AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Ganoderma lucidum spore oil (GLSO), a novel antioxidant, extends the average life span in Drosophila melanogaster

Yi Zhanga,b,cHongfei CaicZhu TaocCheng YuancZhaojian JiangcJuyan Liub,c,d( )Hiroshi Kuriharaa,e( )Wendong Xub,c( )
Institute of Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
Postdoctoral Research Station of Guangzhou Pharmaceutical Holdings Limited, Guangdong 510130, China
Institute of National Engineering Research Center for Modernization of Extraction and Separation Process of Traditional Chinese Medicine, Hanfang Pharmaceutical Co., Ltd, Guangdong 510240, China
Guangzhou Pharmaceutical Holdings Ltd, Guangdong 510130, China
Institute of Traditional Chinese Medicine and Natural Products, Jinan University, 601, Huangpu Avenue West, Guangzhou, 510632, China

Peer review under responsibility of KeAi Communications Co., Ltd

Show Author Information

Abstract

In ancient China, Ganoderma lucidum was believed to be a medical fungus that could increase lifespan. Recently, pharmacologic studies have found that polysaccharide peptides and triterpenoids extracted from Ganoderma lucidum have various physiological effects as active compounds. However, the effects of spore oil isolated from Ganoderma lucidum remains unknown. In this study, the biological effects of Ganoderma lucidum spore oil (GLSO) were evaluated using a Drosophila melanogaster model. Compared with untreated groups, groups treated with GLSO had significantly longer average and maximum lifespan in both normal conditions and under oxidative stress. The activities of various antioxidant enzymes were measured to determine the antioxidant effect of GLSO. GLSO treatment markedly enhanced total superoxide dismutase (SOD) and catalase (CAT) activity and decreased levels of malondialdehyde (MDA). Further, we found dose-dependent increases in the mRNA expression of Cu, Zn-SOD, Mn-SOD, and CAT in GLSO-treated groups. These results suggest that GLSO may effectively eliminate free radicals and extend lifespan in Drosophila. Future work should investigate the value of GLSO as a functional food for the prevention of aging in larger animal models.

References

[1]

I.C. Ferreira, S.A. Heleno, F.S. Reis, et al., Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities, Phytochemistry 114 (2015) 38–55, http://dx.doi.org/10.1016/j.phytochem.2014.10.011.

[2]

V.T. Cuong, W. Chen, J. Shi, et al., The anti-oxidation and anti-aging effects of Ganoderma lucidum in Caenorhabditis elegans, Exp. Gerontol. 117 (2019) 99–105, http://dx.doi.org/10.1016/j.exger.2018.11.016.

[3]

H.T. Ma, J.F. Hsieh, S.T. Chen, Anti-diabetic effects of Ganoderma lucidum, Phytochemistry 114 (2015) 109–113, http://dx.doi.org/10.1016/j.phytochem.2015.02.017.

[4]

Y. Liu, Y. Li, W. Zhang, et al., Hypoglycemic effect of inulin combined with Ganoderma lucidum polysaccharides in T2DM rats, J. Funct. Foods 55 (2019) 381–390, http://dx.doi.org/10.1016/j.jff.2019.02.036.

[5]

X.Y. Cui, S.Y. Cui, J. Zhang, et al., Extract of Ganoderma lucidum prolongs sleep time in rats, J. Ethnopharmacol. 139 (2012) 796–800, http://dx.doi.org/10.1016/j.jep.2011.12.020.

[6]

Z.Y. Zhou, Y.P. Tang, J. Xiang, et al., Neuroprotective effects of water-soluble Ganoderma lucidum polysaccharides on cerebral ischemic injury in rats, J. Ethnopharmacol. 131 (2010) 154–164, http://dx.doi.org/10.1016/j.jep.2010.06.023.

[7]

C. Zhao, J. Fan, Y. Liu, et al., Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol-induced liver injury in mice, an iTRAQ-based proteomic analysis, Food Chem. 271 (2019) 148–156, http://dx.doi.org/10.1016/j.foodchem.2018.07.115.

