AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Beneficial effects of AOS-iron supplementation on intestinal structure and microbiota in IDA rats

Hong Hea,1Hui Tenga,1Qun Huanga,bDan HeaFengping Ana,bLei Chena( )Hongbo Songa,b( )
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou 350002, China

1 Authors contributed equally to this work. Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Show Author Information

Abstract

The objective of this study was to investigate the effects of agar oligosaccharide-iron (AOS-iron) on intestinal tissue pathology and microbiota in IDA rats induced by a low-iron diet, further to find the relationship between intestinal microbiota and iron metabolic disorders. After 4 weeks of AOS-iron supplementation, the fecal iron content of IDA rats markedly increased in a dose-dependent manner, only the damaged cecum and colon tissues in medium-dose (MD) and high-dose (HD) groups were repaired to the baseline, while the diversity of gut microbiota was improved even at low dose (LD). Furthermore, the supplementation of AOS-iron altered the composition of gut microbiota. At the genus level, the beneficial microbiota was enriched in AOS-iron groups, but the relative abundance of potential opportunistic pathogens obviously reduced compared to that in the anemia model (AM) group. Spearman's correlation analysis revealed that biochemical parameters, including blood metabolic parameters, iron contents, body weight, GSH-PX and T-AOC activity, were positively correlated with SMB53, Anaerotruncus, Anaerostipes and Coprobacillus but negatively correlated with Morganella, Fusobacterium and Serratia. These findings indicated that AOS-iron effectively repaired the damaged intestinal tissue and ameliorated iron metabolic disorders by regulating gut microbiota desirably, which could provide references for the treatment of IDA.

References

[1]

B. Kaczorowska-Hac, M. Luszczyk, J. Antosiewicz, et al., HFE gene mutations and iron status in 100 healthy polish children, J. Pediatr. Hematol. Oncol. 39 (5) (2017) 240–243, http://dx.doi.org/10.1097/MPH.0000000000000826.

[2]

X. Chen, X.G. Lei, Q.Y. Wang, et al., Effects of a tripeptide iron on iron-deficiency anemia in rats, Biol. Trace Elem. Res. 169 (2) (2016) 1–7, http://dx.doi.org/10.1007/s12011-015-0412-6.

[3]

L. Sean, Improving the assessment of iron status, Am. J. Clin. Nutr. 93 (6) (2011) 1188–1189, http://dx.doi.org/10.3945/ajcn.111.015214.

[4]

D. Alexandra, C. Christophe, F.M. Hilty, et al., Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats, J. Nutr. 142 (2) (2012) 271–277, http://dx.doi.org/10.3945/jn.111.148643.

[5]

C. Nappi, G. Tommaselli, M. Ilaria, et al., Efficacy and tolerability of oral bovine lactoferrin compared to ferrous sulfate in pregnant women with iron deficiency anemia: a prospective controlled randomized study, Acta Obstet. Gynecol. Scand. 88 (9) (2009) 1031–1035, http://dx.doi.org/10.1080/00016340903117994.

[6]

M. Lausević, N. Jovanović, S. Ignjatovic, et al., Resorption and tolerance of the high doses of ferrous sulfate and ferrous gluconate in the patients on peritoneal dialysis, Vojnosanitetski pregled, Military-Med. Pharm. Rev. 63 (2) (2006) 143–147, http://dx.doi.org/10.2298/vsp0602143l.

[7]

C.H. María Jesús, C.B. Camil, P. Santiago, et al., Tolerability of different oral iron supplements: a systematic review, Cur. Med. Res. Opinion 29 (4) (2013) 291–303, http://dx.doi.org/10.1185/03007995.2012.761599.

[8]

G.H. Yenela, M.C. Alain, B.L. Virgilio, Oxidative effect of severe iron deficiency anemia in male just-weaned Wistar rats, Revista Cubana De Investigaciones Biomedicas 34 (1) (2015) 44–53.

[9]

H. He, Q. Huang, C.C. Liu, et al., Effectiveness of AOS–iron on iron deficiency anemia in rats, RSC Adv. 9 (9) (2019) 5053–5063, http://dx.doi.org/10.1039/C8RA08451C.

[10]

L. Petra, S.I. Mccrae, C. Cédric, et al., Organization of butyrate synthetic genes in human colonic bacteria: phylogenetic conservation and horizontal gene transfer, FEMS Microbiol. Lett. 269 (2) (2007) 240–247, http://dx.doi.org/10.1111/j.1574-6968.2006.00629.x.

[11]

M.B. Zimmermann, C. Christophe, R. Fabian, et al., The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d'Ivoire, Am. J. Clin. Nutr. 92 (6) (2010) 1406–1415, http://dx.doi.org/10.3945/ajcn.110.004564.

[12]

H. Chen, X.B. Mao, J. He, et al., Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets, Br. J. Nutr. 110 (10) (2013) 1837–1848, http://dx.doi.org/10.1017/S0007114513001293.

