AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Aroma profile of two commercial truffle species from Yunnan and Sichuan, China: inter- and intraspecific variability and shared key compounds

Bin LuaJesús Perez-MorenobFengming Zhanga,cAndrea C. Rinaldid( )Fuqiang Yua( )
Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
Colegio de Postgraduados, Campus Montecillo. Texcoco, México
Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
Department of Biomedical Sciences, University of Cagliari, I-09042 Monserrato (CA), Italy

Peer review under responsibility of KeAi Communications Co., Ltd

Show Author Information

Abstract

Aroma is central to the worldwide success of truffles as gourmet food and the high prices paid for these edible mushrooms. In this study, volatile organic compounds (VOCs) from fruiting bodies of two Chinese truffles of commercial relevance, Tuber indicum and Tuber pseudohimalayense, were analyzed using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). We aimed to characterize the aroma profile and determine whether it would be influenced by provenance and stage of maturation. We thus collected and analyzed young, middle mature and mature fruiting bodies of each species from different locations in Yunnan and Sichuan provinces, located in southwestern China. Overall, 76 VOCs were identified, belonging to different chemical classes, i.e. alcohols and phenols, aldehydes and ketones, benzenes and methoxy compounds, hydrocarbons and amines. A large number of volatiles identified in T. indicum and T. pseudohimalayense are reported here for the first time for these truffles. While more than 50% of identified VOCs were produced by both truffle species, considerable differences were present in the aroma profiles of fruiting bodies collected at various maturation stages, revealing a dynamic pattern in the biosynthesis of VOCs. Furthermore, truffles of different provenance had distinct proportions of volatile constituents, suggesting that, besides genetic factors, edaphic and microclimatic conditions influence the synthesis of VOCs in a complex manner.

References

[1]
D. Midgley, How white truffles became a multi-billion pound business - and where to find the best of the best. The Telegraph, 16 September (2019). https://www.telegraph.co.uk/luxury/drinking-and-dining/truffles-became-multi-billion-pound-business-find-best-best/
[2]
Technavio Research, Global Truffles Market 2019-2023. Infiniti Research Limited, Toronto, Canada (2019).
[3]
G. Bonito, M.E. Smith, General systematic position of the truffles: evolutionary theories. In: Zambonelli A, lotti M, Murat C (eds.), True Truffle (Tuber spp.) in the World. Soil Biology, 47 (2016). Springer, Cham, pp. 3-18.
[4]

G. Bonito, M.E. Smith, M. Nowak, et al., Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage, PLoS One 8 (2013) e52765. https://doi.org/10.1371/journal.pone.0052765.

[5]

A.C. Rinaldi, O. Comandini, T.W. Kuyper, Ectomycorrhizal fungal diversity: separating the wheat from the chaff, Fungal Divers. 33 (2008) 1-45.

[6]
O. Comandini, A.C. Rinaldi, T.W. Kuyper, Measuring and estimating ectomycorrhizal fungal diversity: a continuous challenge. In: Mycorrhiza: occurrence in natural and restored environments (Pagano M, ed). (2012) 165-200. New York: Nova Science Publishers.
[7]
F. Ori, A. Zambonelli, I.R. Hall, Mycophagy and spore dispersal by vertebrates. In: Dighton J, White JF, eds., The Fungal Community: Its Organization and Role in the Ecosystem. (2017) 4th edition, CRC Press, Boca Raton, Florida, pp. 347-358.
[8]

L. Schneider-Maunoury, A. Deveau, M. Moreno, et al., Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, endophytically colonise roots of non-ectomycorrhizal plants in natural environments, New Phytol. 225 (2020) 2542-2255. https://doi.org/10.1111/nph.16321.

[9]

J. Delwiche, The impact of perceptual interactions on perceived flavor, Food Qual. Prefer. 15 (2004) 137-146. https://doi.org/10.1016/S0950-3293(03)00041-7.

[10]

L. Culleré, V. Ferreira, B. Chevret, et al., Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography–olfactometry, Food Chem. 122 (2010) 300-306. https://doi.org/10.1016/j.foodchem.2010.02.024.

[11]

R. Splivallo, S. Ottonello, A. Mello, et al., Truffle volatiles: from chemical ecology to aroma biosynthesis, New Phytol. 189 (2011) 688-699. https://doi.org/10.1111/j.1469-8137.2010.03523.x.

[12]

R. Splivallo, A. Deveau, N. Valdez, et al., Bacteria associated with truffle-fruiting bodies contribute to truffle aroma, Environ. Microbiol. 17 (2015) 2647-2460. https://doi.org/10.1111/1462-2920.12521.

[13]

M. Vahdatzadeh, A. Deveau, R. Splivallo, The role of the microbiome of truffles in aroma formation: a meta-analysis approach, Appl. Environ. Microb. 81 (2015) 6946-6952. https://doi.org/10.1128/AEM.01098-15.

