AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (543.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Antrodia cinnamomea ameliorates neointimal formation by inhibiting inflammatory cell infiltration through downregulation of adhesion molecule expression in vitro and in vivo

Yan Zhanga,b,cAijin MaaHao XibNing ChenbRong WangbChenhui YangbJinbang ChenbPin Lüa,b( )Fuping Zhenga( )Wenyi Kangd( )
Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
Cardiovascular Medical Science Center, Department of Cell Biology, Hebei Medical University, Shijiazhuang 050091, China
Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, Henan 475004, China

Peer review under responsibility of KeAi Communications Co., Ltd

Show Author Information

Abstract

The increased vascular inflammation is a key event in the development of atherosclerotic lesions. Antrodia cinnamomea has been shown to promote anticancerogenic activity through decreasing inflammation. However, the potential role of A. cinnamomea in cardiovascular diseases remains unexplored. Herein, using carotid arterial ligation models, we found that ethanol extract from A. cinnamomea (EEAC) significantly inhibited neointimal hyperplasia in a dose-dependent manner, accompanied with the reduced expression of activated p65 and inflammatory cytokines. We also show that EEAC ameliorated TNF-α-induced phosphorylation of p65 and pro-inflammatory cytokine expression in both vascular smooth muscle cells (VSMCs) and macrophages in vitro. Mechanistically, EEAC suppressed expression levels of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) in VSMCs, which attenuates the ability of monocytes/macrophages adhesion to VSMCs. Furthermore, the expression level of these adhesion molecules and infiltration of monocytes/macrophages were also decreased in neointimal VSMCs of arteries pretreated with EEAC. Altogether, our results reveal a novel function of A. cinnamomea in suppressing vascular inflammation upon ligation injury during neointimal formation, likely through inhibition of inflammatory cell infiltration via downregulating the adhesion molecules in VSMCs. Thus, A. cinnamomea may offer a pharmacological therapy to slow down disease progression in patients with vascular injury.

References

[1]

K.J. Williams, I. Tabas, Atherosclerosis and inflammation, Science 297 (2002) 521-522. http://doi.org/10.1126/science.297.5581.521.

[2]

S. Lim, S. Park, Role of vascular smooth muscle cell in the inflammation of atherosclerosis, BMB Rep. 47 (2014) 1-7. http://doi.org/10.5483/bmbrep.2014.47.1.285.

[3]

D.I. Simon, Z. Dhen, P. Seifert, et al., Decreased neointimal formation in Mac-1−/− mice reveals a role for inflammation in vascular repair after angioplasty, J. Clin. Invest. 105 (2000) 293-300. http://doi.org/10.1172/jci7811.

[4]

A.C. Doran, N. Meller, C.A. McNamara, Role of smooth muscle cells in the initiation and early progression of atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 28 (2008) 812-819. http://doi.org/10.1161/atvbaha.107.159327.

[5]

Q. Cai, L. Lanting, R. Natarajan, Interaction of monocytes with vascular smooth muscle cells regulates monocyte survival and differentiation through distinct pathways, Arterioscler. Thromb. Vasc. Biol. 24 (2004) 2263-2270. http://doi.org/10.1161/01.ATV.0000146552.16943.5e.

[6]

B.W. Wong, D. Wong, B.M. McManus, Characterization of fractalkine (CX3CL1) and CX3CR1 in human coronary arteries with native atherosclerosis, diabetes mellitus, and transplant vascular disease, Cardiovasc. Pathol. 11 (2002) 332-338. http://doi.org/10.1016/s1054-8807(02)00111-4.

[7]

J. Barlic, Y. Zhang, J.F. Foley, et al., Oxidized lipid-driven chemokine receptor switch, CCR2 to CX3CR1, mediates adhesion of human macrophages to coronary artery smooth muscle cells through a peroxisome proliferator-activated receptor gamma-dependent pathway, Circulation 114 (2006) 807-819. http://doi.org/10.1161/circulationaha.105.602359.

[8]

Q. Cai, L. Lanting, R. Natarajan, Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis, Am. J. Physiol. Cell Physiol. 287 (2004) C707-C714. http://doi.org/10.1152/ajpcell.00170.2004.

[9]

M. Geethangili, Y.M. Tzeng, Review of pharmacological effects of Antrodia camphorata and its bioactive compounds, Evid. Based Complement Alternat. Med. 2011 (2011) 212641. http://doi.org/10.1093/ecam/nep108.

