AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Simultaneous determination of 15 pesticide residues in Chinese cabbage and cucumber by liquid chromatography-tandem mass spectrometry utilizing online turbulent flow chromatography

Sufang Fana,bJunmei MabMeirong CaobJuan WangbLeilei ZhangbYan Zhanga,b( )Qiang Lib( )Jia Chenc
Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, 050227, Shijiazhuang, China
College of Food Science and Technology, Hebei Agricultural University, 071001, Baoding, China
Show Author Information

Abstract

In this experiment, a liquid chromatography tandem mass spectrometry method was built to determine 15 pesticide residues in Chinese cabbage and cucumber samples based on online turbulent flow chromatography purification. After modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction, extracts were directly injected to the TLX (TurboFlow Liquid Xcalibur) system and brought to TurboFlowTM columns for on-line purification and then transferred to analytical column for further separation and analysis. TurboFlowTM columns types, transfer flow rate, and transfer time were optimized. Limits of detection and limits of quantification of the method obtained for 15 pesticide residues were ranged between 0.2–1.0 μg/kg and 0.5–2.0 μg/kg in Chinese cabbage and cucumber samples. Recoveries of pesticide residues were in range of 75.3%–103.7%. Matrix effects for 15 pesticides were in range of 5.6%–106.6%. The developed method has been successfully used for the determination of 15 pesticide residues in real samples.

References

[1]

J.P. Anjos, J.B. Andrade, Determination of nineteen pesticides residues (organophosphates, organchlorine, pyrethroids, carbamate, thiocarbamate and strobilurin) in coconut water by SDME/GC-MS, Microchem. J. 112 (2014) 119-126, http://doi.org/10.1016/j.microc.2013.10.001.

[2]

G. Qin, K. Zou, Y. Li, et al., Pestidice residues determination in vegetables from western China applying gas cheomatography with mass spectrometry, Biomed. Chromatogr. 30 (9) (2016) 1430-1440, http://doi.org/10.1016/j.foodres.2015.03.036.

[3]

S. Wang, P. Zhao, G. Min, et al., Multi-residue determination of pesticides in water using multi-walled carbon nanotubes solid-phase extraction and gas chromatography mass spectrometry, J. Chromatogr. A 1165 (2007) 166-171, http://doi.org/10.1016/j.chroma.2007.07.061.

[4]

R.M. González-Rodríguez, R. Rial-Otero, B. Cancho-Grande, et al., Determination of 23 pesticide residues in leafy vegetables using gas chromatography-ion trap mass spectrometry and analyte protectants, J. Chromatogr. A 1196-1197 (2008) 100-109, http://doi.org/10.1016/j.chroma.2008.02.087.

[5]

K.A. Osman, A.M. Al-Humaid, S.M. Al-Rehiaiyani, et al., Monitoring of pesticide residues in vegetables marketed in Al-Qassim region, Saudi Arabia, Ecotox. Environ. Safe 73 (2010) 1433-1439, http://doi.org/10.1016/j.ecoenv.2010.05.020.

[6]

F. Zhang, C.T. Yu, W.W. Wang, et al., Rapid simultaneous screening and identification of multiple pesticide residues in vegetables, Anal. Chim. Acta. 757 (2012) 39-47, http://doi.org/10.1016/j.aca.2012.10.048.

[7]

K. Hjorth, K. Johansen, B. Holen, et al., Pesticide residues in fruits and vegetables from South America–a Nordic project, Food Contr. 22 (2011) 1701-1706, http://doi.org/10.1016/j.foodcont.2010.05.017.

[8]

J. Pan, X.X. Xia, J. Liang, Analysis of pesticide multiresidyes in leafy vegetables by ultrasonic solvent extraction and liquid chromatography-tandem mass spectrometry, UltrasonSonochem 15 (2008) 25-32, http://doi.org/10.1016/j.ultsonch.2007.06.005.

[9]

O. Golge, B. Kabak, Determination of 115 pesticide residues in oranges by high-performance liquid chromatography-triple-quadrupole mass spectrometry in combination with QuEChERS method, J. Food Compos. Anal. 41 (2015) 86-97, http://doi.org/10.1016/j.jfca.2015.02.007.

[10]

C. Anagnostopoulos, G.E. Miliadis, Development and validation of an easy multiresidue method for the determination of multiclass pesticide residues using GC-MS/MS and LC-MS/MS in olive oil and olives, Talanta 112 (2013) 1-10, http://doi.org/10.1016/j.talanta.2013.03.051.

