AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Stevenleaf from Gynostemma Pentaphyllum inhibits human hepatoma cell (HepG2) through cell cycle arrest and apoptotic induction

Sayed Sajid HussainaFan ZhangaYuanyuan ZhangaKiran ThakuraMahrukh NaudhaniaCarlos L. Cespedes-AcuñabZhaojun Weia,c,d( )
School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, University of Bio-Bío, Andrés Bello Avenue, Chillan, Chile
College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
Biological Science and Engineering College, North Minzu University, Yinchuan, 750021, China

Peer review under responsibility of KeAi Communications Co., Ltd]]>

Show Author Information

Abstract

The anticancer activity of stevenleaf (SV) on the basis of cell viability, cell cycle, and apoptosis induction in HepG2 cancer cells were evaluated. SV controlled the growth of HepG2 cells with IC50 of 139.82 μmol/L for 24 h, IC50 of 119.12 μmol/L for 48 h and cell cycle arrested at G0/G1 phase, induced cell apoptosis and enhanced intracellular ROS generation. For cell cycle arrest, the mRNA expression levels of p21, p27 and p53 were up-regulated, while the expression levels of Cyclin A, Cyclin D1, Cyclin E and CDK1/2 were down-regulated. SV efficiently up-regulated TNF R1, TRADD1 and FADD and down-regulated Caspase8 for cell death receptors; similarly, up-regulated Bax, Bak, Cyt c, Apaf1, Caspase3 and Caspase9, and down-regulated Bcl2, Bcl xl and Bad for mitochondrial signal pathway. SV induced the mTOR-mediated cell apoptosis in HepG2 cells via activation of Akt and AMPK. The mechanistic explanation for the anticancer activity of SV as functional food can be derived from above results.

References

[1]

E.G. Armitage, C. Barbas, Metabolomics in cancer biomarker discovery: current trends and future perspectives, J. Pharm. Biomed. Anal. 87 (2014) 1–11, http://dx.doi.org/10.1016/j.jpba.2013.08.041.

[2]

Y.S. Zhang, Y.L. Ma, K. Thakur, et al., Molecular mechanism and inhibitory targets of dioscin in HepG2 cells, Food Chem. Toxicol. 120 (2018) 143–154, http://dx.doi.org/10.1016/j.fct.2018.07.016.

[3]

S. Wang, L. Fu, Y. Wu, et al., Influence of luteolin on the apoptosis of esophageal cancer Eca109 cells and its mechanism of action, Food Sci. Hum. Welln. 8 (2019) 189–194, http://dx.doi.org/10.1016/j.fshw.2019.03.014.

[4]

J. Wang, Y.S. Zhang, K. Thakur, et al., Licochalcone A from licorice root, an inhibitor of human hepatoma cell growth via induction of cell apoptosis and cell cycle arres, Food Chem. Toxicol. 120 (2018) 407–417, http://dx.doi.org/10.1016/j.fct.2018.07.044.

[5]

Y.Y. Hwang, Y.S. Ho, Nutraceutical support for respiratory diseases, Food Sci. Hum. Welln. 7 (2018) 205–208, http://dx.doi.org/10.1016/j.fshw.2018.09.001.

[6]

X.S. Zhang, C. Zhao, W.Z. Tang, et al., Gypensapogenin H, a novel dammarane-type triterpene induces cell cycle arrest and apoptosis on prostate cancer cells, Steroids 104 (2015) 276–283, http://dx.doi.org/10.1016/j.steroids.2015.10.014.

[7]

R.W. Johnstone, A.A. Ruefli, S.W. Lowe, Apoptosis: a link between cancer genetics and chemotherapy, Cell 108 (2002) 153–164, http://dx.doi.org/10.1016/S0092-8674(02)00625-6.

[8]

S. Lapenna, A. Giordano, Cell cycle kinases as therapeutic targets for cancer, Nat. Rev. Drug Discov. 8 (2009) 547, http://dx.doi.org/10.1038/nrd2907.

[9]

W. Droge, Free radicals in the physiological control of cell function, Physiol. Rev. 82 (1) (2002) 47–95, http://dx.doi.org/10.1152/physrev.00018.2001.