[13]

K.J. Portune, A. Benítez-Páez, E.M. Del Pulgar, et al., Gut microbiota, diet and obesity-related disorders - the good, the bad and the future challenges, Mol. Nut. Food Res. 61 (1) (2017) 1–53, http://dx.doi.org/10.1002/mnfr.201600252.

[14]

K.N. Raymond, E.A. Dertz, S.S. Kim, Enterobactin: an archetype for microbial iron transport, PNAS 100 (7) (2003) 3584–3588, http://dx.doi.org/10.1073/pnas.0630018100.

[15]

A. Dostal, C. Lacroix, L. Bircher, et al., Iron modulates butyrate production by a child gut microbiota in vitro, Mbio 6 (6) (2015) 1–12, http://dx.doi.org/10.1128/mBio.01453-15.

[16]

S.A.H. Selim, S.M.E. Alfy, A.M. Diab, et al., Intestinal bacterial flora that compete on the haem precursor iron fumarate in iron deficiency anemia cases, Malaysian J. Microbiol. 8 (2) (2012) 92–96, http://dx.doi.org/10.21161/mjm.03312.

[17]

J.C. Deschemin, M.L. Noordine, A. Remot, et al., The microbiota shifts the iron sensing of intestinal cells, FASEB J. 30 (1) (2016) 252–261, http://dx.doi.org/10.1096/fj.15-276840.

[18]

M. Hoppe, G. Önning, A. Berggren, et al., Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: a double-isotope cross-over single-blind study in women of reproductive age, Br. J. Nutr. 114 (8) (2015) 1195–1202, http://dx.doi.org/10. 1017/S000711451500241X.

[19]

M.B. Reddy, S.M. Armah, Impact of iron-enriched aspergillus oryzae on iron bioavailability, safety and gut microbiota in rats, J. Agri. Food Chem. 66 (24) (2018) 6213–6218, http://dx.doi.org/10.1021/acs.jafc.8b01758.

[20]

R.J. Kusuma, A. Ermamilia, Fortification of tempeh with encapsulated iron improves iron status and gut microbiota composition in iron deficiency anemia condition, Nutri. Food Sci. 48 (6) (2018) 962–972, http://dx.doi.org/10.1108/NFS-01-2018-0027.

[21]

S.H. Lee, P. Shinde, J. Choi, et al., Effects of dietary iron levels on growth performance, hematological status, liver mineral concentration, fecal microflora, and diarrhea incidence in weanling pigs, Biol. Trace Elem. Res. 126 (1) (2008) 57–68, http://dx.doi.org/10.1007/s12011-008-8209-5.

[22]

D. Alexandra, F. Sophie, C. Christophe, et al., Low iron availability in continuous in vitro colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites, FEMS Microbiol. Ecol. 83 (1) (2012) 161–175, http://dx.doi.org/10.1111/j.1574-6941.2012.01461.x.

[23]

H. He, F.P. An, H. Teng, et al., Preparation and characterisation of a novel agar oligosaccharide-iron (Ⅲ) complex, Int. J. Food Sci. Technol. 54 (1) (2019) 170–182, http://dx.doi.org/10.1111/ijfs.13921.

[24]

S. Sadeghi, V. Ashoori, Iron species determination by task specific ionic liquid based in-situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry, J. Sci. Food Agri. 97 (13) (2017) 4635–4642, http://dx.doi.org/10.1002/(SICI)1521-4109(199805)10:6<369::AID-ELAN369>3.0.CO;2-W.

[25]

J. Peat, W. Dean, S. Clark, et al., Genome-wide bisulfite sequencing in zygotes identifies demethylation targets and maps the contribution of TET3 oxidation, Cell Reports 9 (6) (2014) 1990–2000, http://dx.doi.org/10.1016/j.celrep.2014. 11.034.

[26]

F.Z. Gao, W. Guo, M.Y. Zeng, et al., Effect of iron supplement from microalgae on the treatment of iron-deficient anemia in rats, Food Funct. 10 (2) (2019) 1–10, http://dx.doi.org/10.1039/C8FO01834K.

[27]

D. Alexandra, L. Christophe, V.T. Pham, et al., Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats, Br. J. Nutr. 111 (12) (2014) 2135–2145, http://dx.doi.org/10.1017/S000711451400021X.

[28]

M. Magnusson, K.E. Magnusson, T. Sundqvist, et al., Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure, Gut 32 (7) (1991) 754–759, http://dx.doi.org/10.1136/gut.32.7.754.

[29]

A. Yamada, H. Watabe, Y. Yamaji, et al., Incidence of small intestinal lesions in patients with iron deficiency anemia, Hepatogastroenterology 58 (109) (2011) 1240–1243, http://dx.doi.org/10.5754/hge10736.

[30]

J.L. Song, Y. Gao, Effects of methanolic extract form Fuzhuan brick-tea on hydrogen peroxide-induced oxidative stress in human intestinal epithelial adenocarcinoma Caco-2 cells, Mol. Med. Rep. 9 (3) (2014) 1061–1067, http://dx.doi.org/10.3892/mmr.2014.1884.

