AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Chrysoeriol ameliorates hyperglycemia by regulating the carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats

Baskaran KrishnanaAbirami Ramu GanesanbRavindran BalasubramanicDinh Duc NguyencSoon Woong ChangcShaoyun WangdJianbo Xiaoe( )Balamuralikrishnan Balasubramanianf( )
Department of Biochemistry, Sree Narayana Guru College, Coimbatore, 641105, Tamil Nadu, India
Department of Food Science and Home Economics, School of Applied Sciences, College of Engineering, Science and Technology, Fiji National University, Fiji Islands
Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea
College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
Department of Food Science and Biotechnology, College of Life Sciences, Sejong University, Seoul, 05006, South Korea

Peer review under responsibility of KeAi Communications Co., Ltd

Show Author Information

Abstract

The present study aimed to evaluate the effects of chrysoeriol from Cardiospermum halicacabum in streptozotocin induced Wistar rats. Thirty rats were categorized as control, diabetic control supplemented with 0, 20 mg/kg chrysoeriol and 600 μg/kg BW of glibenclamide for 45-day trial period. Our results indicated that the inclusion of chrysoeriol (20 mg/kg), showed a significant reduction in plasma glucose, hemoglobin and glycosylated hemoglobin level with a rising of plasma insulin sensitivity. Further, downregulated enzymes including glucose 6-phosphatase, fructose 1,6-bisphosphatase, and glycogen phosphorylase as well upregulated enzymes such as hexokinase, glucose-6-phosphate dehydrogenase, pyruvate kinase, and hepatic glycogen content. There was a diminish action found in liver glycogen synthase of tested rat with a rise in gamma-glutamyl transpeptidase, towards normal levels upon treatment with chrysoeriol. The histopathological study confirmed that renewal of the beta cells of pancreatic of chrysoeriol and glibenclamide treated rats. In addition, the molecular docking of chrysoeriol against glycolytic enzymes including hexokinase, glucose-6-phosphate dehydrogenase, pyruvate kinase, using Argus software shows chrysoeriol had greatest ligand binding energy as equivalent to glibenclamide, as a standard drug. Thus, chrysoeriol found to be non-toxic with potential regulation on glycemic control and upregulation of the carbohydrate metabolic enzymes.

References

[1]

L. Guariguata, By the numbers: new estimates from the IDF diabetes atlas update for 2012, Diabetes Res. Clin. Pract. 98 (2012) 524–525, http://dx.doi.org/10.1016/j.diabres.2012.11.006.

[2]

J.K. Grover, S. Yadav, V. Vats, Medicinal plants of India with anti-diabetic potential, J. Ethnopharmacol. 81 (2002) 81–100, http://dx.doi.org/10.1016/s0378-8741(02)00059-4.

[3]

C. Day, Traditional plant treatments for diabetes mellitus: pharmaceutical foods, Br. J. Nutr. 80 (1998) 5–6, http://dx.doi.org/10.1017/s0007114598001718.

[4]

R.G. Abirami, S. Kowsalya, Antidiabetic activity of Ulva fasciata and its impact on carbohydrate metabolism enzymes in alloxan-induced diabetic rats, Int. J. Res. Phytochem. Pharmacol. 3 (2013) 136–141, http://dx.doi.org/10.20510/ukjpb/4/i2/97081.

[5]

H. Cao, J.Y. Ou, L. Chen, et al., Dietary polyphenols for managing type 2 diabetes: human studies and clinical trials, Crit. Rev. Food Sci. Nutr. 59 (2019) 3371–3379, http://dx.doi.org/10.1080/10408398.2018.1492900.

[6]

C. Zhao, X.Z. Wan, S. Zhou, et al., Natural polyphenols: a potential therapeutic approach to hypoglycemia, eFood 1 (2020) 107–118, http://dx.doi.org/10.2991/efood.k.200302.001.

[7]

L. Chen, X.Y. Fan, X.J. Lin, et al., Phenolic extract from Sonchus oleraceus L. protects diabetes-related liver injury in rats through TLR4/NF-κB signaling pathway, eFood 1 (2020) 77–84, http://dx.doi.org/10.2991/efood.k.191018.002.

[8]

C.D. Sun, C. Zhao, E.C. Guven, et al., Dietary polyphenols as antidiabetic agents: advances and opportunities, Food Front. 1 (2020) 18–44, http://dx.doi.org/10.1186/2251-6581-12-43.

