AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (572.5 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Effects of common prebiotics on iron status and production of colonic short-chain fatty acids in anemic rats

Fan ZhangaKen K.L. YungbChi KongYeungc( )
Division of Science and Technology, BNU-HKBU United International College, Zhuhai, Guangdong, China
Department of Biology, Hong Kong Baptist University, Hong Kong, China
Animal Science Department, California Polytechnic State University, San Luis Obispo, California, USA

Peer review under responsibility of KeAi Communications Co., Ltd

Show Author Information

Abstract

Prebiotics may enhance iron absorption, and one plausible mechanism involves the production of short-chain fatty acids (SCFA) in the colon by intestinal microflora. The objectives of this study were to determine the effects of common commercially-available prebiotics including fructooligosaccharide (FOS), inulin, FOS-inulin mixture, galactooligosaccharide (GOS), and lactulose on the iron status of anemic rats, and to monitor changes in the production of colonic SCFA. Anemic Sprague-Dawley rats receiving a low-iron diet (12μg Fe/g diet) were supplemented with or without prebiotics (5% m/V in drinking water) for 5 weeks. Hemoglobin concentration in rats supplemented with GOS after 3 weeks (4.3g/dL) was significantly higher than rats without supplementation (3.7g/dL), while FOS also significantly increased hemoglobin concentration after 4 weeks (4.1g/dL vs. 3.7g/dL). All other prebiotics showed no effects. Anemic rats showed lower overall SCFA production in the colon than normal rats, and only FOS significantly increased the production of the three main SCFA (acetic acid, propionic acid and isobutyric acid) identified in anemic rats, with other prebiotics showing no noticeable trends. Our results suggest that GOS and FOS may slightly improve iron status of anemic rats, but the role of SCFA in the colon is not clear.

References

[1]

M. Pineiro, N.G. Asp, G. Reid, et al., FAO technical meeting on prebiotics, J. Clin. Gastroenterol. 42 (2008) S156-S159. https://doi.org/10.1097/MCG.0b013e31817f184e.

[2]

G.R. Gibson, R. Hutkins, M.E. Sanders, et al., Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics, Nat. Rev. Gastroenterol. Hepatol. 14 (2017) 491-502. https://doi.org/10.1038/nrgastro.2017.75.

[3]

J.H. Cummings, G.T. Macfarlane, H.N. Englyst, Prebiotic digestion and fermentation, Am. J. Clin. Nutr. 73 (2001) 415s-420s. https://doi.org/10.1093/ajcn/73.2.415s.

[4]

M.B. Roberfroid, Prebiotics and probiotics: are they functional foods?, Am. J. Clin. Nutr. 71 (2000) 1682S-1687S. https://doi.org/10.1093/ajcn/71.6.1682S.

[5]

R. Valcheva, L.A. Dieleman, Prebiotics: definition and protective mechanisms, Best Pract. Res. Clin. Gastroenterol. 30 (2016) 27-37. https://doi.org/10.1016/j.bpg.2016.02.008.

[6]

G.R. Gibson, K.P. Scott, R.A. Rastall, et al., Dietary prebiotics: current status and new definition, Food Sci. Technol. Bulletin 7 (2011) 1-19. https://doi.org/10.1616/1476-2137.15880.

[7]

J. Van Loo, P. Coussement, L. De Leenheer, et al., On the presence of inulin and oligofructose as natural ingredients in the western diet, Crit. Rev. Food Sci. Nutr. 35 (1995) 525-552. https://doi.org/10.1080/10408399509527714.

[8]

A.M.P. Santos, F. Maugeri, Synthesis of fructooligosaccharides from sucrose using inulinase from Kluyveromyces marxianus, Food Technol. Biotechnol. 45 (2007) 181-186.

[9]

D. Gorski, Ingredient forecast: product development for world markets, Dairy Foods. 98 (1997) 60-64.

[10]
C.M. Whisner, C.M. Weaver, Galacto-oligosaccharides: prebiotic effects on calcium absorption and bone health, in: P. Burckhardt, B. Dawson-Hughes, C.M. Weaver (Eds. ), Nutr. Influ. Bone Health 8th Int. Symp., Springer, London, 2013: pp. 315–323. https://doi.org/10.1007/978-1-4471-2769-7_30.
[11]

C.M. Whisner, B.R. Martin, M.H.C. Schoterman, et al., Weaver, galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: a double-blind cross-over trial, Br. J. Nutr. 110 (2013) 1292-1303. https://doi.org/10.1017/S000711451300055X.

[12]

C. Guerrero, F. Valdivia, C. Ubilla, et al., Continuous enzymatic synthesis of lactulose in packed-bed reactor with immobilized Aspergillus oryzae β-galactosidase, Bioresour. Technol. 278 (2019) 296-302. https://doi.org/10.1016/j.biortech.2018.12.018.