[14]

W. Xu, S. Wan, L. Huang, et al., Tuber sinoniveum, a new white Chinese truffle species from Yunnan, China, Phytotaxa 298 (2017) 253-260. https://doi.org/10.11646/phytotaxa.298.3.4.

[15]
X. Wang, Trufe cultivation in China. In: Zambonelli A, Bonito G (eds) Edible Ectomycorrhizal Mushrooms, Soil Biology, 34 (2012). Springer, Berlin, Heidelberg, pp. 227-240.
[16]

R. Wang, A. Guerin-Laguette, R. Butler, et al., The European delicacy Tuber melanosporum forms mycorrhizae with some indigenous Chinese Quercus species and promotes growth of the oak seedlings, Mycorrhiza 29 (2019) 649-661. https://doi.org/10.1007/s00572-019-00925-y.

[17]

D. Liu, G. Zhou, X. Xu, A novel analytical method for key odor compounds of Chinese sausage, Meat Research 25 (2011) 15-20.

[18]

S. Gu, N. Tao, N. Wu, A new method based on ROAV value to identify the characteristic key volatile compounds of crab flavor, J. Food Sci. Technol. 33 (2012) 410-416.

[19]

X.L. Li, C. Chen, Y. Qing, Analysis of volatile aroma components in different species of truffle in Huidong county by GC-MS, Food Sci. 36 (2015) 132-136. https://doi.org/10.7506/spkx1002-6630-201518024.

[20]

P. Dıaz, E. Ibañez, F. Senorans, et al., Truffle aroma characterization by headspace solid-phase microextraction, J. Chromatogr. A 1017 (2003) 207-214. https://doi.org/10.1016/j.chroma.2003.08.016.

[21]

R.E. March, D.S. Richards, R.W. Ryan, Volatile compounds from six species of truffle–head-space analysis and vapor analysis at high mass resolution, Int. J. Mass Spectrom. 249 (2006) 60-67. https://doi.org/10.1016/j.ijms.2005.12.038.

[22]

R. Splivallo, N. Valdez, N. Kirchhoff, et al., Intraspecific genotypic variability determines concentrations of key truffle volatiles, New Phytol. 194 (2012) 823-835. https://doi.org/10.1111/j.1469-8137.2012.04077.x.

[23]

E. Torregiani, S. Lorier, G. Sagratini, Comparative analysis of the volatile profile of 20 commercial samples of truffles, truffle sauces, and truffle-flavored oils by using HS-SPME-GC-MS, Food Anal. Method. 10 (2017) 1857-1869. https://doi.org/10.1007/s12161-016-0749-2.

[24]

S. Fang, B. Pu, A. Chen, et al., A Box-behnken design for characterizing Chinese truffles (Tuber indicum) aroma by HS-SPME-GC-MS, J. Food Res. 1 (2012) 219-229. https://doi.org/10.5539/jfr.v1n3p219.

[25]

R. Ramoni, F. Vincent, S. Grolli, et al., The insect attractant 1-octen-3-ol is the natural ligand of bovine odorant-binding protein, J. Biol. Chem. 276 (2001) 7150-7155. https://doi.org/10.1074/jbc.M010368200.

[26]

R. Zawirska-Wojtaslak, Optical purity of (R)-(-)-l-octen-3-ol in the aroma of various species of edible mushrooms, Food Chem. 86 (2004) 113-118.

[27]

S. Zeppa, A.M. Gioacchini, C. Guidi, et al., Determination of specific volatile organic compounds synthesised during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography/mass spectrometry, Rapid Commun. Mass Sp. 18 (2004) 199-205. https://doi.org/10.1002/rcm.1313.

[28]
I. Flament, R. Näf, Surfing on the scent waves in the food flavor sea. In: Teranishi R, Wick EL, Hornstein I (eds) Flavor Chemistry. Springer, Boston, MA, (1999) pp. 189-198.
[29]
J. Chen, C. Murat, P. Oviatt, et al, The black truffles Tuber melanosporum and Tuber indicum. In: Zambonelli A, lotti M, Murat C (eds.), True Trufle (Tuber spp.) in the World, Soil Biology, 47 (2016). Springer, Cham, pp. 19-32.
[30]

G. Moreno, J.L. Manjón, J. Diéz, et al., Tuber pseudohimalayense sp. nov. An Asiatic species commercialized in Spain, similar to the "Perigord" truffle, Mycotaxon 63 (1997) 217-224.

[31]

G.D. Massimo, M. Bencivenga, E. Tedeschini, et al., Nuova specie di Tuber importata dall'oriente, Micologia Italiana 27 (1998) 13-18.

