AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (901.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The role of glutamine in supporting gut health and neuropsychiatric factors

Brett J. DetersMir Saleem( )
Halmos College of Natural Sciences and Oceanography, NOVA Southeastern University, Fort Lauderdale, FL 33314 USA

Peer review under responsibility of KeAi Communications Co., Ltd

Show Author Information

Abstract

Recent research has shown that the amino acid glutamine can positively affect gut health by supporting the gut microbiome, gut mucosal wall integrity, and by modulating inflammatory responses. As modulated by the vagus nerve, via the enteric nervous system, the gut-brain connection can impact the brain's neurochemical environment. Poor gut health can disrupt the balance of neurotransmitters, which can result in neuropsychiatric based conditions such as depression. Glutamine supplementation may provide significant adjunctive nutritional support in cases of depression by promoting proper gut health and function.

References

[1]

R.K. Singh, H.W. Chang, D. Yan, et al., Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15 (1) (2017) 73. https://doi.org/10.1186/s12967-017-1175-y.

[2]

E.A. Mayer, Gut feelings: the emerging biology of gut–brain communication. Nat. Rev. Neurosci. 12 (2011) 453-466. https://doi.org/10.1038/nrn3071.

[3]

W.W. Souba, V.S. Klimberg, D.A. Plumley, et al., The role of glutamine in maintaining a healthy gut and supporting the metabolic response to injury and infection, J. Surg. Res. 48 (4) (1990) 383-391. https://doi.org/10.1016/0022-4804(90)90080-L.

[4]

S. Ghaisas, J. Maher, A. Kanthasamy, Gut microbiome in health and disease: linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther. 158 (2016) 52-62. https://doi.org/10.1016/j.pharmthera.2015.11.012.

[5]

S. Grenham, G. Clarke, J.F. Cryan, et al., Brain–gut–microbe communication in health and disease, Front Physiol. 2 (2011) 94. https://doi.org/10.1016/10.3389/fphys.2011.00094.

[6]
B. Kolb, I. Whishaw, G. Teskey, (2019). Introduction to brain and behavior. S.I.: Worth Inc, US.
[7]

A. Riiser, The human microbiome, asthma, and allergy. J. Allergy Clin. Immunol. 11 (2015) 35. https://doi.org/10.1186/s13223-015-0102-0.

[8]

E. Hsiao, S. McBride, S. Hsien, et al., Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders, Cell 155 (7) (2013) 1451-1463. https://doi.org/10.1016/j.cell.2013.11.024.

[9]

M.H. Kim, H. Kim, The roles of glutamine in the intestine and its implication in intestinal diseases. Int. J. Mol. Sci. 18 (5) (2017) 1051. https://doi.org/10.3390/ijms18051051.

[10]

M. Coskun, Intestinal epithelium in inflammatory bowel disease. Front. Med. 1 (2014) 24. https://doi.org/10.3389/fmed.2014.00024.

[11]

A. Fasano, Leaky gut and autoimmune diseases, Clin. Rev. Allerg. Immu. 42 (2012) 71. https://doi.org/10.1007/s12016-011-8291-x.

[12]

A. Fasano, Zonulin, regulation of tight junctions, and autoimmune diseases, Ann. N. Y. Acad. Sci. 1258 (1) (2012) 25-33. https://doi.org/10.1111/j.1749-6632.2012.06538.x.

[13]

A.E. Duran-Pinedo, J. Solbiati, J. Frias-Lopez, The effect of the stress hormone cortisol on the metatranscriptome of the oral microbiome. NPJ Biofilms Microbiomes. 4 (2018) 25. https://doi.org/10.1038/s41522-018-0068-z.

[14]

A. Bajpai, A.K. Verma, M. Srivastava, et al., Oxidative stress and major depression, J. Clin. Diagnostic Res. 8 (12) (2014) 4-7. https://doi.org/10.7860/jcdr/2014/10258.5292.

[15]

S. Hayley, M. Audet, H. Anisman, Inflammation and the microbiome: implications for depressive disorders. Curr. Opin. Pharmacol. 29 (2016) 42-46. https://doi.org/10.1016/j.coph.2016.06.001.

[16]

J.Y. Yoo, S.S. Kim, Probiotics and prebiotics: present status and future perspectives on metabolic disorders, Nutrients 8 (3) (2016) 173. https://doi.org/10.3390/nu8030173.

