AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (723.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Auricularia polytricha noodles prevent hyperlipemia and modulate gut microbiota in high-fat diet fed mice

Donglu FangaDan WangbGaoxing MabYang JiaHuihua Zhenga,cHui Chena,cMingwen ZhaodQiuhui HuaLiyan Zhaoa( )
College of Food Science and Technology, Nanjing Agricultural University/Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
Jiangsu Alphay Bio-technology Co., Ltd., Nantong 226009, China
College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China

Peer review under responsibility of KeAi Communications Co., Ltd

Show Author Information

Abstract

Auricularia polytricha possesses hypolipidemic effects and decreases lipid accumulation, leading to potential food additives for functional food processing. In this research, we explored the potential effects of A. polytricha noodles on hyperlipidemia and gut microbiota dysbiosis, and elucidated their possible regulatory mechanisms on lipid metabolism in high-fat diet (HFD) mice. A. polytricha noodles treatment significantly (< 0.05) reduced body weight gain, hyperlipidemia and liver fat accumulation. Meanwhile, A. polytricha noodles decreased the levels of serum total cholesterol (TC), total triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) compared with the HFD group. Furthermore, A. polytricha noodles could enrich the diversity of gut microbiota by decreasing the ratio of Firmicutes to Bacteroidetes as well as the relative abundance of Deferribacteres and increased the relative abundance of Verrucomicrobia, which might contribute to the prevention of hyperlipidemia. This study indicated that A. polytricha noodles could modulate the gut microbiota and prevent hyperlipidemia and liver fat accumulation induced by HFD.

References

[1]

J.J. Xiao, J.S. Duan, Y.C. Wu, et al., Dissipation and migration of pyrethroids in Auricularia polytricha mont. from cultivation to postharvest processing and dietary risk, Molecules 23 (2018) 791. https://doi.org/10.3390/molecules23040791.

[2]

W.C. Chiu, H.H. Yang, S.C. Chiang, et al., Auricularia polytricha aqueous extract supplementation decreases hepatic lipid accumulation and improves antioxidative status in animal model of nonalcoholic fatty liver, BioMedicine 4 (2014) 12. https://doi.org/10.7603/s40681-014-0012-3.

[3]

R.Q. Zhao, W.J. Yang, F. Pei, et al., In vitro fermentation of six kinds of edible mushrooms and its effects on fecal microbiota composition, LWT-Food Sci. Technol. 96 (2018) 627-635. https://doi.org/10.1016/j.lwt.2018.06.012.

[4]

G. Song, Q. Du, Isolation of a polysaccharide with anticancer activity from Auricularia polytricha using high-speed countercurrent chromatography with an aqueous two-phase system, J. Chromatogr. A 1217 (2010) 5930-5934. https://doi.org/10.1016/j.chroma.2010.07.036.

[5]
D. Wang, H.H. Zheng, Y. Ji, et al., Effects of Auricularia auricula granules on rheological properties of dough and noodle quality characteristics, Food Sci. 40 (2019) 43-50. (in Chinese) https://doi.org/10.7506/spkx1002-6630-20190608-079.
[6]

Y.X. Sun, J.C. Liu, J.F. Kennedy, Purification, composition analysis and antioxidant activity of different polysaccharide conjugates (APPs) from the fruiting bodies of Auricularia polytricha, Carbohydr. Polym. 82 (2010) 299-304. https://doi.org/10.1016/j.carbpol.2010.04.056.

[7]

G. Song, Q. Du, Structure characterization and antitumor activity of an α β-glucan polysaccharide from Auricularia polytricha, Food Res. Int. 45 (2012) 381-387. https://doi.org/10.1016/j.foodres.2011.10.035.

[8]

F. Zeng, C. Zhao, J. Peng, et al., Chemical properties of a polysaccharide purified from solid-state fermentation of auricularia auricular and its biological activity as a hypolipidemic agent, J. Food Sci. 78 (2013) H1470-H1475. https://doi.org/10.1111/1750-3841.12226.

[9]

N.J. Wu, F.J. Chiou, Y.M. Weng, et al., In vitro hypoglycemic effects of hot water extract from Auricularia polytricha (wood ear mushroom), Int. J. Food Sci. Nutr. 65 (2014) 502-506. https://doi.org/10.3109/09637486.2014.886183.

