AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
View PDF
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Purification, characterization and hypoglycemic activity of glycoproteins obtained from pea (Pisum sativum L.)

Gaoyixin QinaWu XuaJunping LiuaLiyan ZhaobGuitang Chena( )
Department of Food Quality and Safety/National R & D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, Nanjing 210009, China
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

Peer review under responsibility of KeAi Communications Co., Ltd

Show Author Information

Abstract

This study aimed to isolate and characterize the structures of glycoproteins from peas and determine their hypoglycemic activity. The crude pea glycoproteins (PGP) were extracted by hot water and purified by diethylaminoethyl (DEAE)-Sepharose chromatography and Sephadex G-100 size-exclusion chromatography in sequence. Then three main fractions were obtained, namely PGP1, PGP2 and PGP3, with molecular weights of 897615, 846740 and 1194692Da, respectively. The physical and chemical properties of the three fractions were evaluated and compared by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), scanning electron microscope (SEM), high performance liquid chromatography (HPLC) and other analytical techniques. The fraction PGP2 with the highest hypoglycemic activity, was screened using the Caco-2 monolayer cell model. It can inhibit the uptake of glucose in the small intestine, as well as the activities of maltase and sucrase. After simulated gastrointestinal digestion, PGP2 significantly enhanced the inhibitory effect of α-glucosidase, and slightly reduced the inhibitory ability of α-amylase. In summary, PGP2 possessed strong hypoglycemic activity after digestion. These results indicated that PGP2 has the potential to be developed into a functional food or natural medicine for the treatment of type 2 diabetes mellitus.

References

[1]

B. Qin, K.S. Panickar, R.A. Anderson, Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes, J. Diabetes Sci. Technol. 4 (3) (2010) 685-693. https://doi.org/10.1177/193229681000400324

[2]

Q. Chen, L. Zhu, Y. Tang, et al., Preparation-related structural diversity and medical potential in the treatment of diabetes mellitus with ginseng pectins, Ann. N. Y. Acad. Sci. 1401 (1) (2017) 75-89. https://doi.org/10.1111/nyas.13424

[3]

H. Chen, Q. Nie, J. Hu, et al., Hypoglycemic and hypolipidemic effects of glucomannan extracted from Konjac on type 2 diabetic rats, J. Agric. Food Chem. 67 (18) (2019) 5278-5288. https://doi.org/10.1021/acs.jafc.9b01192

[4]
Diabetes Atlas reports 463 million with diabetes. https://www.idf.org/news/169:diabetes-atlas-reports-463-million-with-diabetes.html (accessed May 26, 2020).
[5]

C.G. Yu, Y. Fu, Y. Fang, et al., Fighting type-2 diabetes: present and future perspectives, Curr. Med. Chem. 26 (10) (2019) 1891-1907. https://doi.org/10.2174/0929867324666171009115356

[6]

J.H. Chang, C.F. Tseng, J.Y. Wang, Hypoglycemia-induced myocardial infarction: an unusual adverse effect of sulfonylureas, Int. J. Cardiol. 115 (2007) 414-416. https://doi.org/10.1016/j.ijcard.2006.01.062

[7]

F.A. van de Laar, P.L. Lucassen, R.P. Akkermans, et al., α-Glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis, Diabetes Care 28 (1) (2005) 154-163. https://doi.org/10.2337/diacare.28.1.154

[8]

Y.Q. Ma, X. Wang, S. Gao, Hypoglycemic activity of polysaccharides from sweet corncob on streptozotocin-induced diabetic rats, J. Food Sci. 82 (1) (2017) 208-213. https://doi.org/10.1111/1750-3841.13554

[9]

J. Li, R. Li, N. Li, et al., Mechanism of antidiabetic and synergistic effects of ginseng polysaccharide and ginsenoside Rb1 on diabetic rat model, J. Pharm. Biomed. Anal. 158 (2018) 451-460. https://doi.org/10.1016/j.jpba.2018.06.024

[10]

A. Gosslau, E. Zachariah, S. Li, et al., Effects of a flavonoid-enriched orange peel extract against type 2 diabetes in the obese ZDF rat model, Food Sci. Hum. Wellness 7 (4) (2018) 244-251. https://doi.org/10.1016/j.fshw.2018.10.001

[11]

F. Roy, J.I. Boye, B.K. Simpson, Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil, Food Res. Int. 43 (2) (2010) 432-442. https://doi.org/10.1016/j.foodres.2009.09.002

[12]

M.A. Tormo, F. Ropero, M. Nieto, et al., Effect of peas (Pisum sativum) in the treatment of experimental non-insulin-dependent diabetes, Phytother. Res. 11 (1) (1997) 39-41. https://doi.org/10.1002/(SICI)1099-1573(199702)11:1<39::AID-PTR939>3.0.CO;2-X

[13]

D. Ramdath, S. Renwick, A.M. Duncan, The role of pulses in the dietary management of diabetes, Can. J. Diabetes 40 (4) (2016) 355-363. https://doi.org/10.1016/j.jcjd.2016.05.015

[14]