[9]

C. Veeramani, G. Pushpavalli, K.V. Pugalendi, Antihyperglycaemic effect of Cardiospermum halicacabum Linn. leaf extract on streptozotocin induced diabetic rats, J. Appl. Biomed. 6 (2007) 19–26, http://dx.doi.org/10.32725/jab.2008.003.

[10]

H.T. Bui, M.C. Nguyen, T.H. Tran, et al., Chrysoeriol isolated from the leaves of Eurya ciliata stimulates proliferation and differentiation of osteoblastic MC3T3-E1 cells, J. Asian Nat. Prod. Res. 11 (2009) 817–823, http://dx.doi.org/10.1080/10286020903117317.

[11]

Y.L. Hsu, P.L. Kuo, Diosmetin induces human osteoblastic differentiation through the protein kinase C/p38 and extracellular signal-regulated kinase 1/2 pathway, J. Bone Miner. Res. 23 (2009) 949–960, http://dx.doi.org/10.1359/jbmr.080219.

[12]

K. Baskaran, K.V. Pugalendi, R. Saravanan, Ameliorative potential of chrysoeriol, a bioactive flavonoid on oxidative stress and hepatic marker enzymes in STZ induced diabetic rats, Asian J. Pharm. Pharmacol. 5 (3) (2019) 614–624, http://dx.doi.org/10.31024/ajpp.2019.5.3.25.

[13]

V. Androutsopoulos, N. Wilsher, R.R. Arroo, et al., Bioactivation of the phytoestrogen diosmetin by CYP1 cytochromes P450, Cancer Lett. 274 (2009) 54–60, http://dx.doi.org/10.1016/j.canlet.2008.08.032.

[14]

R.R.J. Arroo, V. Androutsopoulos, K. Beresford, et al., Phytoestrogens as natural prodrugs in cancer prevention: dietary flavonoids, Phytochem. Rev. 8 (2009) 375–386, http://dx.doi.org/10.1007/s11101-009-9128-6.

[15]

T. Zheng, G. Shu, Z. Yang, et al., Antidiabetic effect of total saponins from Entada phaseoloides Merr. in type 2 diabetic rat, J. Ethnopharmacol. 139 (3) (2012) 814–821, http://dx.doi.org/10.1016/j.jep.2011.12.025.

[16]

K. Baskaran, K.V. Pugalendi, R. Saravanan, Chrysoeriol a bioactive flavonoid, in Cardiospermum halicacabum L. leaves and their free radical scavenging activities, J. Pharm. Res. 9 (2015) 419–427.

[17]

F. Zhang, L. Dong, C.P. Zhang, et al., Increasing prevalence of gestational diabetes mellitus in Chinese women from 1999 to 2008, Diabet. Med. 28 (2011) 652–657, http://dx.doi.org/10.1111/j.1464-5491.2010.03205.x.

[18]

P. Trinder, Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor, Ann. Clin. Biochem. 6 (1969) 24, http://dx.doi.org/10.1177/000456326900600108.

[19]

N. Brandstrup, J.E. Kirk, C. Bruni, The hexokinase and phosphogluco isomerase activities of aortic and pulmonary artery tissue in individuals of various ages, J. Gerontol. 12 (1957) 166–171, http://dx.doi.org/10.1093/geronj/12.2.166.

[20]

H.A. Ells, H.N. Kirkman, A colorimetric method for assay of erythrocytic glucose-6-phosphate dehydrogenase, Proc. Soc. Exp. Biol. Med. 106 (1961) 607–609, http://dx.doi.org/10.3181/00379727-106-26418.

[21]

C.I. Pogson, R.M. Denton, Effect of alloxan diabetes, starvation and refeeding on glycolytic kinase activities in rat epididymal adipose tissue, Nature 216 (1967) 156–157, http://dx.doi.org/10.1038/216156a0.

[22]

H. Koide, T. Oda, Pathological occurrence of glucose-6-phosphatase in serum in liver diseases, Clin. Chim. Acta 4 (1959) 554–561, http://dx.doi.org/10.1016/00098981(59)90165-2.

[23]

J.M. Gancedo, C. Gancedo, Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non-fermenting yeasts, Arch. Mikrobiol. 76 (1971) 132–138, http://dx.doi.org/10.1007/BF00411787.