[8]

Y. Shi, J. Sun, H. He, et al., Hepatoprotective effects of Ganoderma lucidum peptides against D-galactosamine-induced liver injury in mice, J. Ethnopharmacol. 117 (2008) 415–419, http://dx.doi.org/10.1016/j.jep.2008.02.023.

[9]

N. Santesso, L.S. Wieland, Ganoderma lucidum (Reishi mushroom) for the treatment of cancer, Eur. J. Integr. Med. 8 (2016) 619.

[10]

J. Yuen, D. Mak, E. Chan, et al., Tumor inhibitory effects of intravesical Ganoderma lucidum instillation in the syngeneic orthotopic MB49/C57 bladder cancer mice model, J. Ethnopharmacol. 223 (2018) 113–121, http://dx.doi.org/10.1016/j.jep.2018.05.020.

[11]

C. Sharma, N. Bhardwaj, A. Sharma, et al., Bioactive metabolites of Ganoderma lucidum: factors, mechanism and broad spectrum therapeutic potential, J. Herb. Med. (2019) 100268, http://dx.doi.org/10.1016/j.hermed.2019.100268.

[12]

C. Liang, D. Tian, Y. Liu, et al., Review of the molecular mechanisms of Ganoderma lucidum triterpenoids: ganoderic acids A, C2, D, F, DM, X and Y, Eur. J. Med. Chem. 174 (2019) 130–141, http://dx.doi.org/10.1016/j.ejmech.2019.04.039.

[13]

J. Liu, K. Kurashiki, A. Fukuta, et al., Quantitative determination of the representative triterpenoids in the extracts of Ganoderma lucidum with different growth stages using high-performance liquid chromatography for evaluation of their 5α-reductase inhibitory properties, Food Chem. 133 (2012) 1034–1038, http://dx.doi.org/10.1016/j.foodchem.2012.01.034.

[14]

X.R. Peng, J.Q. Liu, Z.H. Han, et al., Protective effects of triterpenoids from Ganoderma resinaceum on H2O2-induced toxicity in HepG2 cells, Food Chem. 141 (2013) 920–926, http://dx.doi.org/10.1016/j.foodchem.2013.03.071.

[15]

Y.J. Fu, W. Liu, Y.G. Zu, et al., Breaking the spores of the fungus Ganoderma lucidum by supercritical CO2, Food Chem. 112 (2009) 71–76, http://dx.doi.org/10.1016/j.foodchem.2008.05.044.

[16]

D. Zhou, F. Zhou, J. Ma, et al., Microcapsulation of Ganoderma lucidum spores oil: evaluation of its fatty acids composition and enhancement of oxidative stability, Ind. Crops Prod. 131 (2019) 1–7, http://dx.doi.org/10.1016/j.indcrop.2019.01.031.

[17]

Y. Xu, X. Zhang, X.H. Yan, et al., Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum, Int. J. Biol. Macromol. 135 (2019) 706–716, http://dx.doi.org/10.1016/j.ijbiomac.2019.05.166.

[18]

Q. Kang, S. Chen, S. Li, et al., Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction, Int. J. Biol. Macromol. 124 (2019) 1137–1144, http://dx.doi.org/10.1016/j.ijbiomac.2018.11.215.

[19]

L.F. Zhu, Y. Yao, Z. Ahmad, et al., Development of Ganoderma lucidum spore powder based proteoglycan and its application in hyperglycemic, antitumor and antioxidant function, Process. Biochem. 84 (2019) 103–111, http://dx.doi.org/10.1016/j.procbio.2019.05.025.

[20]

S. Wu, Hypolipidaemic and anti-lipidperoxidant activities of Ganoderma lucidum polysaccharide, Int. J. Biol. Macromol. 118 (2018) 2001–2005, http://dx.doi.org/10.1016/j.ijbiomac.2018.07.082.

