AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

In vitro and in silico analysis of dual-function peptides derived from casein hydrolysate

Maolin TuXinyu QiaoCong WangHanxiong LiuShuzhen ChengZhe XuMing Du( )
School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

There is no study on food-derived peptide with both anticoagulant and angiotensin I-converting enzyme inhibitory (ACEI) activities yet. In this work, the anticoagulant and ACEI activities of the casein hydrolysates released by pepsin digestion were evaluated for the first time to the best of our knowledge. Results indicated that the casein hydrolysate exhibited potent anticoagulant activity by prolonging the thrombin time (TT) and the activated partial thromboplastin time (APTT). Compared with control samples, at 10 mg/mL, the TT and APTT of casein hydrolysate were 186.0 % ± 6.6 % and 163.5 % ± 7.4 %, respectively. The casein hydrolysate also showed a strong ACEI activity with an IC50 value of 1.775 mg/mL. The components of the bioactive casein hydrolysate were analyzed by nanoscale liquid chromatography quadrupole time-of-flight tandem mass spectrometry (NanoLC-Q-TOF-MS/MS). Total of 115 peptides were identified, among which 34, 9, 55 and 17 peptides were derived from αs1-, αs2-, β-, and κ-casein, respectively. The results of PeptideRanker and PepSite 2 analysis showed that 6 peptides (FRQFYQL, NENLLRF, NPWDQVKR, PVVVPPFLQ, PVRGPFPIIV, and ARHPHPHLSF) have both ACEI and anticoagulant activities by binding to the active sites of ACE and thrombin. This study indicated that casein is a potential functional food supplement that can be used for medical purposes.

References

[1]

G.E. Raskob, P. Angchaisuksiri, A.N. Blanco, et al., Thrombosis: a major contributor to global disease burden, Atertio. Thromb. Vasc. Biol. 34 (2014) 2363–2371, http://dx.doi.org/10.1111/jth.12698.

[2]

S.Z. Jiang, W. Lu, X.F. Zong, et al., Obesity and hypertension, Exp. Ther. Med. 12 (2016) 2395–2399, http://dx.doi.org/10.1016/j.phrs.2017.05.013.

[3]

S.S. Virani, A. Alonso, E.J. Benjamin, et al., Heart disease and stroke statistics—2020 update: a report from the American Heart Association, Circulation (2020) E139–E596, http://dx.doi.org/10.1161/CIR. 0000000000000757.

[4]

A.A. Khorana, Cancer and thrombosis: implications of published guidelines for clinical practice, Ann. Oncol. 20 (2009) 1619–1630, http://dx.doi.org/10.1093/annonc/mdp068.

[5]

M.K. Dabbous, F.R. Sakr, D.N. Malaeb, Anticoagulant therapy in pediatrics, J. Basic Clin. Pharm. 5 (2014) 27–33, http://dx.doi.org/10.4103/0976-0105.134947.

[6]

M. Alquwaizani, L. Buckley, C. Adams, et al., Anticoagulants: a review of the pharmacology, dosing, and complications, Curr. Emerg. Hosp. Med. Rep. 1 (2013) 83–97, http://dx.doi.org/10.1007/s40138-013-0014-6.

[7]

H. Peng, D.D. Jensen, W. Li, et al., Overexpression of the neuronal human (pro) renin receptor mediates angiotensin Ⅱ-independent blood pressure regulation in the central nervous system, Am. J. Physiol.-Heart C 314 (2017) H580–H592, http://dx.doi.org/10.1152/ajpheart.00310.2017.

[8]

J.E. Hall, J.M. do Carmo, A.A. da Silva, et al., Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms, Circul. Res. 116 (2015) 991–1006, http://dx.doi.org/10.1161/CIRCRESAHA.116.305697.

[9]

L.T. Skeggs, J.R. Kahn, N.P. Shumway, The preparation and function of the hypertensin-converting enzyme, J. Exp. Med. 103 (1956) 295–299, http://dx.doi.org/10.1084/jem.103.3.295.

[10]

A.K. Rai, S. Sanjukta, K. Jeyaram, Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension, Crit. Rev. Food Sci. Nutr. 57 (2015) 2789–2800, http://dx.doi.org/10.1080/10408398.2015.1068736.

[11]

K. Sowmya, M.I. Bhat, R.K. Bajaj, et al., Buffalo milk casein derived decapeptide (YQEPVLGPVR) having bifunctional anti-inflammatory and antioxidative features under cellular milieu, Int. J. Pept. Res. Ther. 25 (2019) 623–633, http://dx.doi.org/10.1007/s10989-018-9708-7.