[31]

Z. Zhuo, The different effects of ferrous glycine chelate and ferrous sulfate to intestinal porcine epithelial cells, J. Anim. Sci. 94 (5) (2016) 222–224, http://dx.doi.org/10.2527/jam2016-0465.

[32]

G. Pizzino, N. Irrera, M. Cucinotta, et al., Oxidative stress: harms and benefits for human health, Oxid. Med. Cell. Longevity 2017 (3) (2017) 1–13, http://dx.doi.org/10.1155/2017/8416763.

[33]

R. Del Pino-García, G. Gerardi, M.D. Rivero-Pérez, et al., Wine pomace seasoning attenuates hyperglycaemia-induced endothelial dysfunction and oxidative damage in endothelial cells, J. Funct. Foods 22 (2016) (2016) 431–445, http://dx.doi.org/10.1016/j.jff.2016.02.001.

[34]

K. Buhnik-Rosenblau, S. Moshe-Belizowski, Y. Danin-Poleg, et al., Genetic modification of iron metabolism in mice affects the gut microbiota, Biometals 25 (5) (2012) 883–892.

[35]

A. Andoh, A. Nishida, K. Takahashi, et al., Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population, J. Clin. Biochem. Nutr. 59 (1) (2016) 65–70, http://dx.doi.org/10.3164/jcbn.15-152.

[36]

N.R. Shin, T.W. Whon, J.W. Bae, Proteobacteria: microbial signature of dysbiosis in gut microbiota, Trends Biotechnol. 33 (9) (2015) 496–503, http://dx.doi.org/10.1016/j.tibtech.2015.06.011.

[37]

H.M. Lin, S.G. Deng, S.B. Huang, et al., The effect of ferrous-chelating hairtail peptides on iron deficiency and intestinal flora in rats, J. Sci. Food Agric. 96 (8) (2015) 2839–2844, http://dx.doi.org/10.1002/jsfa.7452.

[38]

M.Y. Lin, C.L. Yen, Antioxidative ability of lactic acid bacteria, J. Agric. Food. Chem. 47 (4) (1999) 1460–1466, http://dx.doi.org/10.1021/jf981149l.

[39]

Q. Shen, N. Shang, P.L. Li, In vitro and in vivo antioxidant activity of bifidobacterium animalis 01 isolated from centenarians, Curr. Microbiol. 62 (4) (2011) 1097–1103, http://dx.doi.org/10.1007/s00284-010-9827-7.

[40]

J.A. Kim, S.H. Kim, I.S. Kim, et al., Anti-inflammatory effects of a mixture of lactic acid bacteria and sodium butyrate in atopic dermatitis murine model, J. Med. Food 21 (7) (2018) 716–725, http://dx.doi.org/10.1089/jmf.2017.4116.

[41]

H.B. Wang, P.Y. Wang, W. Xin, et al., Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein claudin-1 transcription, Dig. Dis. Sci. 57 (12) (2012) 3126–3135, http://dx.doi.org/10.1007/s10620-012-2259-4.

[42]

O. Polansky, Z. Sekelova, M. Faldynova, et al., Important metabolic pathways and biological processes expressed by chicken cecal microbiota, Appl. Environ. Microbiol. 82 (5) (2015) 1569–1576, http://dx.doi.org/10.1128/aem.03473-15.

[43]

T. Morino, K. Ookawa, N. Haruta, et al., Effects of professional oral health care on elderly: randomized trial, Int. J. Dent. Hygiene 12 (4) (2015) 291–297, http://dx.doi.org/10.1111/idh.12068.

[44]

A.L. Hamilton, M.A. Kamm, S.C. Ng, et al., Proteus spp. as putative gastrointestinal pathogens, Clin. Microbiol. Rev. 31 (3) (2018) 1–19, http://dx.doi.org/10.1128/CMR.00085-17.

[45]

H. Oliveira, G. Pinto, A. Oliveira, et al., Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies, Sci. Rep. 7 (1) (2017) 1–14, http://dx.doi.org/10.1038/srep46157.

[46]

F. Yang, B.Y. Shi, W.Y. Zhang, et al., Pyrosequencing analysis of source water switch and sulfate-induced bacterial community transformation in simulated drinking water distribution pipes, Environ. Sci. Pollut. Res. 24 (8) (2017) 1–19, http://dx.doi.org/10.1007/s11356-017-0370-y.

Food Science and Human Wellness
Pages 23-31
Cite this article:
He H, Teng H, Huang Q, et al. Beneficial effects of AOS-iron supplementation on intestinal structure and microbiota in IDA rats. Food Science and Human Wellness, 2021, 10(1): 23-31. https://doi.org/10.1016/j.fshw.2020.05.009

522

Views

35

Downloads

14

Crossref

N/A

Web of Science

15

Scopus

2

CSCD

Altmetrics

Received: 25 February 2020
Revised: 05 May 2020
Accepted: 27 May 2020
Published: 04 June 2020
© 2021 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return