S.M. Hosseini, et al., Prevalence and antimicrobial resistance of shiga toxin-producing Escherichia coli and enteropathogenic Escherichia coli isolated from patients with acute diarrhea, Iran. J. Microbiol. 10 (3) (2018) 151–157.

[21]

L.X. Sang, B. Chang, C. Dai, et al., Heat-killed VSL#3 ameliorates dextran sulfate sodium (DSS)-induced acute experimental colitis in rats, Int. J. Mol. Sci. 15 (1) (2013) 15–28, http://dx.doi.org/10.3390/ijms15010015.

[22]

M.V. Herias, J.F. Koninkx, J.G. Vos, et al., Probiotic effects of Lactobacillus casei on DSS-induced ulcerative colitis in mice, Int. J. Food Microbiol. 103 (2) (2005) 143–155, http://dx.doi.org/10.1016/j.ijfoodmicro.2004.11.032.

[23]

Z.S. Zhang, X. Li, P. Yin, et al., Isolation and identification of E. coli O157:H7 strain from cattle and detection of its virulence genes, Chin. J. Zoonoses 31 (12) (2015) 1136–1141, http://dx.doi.org/10.3969/j.issn.1002-2694.

[24]

Y.S. Kim, S.B. Ho, Intestinal goblet cells and mucins in health and disease: recent insights and progress, Curr. Gastroenterol. Rep. 12 (5) (2010) 319–330, http://dx.doi.org/10.1007/s11894-010-0131-2.

[25]

Q. Yu, L. Yuan, J. Deng, et al., Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria, Front. Cell. Infect. Microbiol. 5 (2015) 26, http://dx.doi.org/10.3389/fcimb.2015.00026.

[26]

R. Al-Sadi, D. Ye, K. Dokladny, et al., Mechanism of IL-1beta-induced increase in intestinal epithelial tight junction permeability, J. Immunol. 180 (8) (2008) 5653–5661, http://dx.doi.org/10.4049/jimmunol.180.8.5653.

[27]

M. Wlodarska, B.B. Finlay, Host immune response to antibiotic perturbation of the microbiota, Mucosal Immunol. 3 (2) (2010) 100–103, http://dx.doi.org/10.1038/mi.2009.135.

[28]

M.M. Rahman, G. McFadden, Modulation of NF- B signalling by microbial pathogens, Nat. Rev. Microbiol. 9 (4) (2011) 291–306, http://dx.doi.org/10.1038/nrmicro2539.

[29]

M. Roselli, A. Finamore, M.S. Britti, et al., The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage, J. Nutr. 137 (12) (2007) 2709–2716, http://dx.doi.org/10.1093/jn/137.12.2709.

[30]

C. Forster, Tight junctions and the modulation of barrier function in disease, Histochem. Cell Biol. 130 (1) (2008) 55–70, http://dx.doi.org/10.1007/s00418-008-0424-9.

[31]

S. Citi, The mechanobiology of tight junctions, Biophys. Rev. 11 (5) (2019) 783–793, http://dx.doi.org/10.1007/s12551-019-00582-7.

[32]

S. Tsukita, M. Furuse, M. Itoh, Multifunctional strands in tight junctions, Nat. Rev. Mol. Cell Biol. 2 (4) (2001) 285–293, http://dx.doi.org/10.1038/35067088.

[33]

M. Puthenedam, P.H. Williams, B.S. Lakshmi, et al., Modulation of tight junction barrier function by outer membrane proteins of enteropathogenic Escherichia coli: role of F-actin and junctional adhesion molecule-1, Cell Biol. Int. 31 (8) (2007) 836–844, http://dx.doi.org/10.1016/j.cellbi.2007.01.036.

Food Science and Human Wellness
Pages 289-294
Cite this article:
Wang G, Tang H, Zhang Y, et al. The intervention effects of Lactobacillus casei LC2W on Escherichia coli O157:H7 -induced mouse colitis. Food Science and Human Wellness, 2020, 9(3): 289-294. https://doi.org/10.1016/j.fshw.2020.04.008

487

Views

38

Downloads

16

Crossref

N/A

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 17 January 2020
Revised: 19 March 2020
Accepted: 10 April 2020
Published: 23 April 2020
© 2020 "Society information". Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return