[11]

Z. Dzuman, M. Zachariasova, Z. Veprikova, et al., Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids, Anal. Chim. Acta 863 (2015) 29-40, http://doi.org/10.1016/j.aca.2015.01.021.

[12]

L.N. Nthunya, N.P. Khumalo, A.R. Verliefda, et al., Quantitative analysis of phenols and PAHs in the Nandoni Dam in Limpopo Province, South Africa: a preliminary study for dam water quality management, Phys. Chem. Earth. 112 (2019) 228-236, http://doi.org/10.1016/j.pce.2019.02.003.

[13]

H. Zhou, Y.M. Cao, S. Miao, et al., Qualitative screening and quantitative determination of 569 pesticide residues in honeysuckle using ultrahigh-performance liquid chromatography coupled quadrupole-Ortitrap high resolution mass spectrometry, J. Chromatogr. A 1606 (2019) 460374, http://doi.org/10.1016/j.chroma.2019.460374.

[14]

A. Páleníková, G. Martínez-Domínguez, F.J. Arrebola, et al., Multifamily determination of pesticide residues in soya-based nutraceutical products by GC/MS-MS, Food Chem. 173 (2015) 796-807, http://doi.org/10.1016/j.foodchem.2014.10.100.

[15]

O. Golge, B. Kabak, Eevaluation of QuEChERS sample preparation and liquid chromatography-triple-quadrupole mass spectrometry method for the determination of 109 pesticide residues in tomatoes, Food Chem. 176 (2015) 319-332, http://doi.org/10.1016/j.foodchem.2014.12.083.

[16]

M. Anastassiades, S.J. Lehotay, D. Štajnbaher, et al., Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce, J. AOAC Int. 86 (2002) 412-431, http://doi.org/10.1093/jaoac/86.2412.

[17]

S.F. Fan, F.Z. Zhang, K.L. Deng, et al., Spinach or amaranth contains highest residues of metalaxyl, fluzaifop-P-butyl, chlorpyrifos, and lambda-cyhalothrin on six leaf vegetables upon open field application, J. Agric. Food Chem. 61 (9) (2013) 2039-2044, http://doi.org/10.1021/jf304710u.

[18]

A. Wilkowska, M. Biziuk, Determination of pesticide residues in food matrices using the QuEChERS methodology, Food Chem. 125 (2011) 803-812, http://doi.org/10.1016/j.foodchem.2010.09.094.

[19]

S.F. Fan, P.Y. Zhao, C.S. Yu, et al., Simultaneous determination of 36 pesticide residues in spinach and cauliflower by LC-MS/MS using multi-walled carbon nanotubes-based dispersive solid-phase clean-up, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 31 (1) (2014) 73-82, http://doi.org/10.1080/19440049.2013.853324.

[20]

L. Chen, X.S. Li, Z.Q. Wang, et al., Residue dynamics of procymidone in leeks and soil in greenhouses by smoke generator application, Ecotox Environ Safe. 73 (2010) 73-77, http://doi.org/10.1016/j.ecoenv.2009.07.006.

[21]

U. Koesukwiwat, K. Sanguankaew, N. Leepipatpiboon, Rapid determination of phenoxy acid residues in rice by modified QuEChERS extraction and liquid chromatography-tandem mass spectrometry, Anal. Chim. Acta 626 (2008) 10-20, http://doi.org/10.1016/j.aca.2008.07.034.

[22]

L. Wang, J. Xu, P.Y. Zhao, et al., Dissipation and residues of fluroxypyr-meptyl in rice and environment, Bull. Environ. Contam. Toxicol. 86 (2011) 449-453, https://doi.org/10.1007/s00128-011-0218-y.

[23]

M. Gorga, S. Insa, M. Petrovic, et al., Analysis of endocrine disrupters and related compounds in sediments and sewage sludge using on-line turbulent flow chromatography-liquid chromatography-tandem mass spectrometry, J. Chromatogr. A 1352 (2014) 29-37, http://doi.org/10.1016/j.chroma.2014.05.028.

[24]

S.F. Fan, Q. Li, L. Sun, et al., Simultaneous determination of aflatoxin B1 and M1 in milk, fresh milk and milk powder by LC-MS/MS utilizing online turbulent flow chromatography, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32 (7) (2015) 1175-1184, http://doi.org/10.1080/19440049.2015.1048311.

[25]

S.F. Fan, Q. Li, X.G. Zhang, et al., Simultaneous determination of aflatoxin B1, B2, G1 and G2 in corn powder, edible oil, peanut butter, and soy sauce by liquid chromatography with tandem mass spectrometry utilizing turbulent flow chromatography, J. Sep. Sci. 38 (2015) 1310-1317, http://doi.org/10.1002/jssc.201401376.