[10]

S. Dewanjee, S. Joardar, N. Bhattacharjee, et al., Edible leaf extract of Ipomoea aquatica Forssk. (Convolvulaceae) attenuates doxorubicin-induced liver injury via inhibiting oxidative impairment, MAPK activation and intrinsic pathway of apoptosis, Food Chem. Toxicol. 105 (2017) 322–336, http://dx.doi.org/10.1016/j.fct.2017.05.002.

[11]

Y.Y. Zhang, F. Zhang, Y.S. Zhang, et al., Mechanism of juglone-induced cell cycle arrest and apoptosis in Ishikawa human endometrial cancer cells, J. Agric. Food Chem. 67 (2019) 7378–7389, http://dx.doi.org/10.1021/acs.jafc.9b02759.

[12]
R. Arny, R.R.B. Company, Forthcoming Books, R.R. Bowker Company, 1999.
[13]

F. Yang, H. Shi, X. Zhang, et al., Two novel anti-inflammatory 21-nordammarane saponins from tetraploid Jiaogulan (Gynostemma pentaphyllum), J. Agric. Food Chem. 61 (2013) 12646–12652, http://dx.doi.org/10.1021/jf404726z.

[14]

B. la Cour, P. Mølgaard, Z. Yi, Traditional Chinese medicine in treatment of hyperlipidaemia, J. Ethnopharmacol. 46 (1995) 125–129, http://dx.doi.org/10.1016/0378-8741(95)01234-5.

[15]

R. Qin, J. Zhang, C. Li, et al., Protective effects of gypenosides against fatty liver disease induced by high fat and cholesterol diet and alcohol in rats, Arch. Pharm. Res. 35 (2012) 1241–1250, http://dx.doi.org/10.1007/s12272-012-0715-5.

[16]

J. Hou, S. Liu, Z. Ma, et al., Effects of gynostemma pentaphyllum makino on the immunological function of cancer patients, J. Tradit. Chin. Med. 11 (1991) 47.

[17]

T. Ko Chung, C.T. Hsuan, W.J. Shyan, et al., Flavonoids from Gynostemma pentaphyllum exhibit differential induction of cell cycle arrest in H460 and A549 cancer cells, Molecules 19 (2014) 17663–17681, http://dx.doi.org/10.3390/molecules191117663.

[18]

H.S. Choi, T.T. Zhao, K.S. Shin, et al., Anxiolytic effects of herbal ethanol extract from Gynostemma pentaphyllum in mice after exposure to chronic stress, Molecules 18 (2013) 4342–4356, http://dx.doi.org/10.3390/molecules18044342.

[19]

K.S. Shin, T.T. Zhao, H.S. Choi, et al., Effects of gypenosides on anxiety disorders in MPTP-lesioned mouse model of Parkinson's disease, Brain Res. 1567 (2014) 57–65, http://dx.doi.org/10.1016/j.brainres.2014.04.015.

[20]

H. Yu, Q. Guan, L. Guo, et al., Gypenosides alleviate myocardial ischemia-reperfusion injury via attenuation of oxidative stress and preservation of mitochondrial function in rat heart, Cell Stress Chaperon. 21 (2016) 1–9, http://dx.doi.org/10.1007/s12192-016-0669-5.

[21]
W. Guo, W. Wang, Cultivation and utilisation of Gynostemma Pentaphyllum, publishing house of electronics. Science and Technology University, 1993, pp. 1–261.
[22]

J. Wang, A.M. Liao, K. Thakur, et al., Licochalcone B extracted from Glycyrrhiza uralensis fish induces apoptotic effects in human hepatoma cell HepG2, J. Agric. Food. Chem. 67 (2019) 3341–3353, http://dx.doi.org/10.1021/acs.jafc.9b00324.

[23]

Y.Y. Zhang, F. Zhang, Y.S. Zhang, et al., Mechansim of Juglone-induced cell cycle arrset, and apoptosis in ishikawa human rndometrial cancer cell, J. Agric. Food. Chem. 67 (2019) 7378–7389, http://dx.doi.org/10.1021/acs.jafc.9b02759.

[24]

F. Zhang, J.G. Zhang, J. Qu, et al., Assessment of anti-cancerous potential of 6-gingerol (Tongling White Ginger) and its synergy with drugs on human cervical adenocarcinoma cells, Food Chem. Toxicol. 109 (2017) 910–922, http://dx.doi.org/10.1016/j.fct.2017.02.038.