M.N. Zilani, T. Sultana, S.M. Asabur Rahman, et al., Chemical composition and pharmacological activities of Pisum sativum, BMC Complem. Altern. M. 17 (1) (2017) 171. https://doi.org/10.1186/s12906-017-1699-y

[15]

F. Mejri, H. Ben Khoud, L. Njim, et al., In vitro and in vivo biological properties of pea pods (Pisum sativum L. ), Food Biosci. 32 (2019) 100482. https://doi.org/10.1016/j.fbio.2019.100482

[16]

X. Niu, Z. He, W. Li, et al., Immunomodulatory activity of the glycoprotein isolated from the Chinese yam (Dioscorea opposita Thunb), Phytother. Res. 31 (10) (2017) 1557-1563. https://doi.org/10.1002/ptr.5896

[17]

G. Qin, F. Pei, L. Zhao, et al., Process optimization of simultaneous extraction of pea protein and polysaccharide and evaluation of antioxidant activity, J. Chinese Cereals Oils Assoc. 10 (2019) 16-22

[18]

I.D. Nwachukwu, R.E. Aluko, A systematic evaluation of various methods for quantifying food protein hydrolysate peptides, Food Chem. 270 (2019) 25-31. https://doi.org/10.1016/j.foodchem.2018.07.054

[19]

K. Stojilkovski, N. Uranič, D. Kolar, et al., Simple method for the determination of polysaccharides in herbal syrup, J. Carbohyd. Chem. 37 (7–8) (2018) 431-441. https://doi.org/10.1080/07328303.2019.1567754

[20]

M. Mantle, A. Allen, A colorimetric assay for glycoproteins based on the periodic acid/Schiff stain [proceedings], Biochem. Soc. Trans. 6 (3) (1978) 607-609. https://doi.org/10.1042/bst0060607

[21]

X. Wu, W. Jiang, J. Lu, et al., Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry, Food Chem. 145 (2014) 976-983. https://doi.org/10.1016/j.foodchem.2013.09.019

[22]

C.H. Su, M.N. Lai, C.C. Lin, et al., Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms, Appl. Microbiol. Biotechnol. 100 (10) (2016) 4385-4393. https://doi.org/10.1007/s00253-015-7260-3

[23]

M. Wang, H. Ma, C. Tian, et al., Bioassay-guided isolation of glycoprotein SPG-56 from sweet potato Zhongshu-1 and its anti-colon cancer activity in vitro and in vivo, J. Funct. Foods 35 (2017) 315-324. https://doi.org/10.1016/j.jff.2017.05.049

[24]

F. Cui, X. Zan, Y. Li, et al., Purification and partial characterization of a novel anti-tumor glycoprotein from cultured mycelia of Grifola frondosa, Int. J. Biol. Macromol. 62 (2013) 684-690. https://doi.org/10.1016/j.ijbiomac.2013.10.025

[25]

J.Y. Qian, Y.Y. Bai, J. Tang, et al., Antioxidation and α-glucosidase inhibitory activities of barley polysaccharides modified with sulfation, LWT-Food Sci. Technol. 64 (1) (2015) 104-111. https://doi.org/10.1016/j.lwt.2015.05.034

[26]

F. Chavez-Silva, L. Ceron-Romero, L. Arias-Duran, et al., Antidiabetic effect of Achillea millefollium through multitarget interactions: α-glucosidases inhibition, insulin sensitization and insulin secretagogue activities, J. Ethnopharmacol. 212 (2018) 1-7. http://dx.doi.org/10.1016/j.jep.2017.10.005

[27]

R. Rafique, K.M. Khan, Arshia, et al., Synthesis of new indazole based dual inhibitors of α-glucosidase and α-amylase enzymes, their in vitro, in silico and kinetics studies, Bioorg. Chem. 94 (2020) 103195. https://doi.org/10.1016/j.bioorg.2019.103195

[28]

X. Wu, M. Hu, X. Hu, et al., Inhibitory mechanism of epicatechin gallate on α-amylase and α-glucosidase and its combinational effect with acarbose or epigallocatechin gallate, J. Mol. Liq. 290 (2019) 111202. https://doi.org/10.1016/j.molliq.2019.111202

[29]

J. Wu, H. Li, X. Wang, et al., Effect of polysaccharide from Undaria pinnatifida on proliferation, migration and apoptosis of breast cancer cell MCF7, Int. J. Biol. Macromol. 121 (2019) 734-742. https://doi.org/10.1016/j.ijbiomac.2018.10.086

[30]

H. Cai, X. Yang, Q. Cai, et al., Lycium barbarum L. polysaccharide (LBP) reduces glucose uptake via down-regulation of SGLT-1 in Caco2 cell, Molecules 22 (2017) 34.1. https://doi.org/10.3390/molecules22020341

[31]

H. Liu, P. He, L. He, et al., Structure characterization and hypoglycemic activity of an arabinogalactan from Phyllostachys heterocycla bamboo shoot shell, Carbohydr. Polym. 201 (2018) 189-200. https://doi.org/10.1016/j.carbpol.2018.08.024

[32]