[10]

P.Y. Yue, Y.Y. Wong, T.Y. Chan, et al., Review of biological and pharmacological activities of the endemic Taiwanese bitter medicinal mushroom, Antrodia camphorata (M. Zang et C. H. Su) Sh. H. Wu et al. (higher Basidiomycetes), Int. J. Med. Mushrooms 14 (2012) 241-256. http://doi.org/10.1615/intjmedmushr.v14.i3.20.

[11]

P.C. Chiang, S.C. Lin, S.L. Pan, et al., Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways, Biochem. Pharmacol. 79 (2010) 162-171. http://doi.org/10.1016/j.bcp.2009.08.022.

[12]

T.T. Huang, Y.W. Lan, C.M. Chen, et al., Antrodia cinnamomea induces anti-tumor activity by inhibiting the STAT3 signaling pathway in lung cancer cells, Sci. Rep. 9 (2019) 5145. http://doi.org/10.1038/s41598-019-41653-9.

[13]

C.C. Peng, K.C. Chen, R.Y. Peng, et al., Antrodia camphorata extract induces replicative senescence in superficial TCC, and inhibits the absolute migration capability in invasive bladder carcinoma cells, J. Ethnopharmacol. 109 (2007) 93-103. http://doi.org/10.1016/j.jep.2006.07.009.

[14]

N. Ganesan, R. Baskaran, B.K. Velmurugan, et al., Antrodia cinnamomea–an updated minireview of its bioactive components and biological activity, J. Food Biochem. 43 (2019) e12936. http://doi.org/10.1111/jfbc.12936.

[15]

T.T. Huang, S.P. Wu, K.Y. Chong, et al., The medicinal fungus Antrodia cinnamomea suppresses inflammation by inhibiting the NLRP3 inflammasome, J. Ethnopharmacol. 155 (2014) 154-164. http://doi.org/10.1016/j.jep.2014.04.053.

[16]

T.Y. Song, G.C. Yen, Antioxidant properties of Antrodia camphorata in submerged culture, J. Agric. Food Chem. 50 (2002) 3322-3327. http://doi.org/10.1021/jf011671z.

[17]

Z.H. Ao, Z.H. Xu, Z.M. Lu, et al., Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases, J. Ethnopharmacol. 121 (2009) 194-212. http://doi.org/10.1016/j.jep.2008.10.039.

[18]

L.H. Dong, L. Li, Y. Song, et al., TRAF6-mediated SM22α K21 ubiquitination promotes G6PD activation and NADPH production, contributing to GSH homeostasis and VSMC survival in vitro and in vivo, Circ. Res. 117 (2015) 684-694. http://doi.org/10.1161/circresaha.115.306233.

[19]

P. Lv, F. Zhang, Y.J. Yin, et al., SM22α inhibits lamellipodium formation and migration via Ras-Arp2/3 signaling in synthetic VSMCs, Am. J. Physiol. Cell Physiol. 311 (2016) C758-C767. http://doi.org/10.1152/ajpcell.00033.2016.

[20]

L.H. Dong, J.K. Wen, S.B. Miao, et al., Baicalin inhibits PDGF-BB-stimulated vascular smooth muscle cell proliferation through suppressing PDGFRβ-ERK signaling and increase in p27 accumulation and prevents injury-induced neointimal hyperplasia, Cell Res. 20 (2010) 1252-1262. http://doi.org/10.1038/cr.2010.111.

[21]

L.H. Dong, J.K. Wen, G. Liu, et al., Blockade of the Ras-extracellular signal-regulated kinase 1/2 pathway is involved in smooth muscle 22 alpha-mediated suppression of vascular smooth muscle cell proliferation and neointima hyperplasia, Arterioscler. Thromb. Vasc. Biol. 30 (2010) 683-691. http://doi.org/10.1161/atvbaha.109.200501.

[22]

P. Libby, P.M. Ridker, A. Maseri, Inflammation and atherosclerosis, Circulation 105 (2002) 1135-1143. http://doi.org/10.1161/hc0902.104353.

[23]

K. Satoh, T. Satoh, N. Kikuchi, et al., Basigin mediates pulmonary hypertension by promoting inflammation and vascular smooth muscle cell proliferation, Circ. Res. 115 (2014) 738-750. http://doi.org/10.1161/circresaha.115.304563.

[24]

M.M. Donners, M.J. Daemen, K.B. Cleutjens, et al., Inflammation and restenosis: implications for therapy, Ann. Med. 35 (2003) 523-531. http://doi.org/10.1080/07853890310014876.