[25]

Y.L. Ma, Y.S. Zhang, F. Zhang, et al., Methyl ptotodioscin from Polygonatumn sibricum inhibits cervical cancer through cell cycle arrest and apoptosis, Food Chem. Toxicol. 132 (2019), 110655, http://dx.doi.org/10.1016/j.fct.2019.110655.

[26]

T.Z. Lopes, F.R. de Moraes, R.K. Arni, et al., Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells, Biomed. Pharmacother. 123 (2020), 109794, http://dx.doi.org/10.1016/j.biopha.2019.109794.

[27]

Y.S. Sun, K. Thakur, F. Hui, et al., Icariside II inhibits tumorigenesis via inhibition of AKT/Cycline E/CDK2 pathway and activating mitochondria-dependent pathway, Pharmacol. Res. 152 (2020), 104616, http://dx.doi.org/10.1016/j.phrs.2019.104616.

[28]

F. Zhang, Y.Y. Zhang, Y.S. Sun, et al., Asparanin A from Asparagus officinalisL. induces G0/G1 cell cycle arrest and apoptosis in human endometrial carcinoma ishikawa cells via mitochondrial and PI3K/AKT signaling pathways, J. Agric. Food. Chem. 68 (2020) 213–224, http://dx.doi.org/10.1021/acs.jafc.9b07103.

[29]

Y. Li, W. Lin, J. Huang, et al., Anti-cancer effects of Gynostemma pentaphyllum (Thunb.) Makino (Jiaogulan), Chin. Med. 11 (2016) 43, http://dx.doi.org/10.1186/s13020-016-0114-9.

[30]

J.F. Cui, P. Eneroth, J. Bruhn, Gynostemma pentaphyllum: identification of major sapogenins and differentiation from Panax species, Eur. J. Pharm. Sci. 8 (1999) 187–191, http://dx.doi.org/10.1016/S0928-0987(99)00013-5.

[31]

F. Yang, H. Shi, X. Zhang, et al., Two new saponins from tetraploid jiaogulan (Gynostemma pentaphyllum), and their anti-inflammatory and α-glucosidase inhibitory activities, Food Chem. 141 (2013) 3606–3613, http://dx.doi.org/10.1016/j.foodchem.2013.06.015.

[32]

R.J. Duronio, Y. Xiong, Signaling pathways that control cell proliferation, CSH Perspect. Biol. 5 (2013), a008904, http://dx.doi.org/10.1101/cshperspect.a008904.

[33]

M.I. Shafiq, T. Steinbrecher, R. Schmid, FASCAPLYSIN as a specific inhibitor for CDK4: insights from molecular modelling, PLoS One 7 (2012), e42612, http://dx.doi.org/10.1371/journal.pone.0042612.

[34]

K. Yang, M. Hitomi, D.W. Stacey, Variations in Cyclin D1 levels through the cell cycle determine the proliferative fate of a cell, Cell Div. 1 (2006) 32, http://dx.doi.org/10.1186/1747-1028-1-32.

[35]

A.N. Bullock, A.R. Fersht, Rescuing the function of mutant p53, Nat. Rev. Cancer 1 (2001) 68, http://dx.doi.org/10.1038/35094077.

[36]

G.M. Wahl, A.M. Carr, The evolution of diverse biological responses to DNA damage: insights from yeast and p53, Nat. Cell Biol. 3 (2002) E277, http://dx.doi.org/10.1038/ncb1201-e277.

[37]

C.J. Sherr, J.M. Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression, Gene Dev. 13 (1999) 1501–1512, http://dx.doi.org/10.1101/gad.13.12.1501.

[38]

Y. Li, D. Liu, Y. Zhou, et al., Silencing of survivin expression leads to reduced proliferation and cell cycle arrest in cancer cells, Int. J. Cancer 6 (2015) 1187, http://dx.doi.org/10.7150/jca.12437.

[39]

S.M. Srinivasula, J. Ashwell, IAPs: what's in a name, Mol. Cell 30 (2008) 123–135, http://dx.doi.org/10.1016/j.molcel.2008.03.008.