[24]

S. Reitman, S. Frankel, A colorimetric method for the determination of serum glutamate oxaloacetate and glutamate pyruvate transaminases, Am. J. Clin. Pathol. 28 (1957) 56–63, http://dx.doi.org/10.1093/ajcp/28.1.56.

[25]

M.A. Morales, A.J. Jabbagy, H.R. Terenizi, Mutations affecting accumulation of glycogen, Neurospora. Newsl. 20 (1973) 24–25, http://dx.doi.org/10.4148/1941-4765.1830.

[26]
L.F. Leloir, S.H. Goldemberg, Glycogen synthetase from rat liver: (glucose) (UDPG)/(glucose) UDP, in: S.P. Colowick, N.O. Kalpan (Eds. ), Methods in Enzymology, Academic Press, New York, 1962, pp. 145–147.
[27]

M. Cornblath, P.J. Randle, A. Parmeggiani, et al., Regulation of glycogenolysis in muscle, effects of glucagon and anoxia on lactate production, glycogen content, and phosphorylase activity in the perfused isolated rat heart, J. Biol. Chem. 238 (1963) 1592–1597.

[28]

C.A. Lipinski, F. Lombardo, B.W. Dominy, et al., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (1-3) (2001) 3–26, http://dx.doi.org/10.1016/s0169-409x(00)00129-0.

[29]

V. Chen, C.D. Ianuzzo, Dosage effect of streptozotocin on rat tissue enzyme activities and glycogen concentration, Can. J. Physiol. Pharm. 60 (1982) 1251–1256, http://dx.doi.org/10.1139/y82-183.

[30]
R.L. Murray, D.K. Granner, P.A. Mayes, et al., Harper's Biochemistry, 25th edition, Appleton and Lange, Stanford Connecticut, 2000.
[31]

P. Kalaiarasi, K.V. Pugalendi, Antihyperglycemic effect of 18β-glycyrrhetinic acid, aglycone of glycyrrhizin, on streptozotocin-diabetic rats, Eur. J. Pharmacol. 606 (2009) 269–273, http://dx.doi.org/10.1016/j.ejphar.2008.12.057.

[32]

P. Seedevi, A.R. Ganesan, M. Moovendhan, et al., Anti-diabetic activity of crude polysaccharide and rhamnose-enriched polysaccharide from G. lithophila on streptozotocin (STZ)-induced in Wistar rats, Sci. Rep. 10 (2020) 1–12, http://dx.doi.org/10.1038/s41598-020-57486-w.

[33]

B.L. Yolanda, G.C. Adriana, Effects of dietary polyunsaturated n-3 fatty acids on dyslipidemia and insulin resistance in rodents and humans, J. Nutr. Biochem. 17 (2006) 1–13, http://dx.doi.org/10.1016/j.jnutbio.2005.08.002.

[34]

R. Harini, M. Ezhumalai, K.V. Pugalendi, Antihyperglycemic effect of biochanin A, a soy isoflavone, on streptozotocin-diabetic rats, Eur. J. Pharmacol. 15 (2012) 89–94, http://dx.doi.org/10.1016/j.ejphar.2011.11.051.

[35]

T. Shimazu, Neuronal regulation of hepatic glucose metabolism in mammals, Diabetes. Rev. 3 (1987) 185–206, http://dx.doi.org/10.1002/dmr.5610030109.

[36]

N.Z. Baquer, D. Gupta, J. Raja, Regulation of metabolic pathways in liver and kidney during experimental diabetes: effects of antidiabetic compounds, Indian J. Clin. Biochem. 13 (1998) 63–80, http://dx.doi.org/10.1007/BF02867866.

[37]

S.H. Kim, S.H. Hyun, S.Y. Choung, Antidiabetic effect of cinnamon extract on blood glucose in db/db mice, J. Ethnopharmacol. 104 (2006) 119–123, http://dx.doi.org/10.1016/j.jep.2005.08.059.

[38]

K. Yamada, T. Noguchi, Nutrient and hormonal regulation of pyruvate kinase gene expression, Biochem. J. 337 (1999) 1–11.

[39]

R. Taylor, L. Agius, The biochemistry of diabetes, Biochem. J. 250 (1988) 625–664, http://dx.doi.org/10.1042/bj2500625.

[40]

M. Roden, E. Bernroider, Hepatic glucose metabolism in humans–its role in health and disease, Best Pract. Res. Clin. Endocrinol. Metab. 17 (3) (2003) 365–383, http://dx.doi.org/10.1016/s1521-690x(03)00031-9.