[12]

J. Zhou, L. Ma, H. Xu, et al., Immunomodulating effects of casein-derived peptides QEPVL and QEPV on lymphocytes in vitro and in vivo, Food Funct. 5 (2014) 2061–2069, http://dx.doi.org/10.1039/c3fo60657k.

[13]

H. Liu, M. Tu, S. Cheng, et al., An anticoagulant peptide from beta-casein: identification, structure and molecular mechanism, Food Funct. 10 (2019) 886–892, http://dx.doi.org/10.1039/C8FO02235F.

[14]

M. Tu, C. Wang, C. Chen, et al., Identification of a novel ACE-inhibitory peptide from casein and evaluation of the inhibitory mechanisms, Food Chem. 256 (2018) 98–104, http://dx.doi.org/10.1016/j.foodchem.2018.02.107.

[15]

E.C. Li-Chan, Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients, Curr. Opin. Food Sci. 1 (2015) 28–37, http://dx.doi.org/10.1016/j.cofs.2014.09.005.

[16]

A.L. Capriotti, C. Cavaliere, S. Piovesana, et al., Recent trends in the analysis of bioactive peptides in milk and dairy products, Anal. Bioanal. Chem. 408 (2016) 2677–2685, http://dx.doi.org/10.1007/s00216-016-9303-8.

[17]
E. Gasteiger, C. Hoogland, A. Gattiker, et al., Protein identification and analysis tools on the ExPASy server, in: The Proteomics Protocols Handbook, Springer, 2005, pp. 571–607, http://dx.doi.org/10.1385/1-59259-584-7:531.
[18]

S. Gupta, P. Kapoor, K. Chaudhary, et al., In silico approach for predicting toxicity of peptides and proteins, PLoS One 8 (2013) e73957, http://dx.doi.org/10.1371/journal.pone.0073957.

[19]

Z. Xu, H. Chen, S. Xu, et al., Nutritional properties and osteogenic activity of enzymatic hydrolysates of proteins from blue mussel (Mytilus edulis), Food Funct. 10 (2019) 7745–7754, http://dx.doi.org/10.1039/C9FO01656B.

[20]

C. Mooney, N.J. Haslam, G. Pollastri, et al., Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity, PLoS One 7 (2012) e45012, http://dx.doi.org/10.1371/journal.pone.0045012.

[21]

J.A.D. Van, S. Clotet-Freixas, J. Zhou, et al., Peptidomic analysis of urine from youths with early type 1 diabetes reveals novel bioactivity of uromodulin peptides in vitro, Mol. Cell Proteomics 19 (2019) 501–517, http://dx.doi.org/10.1074/mcp.RA119.001858.

[22]

W. Qi, R. Su, Z. He, et al., Pepsin-induced changes in the size and molecular weight distribution of bovine casein during enzymatic hydrolysis, J. Dairy Sci. 90 (2007) 5004–5011, http://dx.doi.org/10.3168/jds.2007-0230.

[23]

M. Tu, H. Liu, S. Cheng, et al., Identification and characterization of a novel casein anticoagulant peptide derived from in vivo digestion, Food Funct. 10 (2019) 2552–2559, http://dx.doi.org/10.1039/C8FO02546K.

[24]

K. Matsubara, Y. Matsuura, A. Bacic, et al., Anticoagulant properties of a sulfated galactan preparation from a marine green alga, Codium cylindricum, Int. J. Biol. Macromol. 28 (2001) 395–399, http://dx.doi.org/10.1016/S0141- 8130(01)00137-4.

[25]

S. Cheng, M. Tu, H. Chen, et al., Identification and inhibitory activity against α-thrombin of a novel anticoagulant peptide derived from oyster (Crassostrea gigas) protein, Food Funct. 9 (2018) 6391–6400, http://dx.doi.org/10.1039/C8FO01635F.

[26]

S. Xu, F. Fan, H. Liu, et al., Novel anticoagulant peptide from lactoferrin binding thrombin at the active site and exosite-I, J. Agric. Food Chem. 68 (2020) 3132–3139, http://dx.doi.org/10.1021/acs.jafc.9b08094.

[27]

R. Rojas-Ronquillo, A. Cruz-Guerrero, A. Flores-Nájera, et al., Antithrombotic and angiotensin-converting enzyme inhibitory properties of peptides released from bovine casein by Lactobacillus casei Shirota, Int. Dairy J. 26 (2012) 147–154, http://dx.doi.org/10.1016/j.idairyj.2012.05.002.