[10]

S. Zhao, C. Rong, Y. Liu, et al., Extraction of a soluble polysaccharide from Auricularia polytricha and evaluation of its anti-hypercholesterolemic effect in rats, Carbohydr. Polym. 122 (2015) 39-45. https://doi.org/10.1016/j.carbpol.2014.12.041.

[11]

Y. Byung-Keun, H.A. Ji-Young, J. Sang-Chul, et al., Hypolipidemic effect of an exo-biopolymer produced from submerged mycelial culture of Auricularia polytricha in rats, Biotechnol. Lett. 24 (2002) 1319-1325. https://doi.org/10.1023/A:1019831929570.

[12]

N. Zmora, J. Suez, E. Elinav, You are what you eat: diet, health and the gut microbiota, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 35-56. https://doi.org/10.1038/s41575-018-0061-2.

[13]

M.A. Underwood, Intestinal dysbiosis: novel mechanisms by which gut microbes trigger and prevent disease, Prev. Med. 65 (2014) 133-137. https://doi.org/10.1016/j.ypmed.2014.05.010.

[14]

S.M. Vanegas, M. Meydani, J.B. Barnett, et al., Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults, Am. J. Clin. Nutr. 105 (2017) 635-650. https://doi.org/10.3945/ajcn.116.146928.

[15]

S. Martín-Peláez, O. Castañer, R. Solà, et al., Influence of phenol-enriched olive oils on human intestinal immune function, Nutrients 8 (2016) 213. https://doi.org/10.3390/nu8040213.

[16]

S. Li, H.Y. Tan, N. Wang, et al., The role of oxidative stress and antioxidants in liver diseases, Int. J. Mol. Sci. 16 (2015) 26087-26124. https://doi.org/10.3390/ijms161125942.

[17]

H. Yao, C. Fan, Y. Lu, et al., Alteration of gut microbiota affects expression of adiponectin and resistin through modifying DNA methylation in high-fat diet-induced obese mice, Genes Nutr. 15 (2020) 14. https://doi.org/10.1186/s12263-020-00671-3.

[18]

M.A. Conlon, A.R. Bird, The impact of diet and lifestyle on gut microbiota and human health, Nutrients 7 (2014) 17-44. https://doi.org/10.3390/nu7010017.

[19]

E. Rinninella, P. Raoul, M. Cintoni, et al., What is the healthy gut microbiota composition?. A changing ecosystem across age, environment, diet, and diseases, Microorganisms 7 (2019) 1. https://doi.org/10.3390/microorganisms7010014.

[20]

H. Liu, H. Wu, Q. Wang, Health-promoting effects of dietary polysaccharide extracted from Dendrobium aphyllum on mice colon, including microbiota and immune modulation, Int. J. Food Sci. Technol. 54 (2019) 1684-1696. https://doi.org/10.1111/ijfs.14050.

[21]

C. Ma, D. Huo, Z. You, et al., Differential pattern of indigenous microbiome responses to probiotic Bifidobacterium lactis V9 consumption across subjects, Food Res. Int. 136 (2020) 109496. https://doi.org/10.1016/j.foodres.2020.109496.

[22]

A. Alim, T. Li, T. Nisar, et al., Consumption of two whole kiwifruit (Actinide chinensis) per day improves lipid homeostasis, fatty acid metabolism and gut microbiota in healthy rats, Int. J. Biol. Macromol. 156 (2020) 186-195. https://doi.org/10.1016/j.ijbiomac.2020.04.028.

[23]

S. Rong, S. Zhao, X. Kai, et al., Procyanidins extracted from the litchi pericarp attenuate atherosclerosis and hyperlipidemia associated with consumption of a high fat diet in apolipoprotein-E knockout mice, Biomed. Pharmacother. 97 (2018) 1639-1644. https://doi.org/10.1016/j.biopha.2017.10.139.

[24]

J.H. Choi, D.W. Kim, S. Kim, et al., In vitro antioxidant and in vivo hypolipidemic effects of the king oyster culinary-medicinal mushroom, Pleurotus eryngii var. ferulae DDL01 (Agaricomycetes), in rats with high-fat diet-induced fatty liver and hyperlipidemia, Int. J. Med. Mushrooms 19 (2017) 107. https://doi.org/10.1615/IntJMedMushrooms.v19.i2.20.