[25]

D. Yang, C. Sun, J. Zhang, et al., Proliferation of vascular smooth muscle cells under inflammation is regulated by NF-κB p65/microRNA-17/RB pathway activation, Int. J. Mol. Med. 41 (2018) 43-50. http://doi.org/10.3892/ijmm.2017.3212.

[26]

Y. Qin, B. Zheng, G.S. Yang, et al., Tanshinone IIA inhibits VSMC inflammation and proliferation in vivo and in vitro by downregulating miR-712-5p expression, Eur. J. Pharmacol. 880 (2020) 173140. http://doi.org/10.1016/j.ejphar.2020.173140.

[27]

M. Parker, K.M. Mohankumar, C. Punchihewa, et al., C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma, Nature 506 (2014) 451-455. http://doi.org/10.1038/nature13109.

[28]

Y. Jang, A.M. Lincoff, E.F. Plow, et al., Cell adhesion molecules in coronary artery disease, J. Am. Coll. Cardiol. 24 (1994) 1591-1601. http://doi.org/10.1016/0735-1097(94)90162-7.

[29]

K.S. Cheng, D.P. Mikhailidis, G. Hamilton, et al., A review of the carotid and femoral intima-media thickness as an indicator of the presence of peripheral vascular disease and cardiovascular risk factors, Cardiovasc. Res. 54 (2002) 528-538. http://doi.org/10.1016/s0008-6363(01)00551-x.

[30]

C. Bauters, J.M. Isner, The biology of restenosis, Prog. Cardiovasc. Dis. 40 (1997) 107-116. http://doi.org/10.1016/s0033-0620(97)80003-5.

[31]

C.A. McNamara, I.J. Sarembock, B.G. Bachhuber, et al., Thrombin and vascular smooth muscle cell proliferation: implications for atherosclerosis and restenosis, Semin. Thromb. Hemost. 22 (1996) 139-144. http://doi.org/10.1055/s-2007-999001.

[32]

P.C. Chiang, S.C. Lin, S.L. Pan, et al., Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways, Biochem. Pharmacol. 79 (2010) 162-171. http://doi.org/10.1016/j.bcp.2009.08.022.

[33]

H.L. Yang, C.S. Chen, W.H. Chang, et al., Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata, Cancer Lett. 231 (2006) 215-227. http://doi.org/10.1016/j.canlet.2005.02.004.

[34]

J.J. Cheng, N.K. Huang, T.T. Chang, et al., Study for anti-angiogenic activities of polysaccharides isolated from Antrodia cinnamomea in endothelial cells, Life Sci. 76 (2005) 3029-3042. http://doi.org/10.1016/j.lfs.2004.11.023.

[35]

C.M. Yang, Y.J. Zhou, R.J. Wang, et al., Anti-angiogenic effects and mechanisms of polysaccharides from Antrodia cinnamomea with different molecular weights, J. Ethnopharmacol. 123 (2009) 407-412. http://doi.org/10.1016/j.jep.2009.03.034.

[36]

M.R. Alexander, G.K. Owens, Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease, Annu. Rev. Physiol. 74 (2012) 13-40. http://doi.org/10.1146/annurev-physiol-012110-142315.

[37]

M.R. Bennett, S. Sinha, G.K. Owens, Vascular smooth muscle cells in atherosclerosis, Circ. Res. 118 (2016) 692-702. http://doi.org/10.1161/circresaha.115.306361.

[38]

M. Braun, P. Pietsch, K. Schrör, et al., Cellular adhesion molecules on vascular smooth muscle cells, Cardiovasc. Res. 41 (1999) 395-401. http://doi.org/10.1016/s0008-6363(98)00302-2.

[39]

M.I. Cybulsky, K. Iiyama, H. Li, et al., A major role for VCAM-1, but not ICAM-1, in early atherosclerosis, J. Clin. Invest. 107 (2001) 1255-1262. http://doi.org/10.1172/jci11871.

Food Science and Human Wellness
Pages 421-430
Cite this article:
Zhang Y, Ma A, Xi H, et al. Antrodia cinnamomea ameliorates neointimal formation by inhibiting inflammatory cell infiltration through downregulation of adhesion molecule expression in vitro and in vivo. Food Science and Human Wellness, 2021, 10(4): 421-430. https://doi.org/10.1016/j.fshw.2021.04.004

730

Views

32

Downloads

6

Crossref

7

Web of Science

8

Scopus

3

CSCD

Altmetrics

Received: 01 November 2020
Revised: 02 December 2020
Accepted: 02 December 2020
Published: 04 June 2021
© 2021 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return