[28]

M. del Mar Contreras, R. Carrón, M.J. Montero, et al., Novel casein-derived peptides with antihypertensive activity, Int. Dairy J. 19 (2009) 566–573, http://dx.doi.org/10.1016/j.idairyj.2009.05.004.

[29]

I. Lopez-Exposito, F. Minervini, L. Amigo, et al., Identification of antibacterial peptides from bovine κ-casein, J. Food Prot. 69 (2006) 2992–2997, http://dx.doi.org/10.4315/0362-028x-69.12.2992.

[30]

M. Hayes, R. Ross, G. Fitzgerald, et al., Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026, Appl. Environ. Microbiol. 72 (2006) 2260–2264, http://dx.doi.org/10.1128/AEM.72.3.2260-2264.2006.

[31]

G. Birkemo, O. O'Sullivan, R. Ross, et al., Antimicrobial activity of two peptides casecidin 15 and 17, found naturally in bovine colostrum, J. Appl. Microbiol. 106 (2009) 233–240, http://dx.doi.org/10.1111/j.1365-2672.2008.03996.x.

[32]

K. McCann, B. Shiell, W. Michalski, et al., Isolation and characterisation of antibacterial peptides derived from the f (164–207) region of bovine αS2-casein, Int. Dairy J. 15 (2005) 133–143, http://dx.doi.org/10.1016/j.idairyj. 2004.06.008.

[33]

I. López-Expósito, L. Amigo, I. Recio, Identification of the initial binding sites of αs2-casein f (183–207) and effect on bacterial membranes and cell morphology, BBA-Biomembranes 1778 (2008) 2444–2449, http://dx.doi.org/10.1016/j.bbamem.2008.06.018.

[34]

H.L.R. Gomez, J.P. Peralta, L.A. Tejano, et al., In silico and in vitro assessment of portuguese oyster (Crassostrea angulata) proteins as precursor of bioactive peptides, Int. J. Mol. Sci. 20 (2019) 5191, http://dx.doi.org/10.3390/ijms20205191.

[35]

M. Tu, S. Cheng, W. Lu, et al., Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: sequence, structure, and functions, TrAC, Trends Anal. Chem. 105 (2018) 7–17, http://dx.doi.org/10.1016/j.trac.2018.04.005.

[36]

L.G. Trabuco, S. Lise, E. Petsalaki, et al., PepSite: prediction of peptide-binding sites from protein surfaces, Nucleic Acids Res. 40 (2012) W423–W427, http://dx.doi.org/10.1093/nar/gks398.

[37]

P. Mudgil, B. Baby, Y.Y. Ngoh, et al., Molecular binding mechanism and identification of novel anti-hypertensive and anti-inflammatory bioactive peptides from camel milk protein hydrolysates, LWT-Food Sci. Technol. 112 (2019) 108193, http://dx.doi.org/10.1016/j.lwt.2019.05.091.

[38]

V.T. Nguyen, S.C. Ko, S.J. Heo, et al., Ciona intestinalis calcitonin-like peptide promotes osteoblast differentiation and mineralization through MAPK pathway in MC3T3-E1 cells, Process Biochem. 67 (2018) 127–138, http://dx.doi.org/10.1016/j.procbio.2018.01.025.

[39]

M. Moreno-Montoro, P. Jauregi, M. Navarro-Alarcón, et al., Bioaccessible peptides released by in vitro gastrointestinal digestion of fermented goat milks, Anal. Bioanal. Chem. 410 (2018) 3597–3606, http://dx.doi.org/10.1007/s00216-018-0983-0.

[40]

B. Wang, B. Li, Charge and hydrophobicity of casein peptides influence transepithelial transport and bioavailability, Food Chem. 245 (2018) 646–652, http://dx.doi.org/10.1016/j.foodchem.2017.09.032.

Food Science and Human Wellness
Pages 32-37
Cite this article:
Tu M, Qiao X, Wang C, et al. In vitro and in silico analysis of dual-function peptides derived from casein hydrolysate. Food Science and Human Wellness, 2021, 10(1): 32-37. https://doi.org/10.1016/j.fshw.2020.08.014

676

Views

38

Downloads

21

Crossref

N/A

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 12 May 2020
Revised: 08 August 2020
Accepted: 14 August 2020
Published: 21 October 2020
© 2021 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return