[21]

D. Sargowo, N. Ovianti, E. Susilowati, et al., The role of polysaccharide peptide of Ganoderma lucidum as a potent antioxidant against atherosclerosis in high risk and stable angina patients, Indian Heart J. 70 (2018) 608–614, http://dx.doi.org/10.1016/j.ihj.2017.12.007.

[22]

S. Bahadorani, A.J. Hilliker, Cocoa confers life span extension in Drosophila melanogaster, Nutr. Res. 28 (2008) 377–382, http://dx.doi.org/10.1016/j.nutres.2008.03.018.

[23]

N.M. Joseph, N.Y. Elphick, S. Mohammad, et al., Altered pheromone biosynthesis is associated with sex-specific changes in life span and behavior in Drosophila melanogaster, Mech. Ageing Dev. 176 (2018) 1–8, http://dx.doi.org/10.1016/j.mad.2018.10.002.

[24]

V.I. Klichko, V.L. Safonov, M.Y. Safonov, et al., Supplementation with hydrogen-producing composition confers beneficial effects on physiology and life span in Drosophila, Heliyon 5 (5) (2019) e01679, http://dx.doi.org/10.1016/j.heliyon.2019.e01679.

[25]

W. Liu, J. Xu, P. Jing, et al., Preparation of a hydroxypropyl Ganoderma lucidum polysaccharide and its physicochemical properties, Food Chem. 122 (2010) 965–971, http://dx.doi.org/10.1016/j.foodchem.2009.11.087.

[26]

M.S.V. Gurovic, F.R. Viceconte, M.T. Pereyra, et al., DNA damaging potential of Ganoderma lucidum extracts, J. Ethnopharmacol. 217 (2018) 83–88, http://dx.doi.org/10.1016/j.jep.2018.02.005.

[27]

J. Goudeau, B. Stéphanie, E. Toselli-Mollereau, et al., Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans, PLoS Biol. 9 (2011) 1–16, http://dx.doi.org/10.1371/journal.pbio.1000599.

[28]

S. Han, E.A. Schroeder, C.G. Silva-García, et al., Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan, Nature 544 (2017) 185–190, http://dx.doi.org/10.1038/nature21686.

[29]

C. Jiao, W. Chen, X. Tan, et al., Ganoderma lucidum spore oil induces apoptosis of breast cancer cells in vitro and in vivo by activating caspase-3 and caspase-9, J. Ethnopharmacol. 247 (2019), 112256, http://dx.doi.org/10.1016/j.jep.2019.112256.

[30]

K. Kawai, H. Furukawa, Oxidative damage of Drosophila melanogaster fed with hydrogen peroxide, Mutat. Res. 3 (1995) 399–400.

[31]

S. Miwa, J. St-Pierre, L. Partridge, et al., Superoxide and hydrogen peroxide production by Drosophila mitochondria, Free Radic. Biol. Med. 35 (2003) 938–948, http://dx.doi.org/10.1016/S0891-5849(03)00464-7.

[32]

X. Liu, M. Liu, C. Tang, et al., Overexpression of Nmnat improves the adaption of health span in aging Drosophila, Exp. Gerontol. 108 (2018) 276–283, http://dx.doi.org/10.1016/j.exger.2018.04.026.

[33]

A. Zarrouk, A. Vejux, J. Mackrill, et al., Involvement of oxysterols in age-related diseases and ageing processes, Ageing Res. Rev. 18 (2014) 148–162, http://dx.doi.org/10.1016/j.arr.2014.09.006.

Food Science and Human Wellness
Pages 38-44
Cite this article:
Zhang Y, Cai H, Tao Z, et al. Ganoderma lucidum spore oil (GLSO), a novel antioxidant, extends the average life span in Drosophila melanogaster. Food Science and Human Wellness, 2021, 10(1): 38-44. https://doi.org/10.1016/j.fshw.2020.05.011

558

Views

38

Downloads

13

Crossref

N/A

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 28 November 2019
Revised: 04 April 2020
Accepted: 21 May 2020
Published: 13 June 2020
© 2021 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return