[32]

L.F. Zhang, Z.L. Yang, D.S. Song, A phylogenetic study of commercial Chinese truffles and their allies: taxonomic implications, FEMS Microbiol. Lett. 245 (2005) 85-92. https://doi.org/10.1016/j.femsle.2005.02.028.

[33]

J.L. Manjón, L.G. García–Montero, P. Alvarado, et al., Tuber pseudoexcavatum versus T. pseudohimalayense—new data on the molecular taxonomy and mycorrhizae of Chinese truffles, Mycotaxon 110 (2009) 399-412. https://doi.org/10.5248/110.399.

[34]

J. Chen, P.G. Liu, Delimitation of Tuber pseudohimalayense and T. pseudoexcavatum based on morphological and molecular data, Cryptogamie Mycol. 32 (2011) 83-93. https://doi.org/10.7872/crym.v32.iss1.2012.083.

[35]

J. Chen, S.X. Guo, P.G. Liu, Species recognition and cryptic species in the Tuber indicum complex, PLoS ONE 6 (2011) e14625. https://doi.org/10.1016/10.1371/journal.pone.0014625.

[36]

L. Fan, J.Z. Cao, Y. Li, A reassessment of excavated Tuber species from China based on morphology and ITS rDNA sequence data, Mycotaxon 124 (2013) 155-163. https://doi.org/10.5248/124.155.

[37]

F. Paolocci, A. Rubini, B. Granetti, et al., Typing Tuber melanosporum and Chinese black truffle species by molecular markers, FEMS Microbiol. Lett. 153 (1997) 255-260. https://doi.org/10.1016/S0378-1097(97)00226-7.

[38]

J.P. Douet, M. Castroviejo, D. Mabru, et al., Rapid molecular typing of Tuber melanosporum, T. brumale and T. indicum from tree seedlings and canned truffles, Anal. Bioanal. Chem. 379 (2004) 668-673. https://doi.org/10.1007/s00216-004-2643-9.

[39]

L. Culleré, V. Ferreira, M.E. Venturini, et al., Potential aromatic compounds as markers to differentiate between Tuber melanosporum and Tuber indicum truffles, Food Chem. 141 (2013) 105-110. https://doi.org/10.1016/j.foodchem.2013.03.027.

[40]

T. Feng, M. Shui, S. Song, et al., Characterization of the key aroma compounds in three truffle varieties from China by flavoromics approach, Molecules 24 (2019) 3305. https://doi.org/10.3390/molecules24183305.

[41]

F. Vita, C. Taiti, A. Pompeiano, et al., Volatile organic compounds in truffle (Tuber magnatum Pico): comparison of samples from different regions of Italy and from different seasons, Sci. Rep.-UK 5 (2015) 12629. https://doi.org/10.1038/srep12629.

[42]

R.S. Liu, D.C. Li, H.M. Li, et al., Evaluation of aroma active compounds in Tuber fruiting bodies by gas chromatographyolfactometry in combination with aroma reconstitution and omission test, Appl. Microbiol. Biot. 94 (2012) 353-363. https://doi.org/10.1007/s00253-011-3837-7.

[43]
A. Rubini, B. Belfiori, C. Riccioni, et al, Genomics of Tuber melanosporum: new knowledge concerning reproductive biology, symbiosis and aroma production. In: Zambonelli A, Bonito G (eds) Edible Ectomycorrhizal Mushrooms, Soil Biology, 34 (201 2). Springer, Berlin, Heidelberg, pp. 57-72.
[44]

J.M. Li, H.Q. Liang, P. Qiao, et al., Chemical composition and antioxidant activity of Tuber indicum from different geographical regions of China, Chem. Biodivers. 16 (2019) e1800609. https://doi.org/10.1002/cbdv.201800609.

[45]

X. Yan, Y. Wang, X. Sang, et al., Nutritional value, chemical composition and antioxidant activity of three Tuber species from China, AMB Express 7 (2017) 136-144. https://doi.org/10.1186/s13568-017-0431-0.

[46]

A.M. Gioacchini, M. Menotta, M. Guescini, et al., Geographical traceability of Italian white truffle (Tuber magnatum Pico) by the analysis of volatile organic compounds, Rapid Commun. Mass Sp. 22 (2008) 3147-3153. https://doi.org/10.1002/rcm.3714.

Food Science and Human Wellness
Pages 163-173
Cite this article:
Lu B, Perez-Moreno J, Zhang F, et al. Aroma profile of two commercial truffle species from Yunnan and Sichuan, China: inter- and intraspecific variability and shared key compounds. Food Science and Human Wellness, 2021, 10(2): 163-173. https://doi.org/10.1016/j.fshw.2021.02.005

739

Views

55

Downloads

19

Crossref

17

Web of Science

22

Scopus

4

CSCD

Altmetrics

Received: 24 April 2020
Revised: 06 July 2020
Accepted: 06 July 2020
Published: 22 March 2021
© 2021 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return