M. Kasipandi, A. Manikandan, P.S. Sreeja, et al., Effects of in vitro simulated gastrointestinal digestion on the antioxidant, α-glucosidase and α-amylase inhibitory activities of water-soluble polysaccharides from Opilia amentacea roxb fruit, LWT-Food Sci. Technol. 111 (2019) 774-781. https://doi.org/10.1016/j.lwt.2019.05.079

[33]

R. Murugan, R. Chandran, T. Parimelazhagan, Effect of in vitro simulated gastrointestinal digestion of Phoenix loureirii on polyphenolics, antioxidant and acetylcholinesterase inhibitory activities, LWT-Food Sci. Technol. 74 (2016) 363-370. https://doi.org/10.1016/j.lwt.2016.07.075

[34]

T. Chen, M. Zhang, J. Li, et al., Structural characterization and hypoglycemic activity of Trichosanthes peel polysaccharide, LWT-Food Sci. Technol. 70 (2016) 55-62. https://doi.org/10.1016/j.lwt.2016.02.024

[35]

L.C. Chen, B.K. Jiang, W.H. Zheng, et al., Preparation, characterization and anti-diabetic activity of polysaccharides from adlay seed, Int. J. Biol. Macromol. 139 (2019) 605-613. https://doi.org/10.1016/j.ijbiomac.2019.08.018

[36]

S. Chen, B.M. Khan, K.L. Cheong, et al., Pumpkin polysaccharides: Purification, characterization and hypoglycemic potential, Int. J. Biol. Macromol. 139 (2019) 842-849. https://doi.org/10.1016/j.ijbiomac.2019.08.053

[37]

Y. Liu, Y. Zhao, Y. Yang, et al., Structural characteristics and hypoglycemic activity of polysaccharides from Coprinus comatus, Bioact. Carbohydr. Diet. Fibre 2 (2) (2013) 164-169. https://doi.org/10.1016/j.bcdf.2013.10.001

[38]

M. Kacurakova, P. Capek, V. Sasinkova, et al., FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicellulose, Carbohydr. Polym. 43 (2) (2000) 195-203. https://doi.org/10.1016/S0144-8617(00)00151-X

[39]

B. Yang, J. Wang, M. Zhao, et al., Identification of polysaccharides from pericarp tissues of litchi (Litchi chinensis Sonn.) fruit in relation to their antioxidant activities, Carbohydr. Res. 341 (5) (2006) 634-638. https://doi.org/10.1016/j.carres.2006.01.004

[40]

F.J. Cui, Y.H. Li, X.Y. Zan, et al., Purification and partial characterization of a novel hemagglutinating glycoprotein from the cultured mycelia of Hericium erinaceus, Process Biochem. 49 (8) (2014) 1362-1369. https://doi.org/10.1016/j.procbio.2014.04.008

[41]

L. Wang, F. Liu, A. Wang, et al., Purification, characterization and bioactivity determination of a novel polysaccharide from pumpkin (Cucurbita moschata) seeds, Food Hydrocoll. 66 (2017) 357-364. https://doi.org/10.1016/j.foodhyd.2016.12.003

[42]

L. Yun, S. Wang, T. Wu, et al., Structural characterization of a novel glycoprotein in wheat germ and its physicochemical properties, Int. J. Biol. Macromol. 117 (2018) 1058-1065. https://doi.org/10.1016/j.ijbiomac.2018.05.169

[43]

Y.X. Sun, J.C. Liu, X.D. Yang, et al., Purification, structural analysis and hydroxyl radical-scavenging capacity of a polysaccharide from the fruiting bodies of Russula virescens, Process Biochem. 45 (6) (2010) 874-879. https://doi.org/10.1016/j.procbio.2010.02.007

[44]

S. Mohan, B. Mario Pinto, Zwitterionic glycosidase inhibitors: salacinol and related analogues, Carbohydr. Res. 342 (2007) 1551-1580. https://doi.org/10.1016/j.carres.2007.05.014

[45]

P. Crivori, B. Reinach, D. Pezzetta, et al., Computational models for identifying potential p-glycoprotein substrates and inhibitors, Mol. Pharm. 3 (1) (2005) 33-44. https://doi.org/10.1021/mp050071a

[46]

Y. Shirasaka, M. Kawasaki, T. Sakane, et al., Induction of human p-glycoprotein in Caco-2 cells: development of a highly sensitive assay system for p-glycoprotein-mediated drug transport, Drug Metab. Pharmacok. 21 (5) (2006) 414-423. https://doi.org/10.2133/dmpk.21.414

Food Science and Human Wellness
Pages 297-307
Cite this article:
Qin G, Xu W, Liu J, et al. Purification, characterization and hypoglycemic activity of glycoproteins obtained from pea (Pisum sativum L.). Food Science and Human Wellness, 2021, 10(3): 297-307. https://doi.org/10.1016/j.fshw.2021.02.021

579

Views

25

Downloads

15

Crossref

14

Web of Science

23

Scopus

2

CSCD

Altmetrics

Received: 27 May 2020
Revised: 19 July 2020
Accepted: 07 August 2020
Published: 16 April 2021
© 2021 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return