[26]

F. Guo, Q. Liu, J.B. Shi, et al., Automated and sensitive determination of four anabolic androgenic steroids in urine by online turbulent flow solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry: a novel approach for clinical monitoring and doping control, Talanta 119 (2014) 396, http://doi.org/10.1016/j.talanta.2014.03.010.

[27]

K. Gao, J.J. Fu, Q. Xue, et al., Direct determination of free state low molecular weight compounds in serum by online TurboFlow SPE HPLC-MS/MS and its application, Talanta 194 (2019) 960, http://doi.org/10.1016/j.talanta.2018.10.082.

[28]

M. López-García, R. Romero-González, A.G. Frenich, Monitoring of organophosphate and pyrethroid metabolites in human urine samples by an automated method (TurboFlowTM) coupled to ultra-high performance liquid chromatography-Orbitrap mass spectrometry, J. Pharm. Biomed. Anal. 173 (2019) 31-39, http://doi.org/10.1016/j.jpba.2019.05.018.

[29]

J. Gervasoni, A. Schiattarella, A. Primiano, et al., Simultaneous quantification of 17-hydroxyprogesterone, androstenedione, testosterone and cortisol in human serum by LC-MS/MS using TurboFlow online sample extraction, Clin. Biochem. 49 (13-14) (2016) 998, http://doi.org/10.1016/j.clinbiochem.2016.05.012.

[30]

T. Søeborg, H. Frederiksen, T.H. Johannsen, et al., Isotope-dilution TurboFlow-LC-MS/MS method for simultaneous quantification of ten steroid metabolites in serum, Clin.Chim. Acta 468 (2017) 180, http://doi.org/10.1016/j.cca.2017.03.002.

[31]

P. Herviou, D. Richard, L. Roche, et al., Determination of irinotecan and SN38 in human plasma by TurboFlowTM liquid chromatography-tandem mass spectrometry, J. Pharm. Biomed. Anal. 118 (2016) 284, http://doi.org/10.1016/j.jpba.2015.10.044.

[32]

A. Ćirić, H. Prosen, M. Jelikić-Stankov, et al., Evaluation of matrix effect in determination of some bioflavonoids in food samples by LC-MS/MS method, Talanta 99 (2012) 780, http://doi.org/10.1016/j.talanta.2012.07.025.

[33]

P. Kebarle, L. Tang, From ions in solution to ions in the gas phase: the mechanism of electrospray mass spectrometry, Anal. Chem. 65 (1993) 972A-986A, http://doi.org/10.1021/ac00070a001.

[34]

J. Zrostlíková, J. Hajšlová, J. Poustka, et al., Alternative calibration approaches to compensate the effect of co-extracted matrix components in liquid chromatography-electrospray ionisation tandem mass spectrometry analysis of pesticide residues in plant materials, J. Chromatogr. A 973 (2002) 13, http://doi.org/10.1016/S0021-9673(02)01196-2.

[35]

C. Jansson, T. Pihlström, B.G. Österdahl, et al., A new multi-residue method for analysis of pesticide residues in fruit and vegetables using liquid chromatography with tandem mass spectrometric detection, J. Chromatogr. A 1023 (2004) 93, http://doi.org/10.1016/j.chroma.2003.10.019.

[36]

A. Kruve, A. Künnapas, K. Herodes, et al., Matrix effect in pesticide multi-residue analysis by liquid chromatography-mass spectrometry, J. Chromatogr. A 1187 (2008) 58, http://doi.org/10.1016/j.chroma.2008.01.077.

[37]

C. Ferrer, A. Lozano, A. Agüera, et al., Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables, J. Chromatogr. A 1218 (2011) 7634, http://doi.org/10.1016/j.chroma.2011.07.033.

Food Science and Human Wellness
Pages 78-86
Cite this article:
Fan S, Ma J, Cao M, et al. Simultaneous determination of 15 pesticide residues in Chinese cabbage and cucumber by liquid chromatography-tandem mass spectrometry utilizing online turbulent flow chromatography. Food Science and Human Wellness, 2021, 10(1): 78-86. https://doi.org/10.1016/j.fshw.2020.06.003

373

Views

26

Downloads

9

Crossref

N/A

Web of Science

9

Scopus

4

CSCD

Altmetrics

Received: 27 February 2020
Revised: 26 April 2020
Accepted: 01 June 2020
Published: 26 July 2020
© 2021 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return