[17]

S.M. Collins, M. Surette, P. Bercik, The interplay between the intestinal microbiota and the brain, Nat. Rev. Microbiol. 10 (11) (2012) 735-742. https://doi.org/10.1038/nrmicro2876.

[18]

H. Matsui, O. Shimokawa, T. Kaneko, et al., The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine. J Clin. Biochem. Nutr. 48 (2) (2011) 107-111.

[19]

V. Purohit, J.C. Bode, C. Bode, et al., Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol. 42 (5) (2008) 349-361. https://doi.org/10.1016/j.alcohol.2008.03.131.

[20]

J.A. Bravo, P. Forsythe, M.W. Chew, et al., Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve, Proc. Natl. Acad. Sci. U S A. 108 (38) (2011) 16050-16055. https://doi.org/10.1073/pnas.1102999108.

[21]
E.S. Higgins, M.S. George, The neuroscience of clinical psychiatry: the pathophysiology of behavior and mental illness. Philadelphia: Wolters Kluwer. (2019).
[22]

S.N. Young, L-tyrosine to alleviate the effects of stress? J. Psychiatry. Neurosci. 32 (3) (2007) 224.

[23]

B. Brigitta, Pathophysiology of depression and mechanisms of treatment. Dialogues, Clin. Neurosci. 4 (1) (2002) 7-20. https://doi.org/10.31887/dcns.2002.4.1/bbondy.

[24]

A.V. Kalueff, D.J. Nutt, Role of GABA in anxiety and depression, Depress. Anxiety. 24 (7) (2007) 495-517. https://doi.org/10.1002/da.20262.

[25]

B.J. Jongkees, M.A. Immink, L.S. Colzato, Influences of glutamine administration on response selection and sequence learning: a randomized-controlled trial, Sci. Rep. 7 (1) (2017) 2693. https://doi.org/10.1038/s41598-017-02957-w.

[26]

J. Wernerman, Clinical use of glutamine supplementation, Am. J. Clin. Nutr. 138 (10) (2008) 2040S-2044S. https://doi.org/10.1093/jn/138.10.2040S.

[27]

A.Z. De, A.Z. Zambom, K.Y. Abboud, et al., Oral supplementation with L-glutamine alters gut microbiota of obese and overweight adults: a pilot study, Nutr. 31 (6) (2015) 884-889. https://doi.org/10.1016/j.nut.2015.01.004.

[28]

R.R. van der Hulst, M.F. von Meyenfeldt, N.E.P. Deutz, et al., Glutamine and the preservation of gut integrity, Lancet 341 (1993) 1363-1365. https://doi.org/10.1016/0140-6736(93)90939-E.

[29]
E.J. Mundell, Antidepressant use in U.S. soars by 65 percent in 15 years, (2017). Retrieved from https://www.cbsnews.com/news/antidepressant-use-soars-65-percent-in-l5-years/.
[30]

I. Lurie, Y.X. Yang, K. Haynes, et al., Antibiotic exposure and the risk for depression, anxiety, or psychosis: a nested case-control study, J. Clin. Psychiatry. 76 (11) (2015) 1522-1528. https://doi.org/10.4088/JCP.15m09961.

[31]

M. Koopman, S. El Aidy, Depressed gut? The microbiota-diet-inflammation trialogue in depression, Curr. Opin. Psychiatry. 30 (5) (2017) 369-377. https://doi.org/10.1097/yco.0000000000000350.

[32]

V. Cruzat, M. Macedo Rogero, K. Noel Keane, et al., Glutamine: metabolism and immune function, supplementation and clinical translation. Nutr. 10 (11) (2018) 1564. https://doi.org/10.3390/nu10111564.

Food Science and Human Wellness
Pages 149-154
Cite this article:
Deters BJ, Saleem M. The role of glutamine in supporting gut health and neuropsychiatric factors. Food Science and Human Wellness, 2021, 10(2): 149-154. https://doi.org/10.1016/j.fshw.2021.02.003

919

Views

77

Downloads

18

Crossref

16

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 28 March 2020
Revised: 26 June 2020
Accepted: 27 June 2020
Published: 22 March 2021
© 2021 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return