[13]

C. Aburto, C. Guerrero, C. Vera, et al., Improvement in the yield and selectivity of lactulose synthesis with Bacillus circulans β-galactosidase, LWT-Food Sci. Technol. 118 (2020) 108746. https://doi.org/10.1016/j.lwt.2019.108746.

[14]

R.G. Crittenden, M.J. Playne, Production, properties and applications of food-grade oligosaccharides, Trends Food Sci. Technol. 7 (1996) 353-361. https://doi.org/10.1016/S0924-2244(96)10038-8.

[15]

A. Ohta, S. Baba, T. Takizawa, et al., Effects of fructooligosaccharides on the absorption of magnesium in the magnesium-deficient rat model, J. Nutr. Sci. Vitaminol 40 (1994) 171-180. https://doi.org/10.3177/jnsv.40.171.

[16]

A. Ohta, M. Ohtsuki, S. Baba, et al., Calcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides, J. Nutr. 125 (1995) 2417-2424. https://doi.org/10.1093/jn/125.9.2417.

[17]

E.G.H.M. van den Heuvel, M.H.C. Schoterman, T. Muijs, Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women, J. Nutr. 130 (2000) 2938-2942. https://doi.org/10.1093/jn/130.12.2938.

[18]

H. Younes, C. Coudray, J. Bellanger, et al., Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats, Br. J. Nutr. 86 (2001) 479-485. https://doi.org/10.1079/BJN2001430.

[19]

E.G.H.M. van den Heuvel, T. Muijs, F. Brouns, et al., Short-chain fructo-oligosaccharides improve magnesium absorption in adolescent girls with a low calcium intake, Nutr. Res. 29 (2009) 229-237. https://doi.org/10.1016/j.nutres.2009.03.005.

[20]

X. Chen, Z. Zhang, Y. Hu, et al., Lactulose suppresses osteoclastogenesis and ameliorates estrogen deficiency-induced bone loss in mice, Aging Dis. 11 (2020) 629-641. https://doi.org/10.14336/AD.2019.0613.

[21]

T.K. Weber, K.D.C. Freitas, O.M.S. Amancio, et al., Effect of dietary fibre mixture on growth and intestinal iron absorption in rats recovering from iron-deficiency anaemia, Br. J. Nutr. 104 (2010) 1471-1476. https://doi.org/10.1017/S0007114510002497.

[22]

K.D.C. Freitas, O.M.S. Amancio, M.B. de Morais, High-performance inulin and oligofructose prebiotics increase the intestinal absorption of iron in rats with iron deficiency anaemia during the growth phase, Br. J. Nutr. 108 (2012) 1008-1016. https://doi.org/10.1017/S0007114511006301.

[23]

N. Petry, I. Egli, C. Chassard, et al., Inulin modifies the bifidobacteria population, fecal lactate concentration, and fecal pH but does not influence iron absorption in women with low iron status, Am. J. Clin. Nutr. 96 (2012) 325-331. https://doi.org/10.3945/ajcn.112.035717.

[24]

V. Weinborn, C. Valenzuela, M. Olivares, et al., Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans, Food Funct. 8 (2017) 1994-1999. https://doi.org/10.1039/C6FO01833E.

[25]

T. Christides, J.C. Ganis, P.A. Sharp, In vitro assessment of iron availability from commercial young child formulae supplemented with prebiotics, Eur. J. Nutr. 57 (2018) 669-678. https://doi.org/10.1007/s00394-016-1353-3.

[26]

M.B. Zimmermann, R.F. Hurrell, Nutritional iron deficiency, Lancet 370 (2007) 511-520. https://doi.org/10.1016/S0140-6736(07)61235-5.

[27]

C. Camaschella, Iron-deficiency anemia, N. Engl. J. Med. 372 (2015) 1832-1843. https://doi.org/10.1056/NEJMra1401038.

[28]

C.K. Yeung, R.E. Glahn, R.M. Welch, et al., Prebiotics and iron bioavailability—Is there a connection?, J. Food Sci. 70 (2005) R88-R92. https://doi.org/10.1111/j.1365-2621.2005.tb09984.x.

[29]

K.E. Scholz-Ahrens, G. Schaafsma, E.G. van den Heuvel, et al., Effects of prebiotics on mineral metabolism, Am. J. Clin. Nutr. 73 (2001) 459s-464s. https://doi.org/10.1093/ajcn/73.2.459s.

[30]

C.J. Rebouche, C.L. Wilcox, J.A. Widness, Microanalysis of non-heme iron in animal tissues, J. Biochem. Biophys. Methods 58 (2004) 239-251. https://doi.org/10.1016/j.jbbm.2003.11.003.