[41]

G.I. Shulman, Cellular mechanisms of insulin resistance, J. Clin. Invest. 106 (2) (2000) 171–176, http://dx.doi.org/10.1172/JCI10583.

[42]

D. Massillon, W. Chen, N. Barzilai, et al., Carbon flux via the pentose phosphate pathway regulates the hepatic expression of the glucose-6-phosphatase and phosphoenolpyruvate carboxykinase genes in conscious rats, J. Biol. Chem. 273 (1998) 228–234, http://dx.doi.org/10.1074/jbc.273.1.228.

[43]

L. Pari, S. Suman, Antihyperglycemic and anti lipidperoxidative effects of flavanoid naringin in streptozotocin-nicotinamide induced diabetic rats, Int. J. Biol. Med. Res. 1 (2010) 206–210.

[44]

V. Ramachandran, R. Saravanan, Efficacy of Asiatic acid, a pentacyclic teiterpene on attenuating the key enzymes activities of carbohydrate metabolism in STZ induced diabetic rats, Phytomedicine 20 (2013) 230–236, http://dx.doi.org/10.1016/j.phymed.2012.09.023.

[45]

A. Jang, N.Y. Lee, B.D. Lee, et al., Biological functions of a synthetic compound, octadeca-9,12-dienyl-3,4,5-hydroxybenzoate, from gallic acidlinoleic acid ester, Food Chem. 112 (2009) 369–373, http://dx.doi.org/10.1016/j.foodchem.2008.05.074.

[46]

P. Kalaiarasi, K.V. Pugalendi, Antihyperglycemic effect of 18 beta-glycyrrhetinic acid, aglycone of glycyrrhizin, on streptozotocin-diabetic rats, Eur. J. Pharmacol. 15 (2009) 269–273, http://dx.doi.org/10.1016/j.ejphar.2008.12.057.

[47]

S. Golden, P.A. Wals, F. Okakima, Glycogen synthesis by hepatocytes from diabetic rats, Biochem. J. 182 (1979) 727–734.

[48]

G. Weber, M.A. Leaa, E.A. Fisher, Regulatory pattern of liver carbohydrate metabolizing enzymes; insulin as an inducer of key glycolytic enzymes, Enzymol. Biol. Clin. 7 (1966) 11–24.

[49]

V. Vats, S.P. Yadav, J.K. Grover, Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin induced alterations in glycogen content and carbohydrate metabolism in rats, J. Ethnopharmacol. 90 (2004) 155–160, http://dx.doi.org/10.1016/j.jep.2003.09.034.

[50]

B.A. Pederson, J.M. Schroeder, G.E. Parker, et al., Glucose metabolism in mice lacking muscle glycogen synthase, Diabetes 54 (2005) 3466–3473, http://dx.doi.org/10.2337/diabetes.54.12.3466.

[51]

W.J. Roesler, R.L. Khandelwal, Quantification of glycogen synthase and phosphorylase protein in mouse liver: correlation between enzymatic protein and enzyme activity, Arch. Biochem. Biophys. 244 (1986) 397–407, http://dx.doi.org/10.1016/0003-9861(86)90130-X.

[52]

G. Parker, R. Taylor, D. Jones, et al., Hyperglycemia and inhibition of glycogen synthase in streptozotocin-treated mice: role of O-linked N acetylglucosamine, J. Biol. Chem. 279 (2004) 20636–20642, http://dx.doi.org/10.1074/jbc.M312139200.

[53]

V. Barbora, S. Norbert, L. Robert, et al., High alanine amino transferase associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes, Diabetes 51 (2002) 1889–1895, http://dx.doi.org/10.2337/diabetes.51.6.1889.

Food Science and Human Wellness
Pages 346-354
Cite this article:
Krishnan B, Ramu Ganesan A, Balasubramani R, et al. Chrysoeriol ameliorates hyperglycemia by regulating the carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Food Science and Human Wellness, 2020, 9(4): 346-354. https://doi.org/10.1016/j.fshw.2020.05.014

486

Views

27

Downloads

12

Crossref

N/A

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 27 February 2020
Revised: 15 May 2020
Accepted: 29 May 2020
Published: 06 June 2020
© 2020 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
Return