[40]

L. Kong, X. Wang, K. Zhang, et al., Gypenosides synergistically enhances the anti-tumor effect of 5-Fluorouracil on colorectal cancer in vitro and in vivo: a role for oxidative stress-mediated DNA damage and p53 activation, PLoS One 10 (2015), e0137888, http://dx.doi.org/10.1371/journal.pone.0137888.

[41]

J.C. Chen, K.W. Lu, J.H. Lee, et al., Gypenosides induced apoptosis in human colon cancer cells through the mitochondria-dependent pathways and activation of caspase-3, Anticancer Res. 26 (2006) 4313–4326.

[42]

H.J. Glander, Binding of annexin V to plasma membranes of human spermatozoa: a rapid assay for detection of membrane changes after cryostorage, Mol. Hum. Reprod. 5 (1999) 109–115, http://dx.doi.org/10.1093/molehr/5.2.109.

[43]

J.S. Liu, T.H. Chiang, J.S. Wang, et al., Induction of p53-independent growth inhibition in lung carcinoma cell A549 by gypenosides, J. Cell. Mol. Med. 19 (2015) 1697–1709, http://dx.doi.org/10.1111/jcmm.12546.

[44]

H. Yan, X. Wang, J. Niu, et al., Anti-cancer effect and the underlying mechanisms of gypenosides on human colorectal cancer SW-480 cells, PLoS One 9 (2014), e95609, http://dx.doi.org/10.1371/journal.pone.0095609.

[45]

H.M. Kuo, L.S. Chang, Y.L. Lin, et al., Morin inhibits the growth of human leukemia HL-60 cells via cell cycle arrest and induction of apoptosis through mitochondria dependent pathway, Anticancer Res. 27 (2007) 395–405.

[46]

U. Lademann, T. Kallunki, M. Jäättelä, A20 zinc finger protein inhibits TNF-induced apoptosis and stress response early in the signaling cascades and independently of binding to TRAF2 or 14-3-3 proteins, Cell Death Differ. 8 (2001) 265, http://dx.doi.org/10.1038/sj.cdd.4400805.

[47]

M.J. Morgan, J. Thorburn, L. Thomas, et al., An apoptosis signaling pathway induced by the death domain of FADD selectively kills normal but not cancerous prostate epithelial cells, Cell Death Differ. 8 (2001) 696, http://dx.doi.org/10.1038/sj.cdd.4400866.

[48]

C.C. Lin, P.C. Huang, J.M. Lin, Antioxidant and hepatoprotective effects of Anoectochilus formosanus and Gynostemma pentaphyllum, Am. J. Chin. Med. 28 (2000) 87–96, http://dx.doi.org/10.1142/S0192415X00000118.

[49]

Z.N. Oltval, C.L. Milliman, S.J. Korsmeyer, Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death, Cell 74 (1993) 609–619, http://dx.doi.org/10.1016/0092-8674(93)90509-O.

[50]

D.R. Green, Apoptotic pathways: paper wraps stone blunts scissors, Cell 102 (2000) 1–4, http://dx.doi.org/10.1016/s0092-8674(00)00003-9.

[51]
A. Sathe, R. Nawroth, Targeting the PI3K/AKT/mTOR pathway in bladder cancer, in: Urothelial Carcinoma, Springer, 2018, pp. 335–350.
[52]

H. Cheng, M. Shcherba, G. Pendurti, et al., Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment, Lung Cancer Manage. 3 (2014) 67–75.

[53]

L. Jing, L. Anning, Role of JNK activation in apoptosis: a double-edged sword, Cell Res. 15 (2005) 36, http://dx.doi.org/10.1038/sj.cr.7290262.

[54]

D.N. Dhanasekaran, E.P. Reddy, JNK signaling in apoptosis, Oncogene 27 (2008) 6245, http://dx.doi.org/10.1038/onc.2008.301.

Food Science and Human Wellness
Pages 295-303
Cite this article:
Hussain SS, Zhang F, Zhang Y, et al. Stevenleaf from Gynostemma Pentaphyllum inhibits human hepatoma cell (HepG2) through cell cycle arrest and apoptotic induction. Food Science and Human Wellness, 2020, 9(3): 295-303. https://doi.org/10.1016/j.fshw.2020.04.011

591

Views

43

Downloads

12

Crossref

N/A

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 30 January 2020
Revised: 24 April 2020
Accepted: 27 April 2020
Published: 17 May 2020
© 2020 "Society information". Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return