[31]

N. Delzenne, J. Aertssens, H. Verplaetse, et al., Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat, Life Sci. 57 (1995) 1579-1587. https://doi.org/10.1016/0024-3205(95)02133-4.

[32]

K. Sakai, A. Ohta, K. Shiga, et al., The cecum and dietary short-chain fructooligosaccharides are involved in preventing postgastrectomy anemia in rats, J. Nutr. 130 (2000) 1608-1612. https://doi.org/10.1093/jn/130.6.1608.

[33]

F. Zhang, K.K.L. Yung, S.S.M. Chung, et al., Supplementation of fructooligosaccharide mildly improves the iron status of anemic rats fed a low-iron diet, Food Nutr. Sci. 8 (2017) 294-304. https://doi.org/10.4236/fns.2017.82019.

[34]

I.J. Griffin, P.M. Davila, S.A. Abrams, Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes, Br. J. Nutr. 87 (2002) S187-S191. https://doi.org/10.1079/BJN/2002536.

[35]

C. Coudray, J.C. Tressol, E. Gueux, et al., Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats, Eur. J. Nutr. 42 (2003) 91-98. https://doi.org/10.1007/s00394-003-0390-x.

[36]

F. Han, Y. Wang, Y. Han, et al., Effects of whole-grain rice and wheat on composition of gut microbiota and short-chain fatty acids in rats, J. Agric. Food Chem. 66 (2018) 6326-6335. https://doi.org/10.1021/acs.jafc.8b01891.

[37]

M. Constante, G. Fragoso, J. Lupien-Meilleur, et al., Iron supplements modulate colon microbiota composition and potentiate the protective effects of probiotics in dextran sodium sulfate-induced colitis, Inflamm. Bowel Dis. 23 (2017) 753-766. https://doi.org/10.1097/MIB.0000000000001089.

[38]

H. He, H. Teng, Q. Huang, et al., Beneficial effects of AOS-iron supplementation on intestinal structure and microbiota in IDA rats, Food Sci. Hum. Wellness. 10 (2020) 23-31. https://doi.org/10.1016/j.fshw.2020.05.009.

[39]

M. Rossi, C. Corradini, A. Amaretti, et al., Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures, Appl. Environ. Microbiol. 71 (2005) 6150-6158. https://doi.org/10.1128/AEM.71.10.6150-6158.2005.

[40]

D. Bouglé, N. Vaghefi-Vaezzadeh, N. Roland, et al., Influence of short-chain fatty acids on iron absorption by proximal colon, Scand. J. Gastroenterol. 37 (2002) 1008-1011. https://doi.org/10.1080/003655202320378176.

[41]

B. Kleessen, L. Hartmann, M. Blaut, Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats, Br. J. Nutr. 89 (2003) 597-606. https://doi.org/10.1079/BJN2002827.

[42]

A. Rivière, M. Selak, A. Geirnaert, et al., Complementary mechanisms for degradation of inulin-type fructans and arabinoxylan oligosaccharides among bifidobacterial strains suggest bacterial cooperation, Appl. Environ. Microbiol. 84 (2018) e02893-e02917. https://doi.org/10.1128/AEM.02893-17.

[43]

M.B. Roberfroid, Introducing inulin-type fructans, Br. J. Nutr. 93 (2005) S13-S25. https://doi.org/10.1079/BJN20041350.

[44]

B. Kleessen, L. Hartmann, M. Blaut, Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora, Br. J. Nutr. 86 (2001) 291-300. https://doi.org/10.1079/BJN2001403.

[45]

E.A. Flickinger, E.M.W.C. Schreijen, A.R. Patil, et al., Nutrient digestibilities, microbial populations, and protein catabolites as affected by fructan supplementation of dog diets, J. Anim. Sci. 81 (2003) 2008-2018. https://doi.org/10.2527/2003.8182008x.

[46]

G.R. Gibson, X. Wang, Bifidogenic properties of different types of fructo-oligosaccharides, Food Microbiol. 11 (1994) 491-498. https://doi.org/10.1006/fmic.1994.1055.

[47]

H.S. Shin, J.H. Lee, J.J. Pestka, et al., Growth and viability of commercial Bifidobacterium spp in skim milk containing oligosaccharides and inulin, J. Food Sci. 65 (2000) 884-887. https://doi.org/10.1111/j.1365-2621.2000.tb13605.x.

[48]

J.K. Patterson, K. Yasuda, R.M. Welch, et al., Supplemental dietary inulin of variable chain lengths alters intestinal bacterial populations in young pigs, J. Nutr. 140 (2010) 2158-2161. https://doi.org/10.3945/jn.110.130302.

[49]

K. Sakai, A. Ohta, M. Takasaki, et al., The effect of short chain fructooligosaccharides in promoting recovery from post-gastrectomy anemia is stronger than that of inulin, Nutr. Res. 20 (2000) 403-412. https://doi.org/10.1016/S0271-5317(00)00133-0.

[50]

K. Yasuda, K.R. Roneker, D.D. Miller, et al., Supplemental dietary inulin affects the bioavailability of iron in corn and soybean meal to young pigs, J. Nutr. 136 (2006) 3033-3038. https://doi.org/10.1093/jn/136.12.3033.

[51]

K. Hayakawa, J. Mizutani, K. Wada, et al., Effects of soybean oligosaccharides on human faecal flora, Microb. Ecol. Health Dis. 3 (1990) 293-303. https://doi.org/10.3109/08910609009140252.

[52]

Y. Saito, T. Takano, I. Rowland, Effects of soybean oligosaccharides on the human gut microflora in in vitro culture, Microb. Ecol. Health Dis. 5 (1992) 105-110. https://doi.org/10.3109/08910609209141296.

[53]

K. Maawia, S. Iqbal, T.R. Qamar, et al., Production of impure prebiotic galacto-oligosaccharides and their effect on calcium, magnesium, iron and zinc absorption in Sprague-Dawley rats, Pharma Nutrition 4 (2016) 154-160. https://doi.org/10.1016/j.phanu.2016.10.003.

[54]

E.G.H.M. van den Heuvel, G. Schaafsma, T. Muys, et al., Nondigestible oligosaccharides do not interfere with calcium and nonheme-iron absorption in young, healthy men, Am. J. Clin. Nutr. 67 (1998) 445-451. https://doi.org/10.1093/ajcn/67.3.445.

[55]

I.R. Rowland, R. Tanaka, The effects of transgalactosylated oligosaccharides on gut flora metabolism in rats associated with a human faecal microflora, J. Appl. Bacteriol. 74 (1993) 667-674. https://doi.org/10.1111/j.1365-2672.1993.tb05201.x.

[56]

S. Fanaro, B. Marten, R. Bagna, et al., Galacto-oligosaccharides are bifidogenic and safe at weaning: a double-blind randomized multicenter study, J. Pediatr. Gastroenterol. Nutr. 48 (2009) 82-88. https://doi.org/10.1097/MPG.0b013e31817b6dd2.

[57]

D. Pérez-Conesa, G. López, G. Ros, Effects of probiotic, prebiotic and synbiotic follow-up infant formulas on large intestine morphology and bone mineralisation in rats, J. Sci. Food Agric. 87 (2007) 1059-1068. https://doi.org/10.1002/jsfa.2812.

[58]

E. Lu, M. Yeung, C.K. Yeung, Comparative analysis of lactulose and fructooligosaccharide on growth kinetics, fermentation, and antioxidant activity of common probiotics, Food Nutr. Sci. 9 (2018) 161-178. https://doi.org/10.4236/fns.2018.93013.

[59]

R. Nagendra, S. Venkat Rao, Effect of incorporation of lactulose in infant formulas on the intestinal bifidobacterial flora in rats, Int. J. Food Sci. Nutr. 43 (1992) 169-173. https://doi.org/10.3109/09637489209028369.

[60]

R. Nagendra, S. Viswanatha, K.N. Murthy, et al., Effect of incorporating lactulose in infant formula on absorption and retention of nitrogen, calcium, phosphorus and iron in rats, Int. Dairy J. 4 (1994) 779-788. https://doi.org/10.1016/0958-6946(94)90007-8.

[61]

C. Demigné, M.A. Levrat, C. Rémésy, Effects of feeding fermentable carbohydrates on the cecal concentrations of minerals and their fluxes between the cecum and blood plasma in the rat, J. Nutr. 119 (1989) 1625-1630. https://doi.org/10.1093/jn/119.11.1625.

[62]

R. Brommage, C. Binacua, S. Antille, et al., Intestinal calcium absorption in rats is stimulated by dietary lactulose and other resistant sugars, J. Nutr. 123 (1993) 2186-2194. https://doi.org/10.1093/jn/123.12.2186.

[63]

A.M.P. Heijnen, E.J. Brink, A.G. Lemmens, et al., Ileal pH and apparent absorption of magnesium in rats fed on diets containing either lactose or lactulose, Br. J. Nutr. 70 (1993) 747-756. https://doi.org/10.1079/BJN19930170.

Food Science and Human Wellness
Pages 327-334
Cite this article:
Zhang F, Yung KK, KongYeung C. Effects of common prebiotics on iron status and production of colonic short-chain fatty acids in anemic rats. Food Science and Human Wellness, 2021, 10(3): 327-334. https://doi.org/10.1016/j.fshw.2021.02.024

600

Views

68

Downloads

8

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 05 August 2020
Revised: 22 September 2020
Accepted: 08 October 2020
Published: 16 April 2021
© 2021 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return