[25]

P.Y.K. Yue, Y.Y. Wong, K.Y.K. Wong, et al., Current evidence for the hepatoprotective activities of the medicinal mushroom Antrodia cinnamomea, Chin. Med. 8 (2013) 21. https://doi.org/10.1186/1749-8546-8-21.

[26]

P. Mukthamba, K. Srinivasan, Hypolipidemic and antioxidant effects of dietary fenugreek (Trigonella foenum-graecum) seeds and garlic (Allium sativum) in high-fat fed rats, Food Biosci. 14 (2016) 1-9. https://doi.org/10.1016/j.fbio.2016.01.002.

[27]

C.J. Chang, C.S. Lin, C.C. Lu, et al., Corrigendum: Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota, Nat. Commun. 6 (2017) 7489. https://doi.org/10.1038/ncomms16130.

[28]

X. He, N. Zheng, J. He, et al., Gut microbiota modulation attenuated the hypolipidemic effect of simvastatin in high-fat/cholesterol-diet fed mice, J. Proteome Res. 16 (2017) 1900. https://doi.org/10.1021/acs.jproteome.6b00984.

[29]

L. Jing, F. Zhao, Y. Wang, et al., Gut microbiota dysbiosis contributes to the development of hypertension, Microbiome 5 (2017) 14. https://doi.org/10.1186/s40168-016-0222-x.

[30]

M. Ziętak, P. Kovatcheva-Datchary, L. Markiewicz, et al., Altered microbiota contributes to reduced diet-induced obesity upon cold exposure, Cell Metab. 23 (2016) 1216-1223. https://doi.org/10.1016/j.cmet.2016.05.001.

[31]

J. Huang, Y. Zhang, Y. Zhou, et al., Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression, J. Agric. Food Chem. 61 (2013) 8565-8572. https://doi.org/10.1021/jf402004x.

[32]

S.K. Panchal, H. Poudyal, A. Iyer, et al., High-carbohydrate, high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats, J. Cardiovasc. Pharmacol. 57 (2011) 611. https://doi.org/10.1097/FJC.0b013e3181feb90a.

[33]

H.S. Cheng, S.H. Ton, S.C.W. Phang, et al., Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome, J. Adv. Res. 8 (2017) 743-752. https://doi.org/10.1016/j.jare.2017.10.002.

[34]

I.J. Waterman, V.A. Zammit, Differential effects of fenofibrate or simvastatin treatment of rats on hepatic microsomal overt and latent diacylglycerol acyltransferase activities, Diabetes 51 (2002) 1708-1713. https://doi.org/10.2337/diabetes.51.6.1708.

[35]

J.L. Dong, Y.Y. Zhu, Y.L. Ma, et al., Oat products modulate the gut microbiota and produce anti-obesity effects in obese rats, J. Funct. Foods 25 (2016) 408-420. https://doi.org/10.1016/j.jff.2016.06.025.

[36]

S. Rabot, M. Membrez, F. Blancher, et al., High fat diet drives obesity regardless the composition of gut microbiota in mice, Sci. Rep. 6 (2016) 32484. https://doi.org/10.1038/srep32484.

[37]

D.W. Cockburn, N.M. Koropatkin, Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease, J. Mol. Biol. 428 (2016) 3230-3252. https://doi.org/10.1016/j.jmb.2016.06.021.

[38]

F.A. Duca, T.K. Lam, Gut microbiota, nutrient sensing and energy balance, Diabetes, Obes. Metab. 16 (2015) 68-76. https://doi.org/10.1111/dom.12340.

[39]

S.M. Sarma, D.P. Singh, P. Singh, et al., Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis, Int. J. Biol. Macromol. 12 (2017) e0179122. https://doi.org/10.1016/j.ijbiomac.2017.08.100.

[40]

T. Shimizu, K. Mori, K. Ouchi, et al., Effects of dietary intake of Japanese mushrooms on visceral fat accumulation and gut microbiota in mice, Nutrients 10 (2018) 610. https://doi.org/10.3390/nu10050610.

[41]

F.F. Anhê, R. Denis, P. Geneviève, et al., A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice, Gut 64 (2015) 872-883. https://doi.org/10.1136/gutjnl-2014-307142.

[42]

S.G. Nguyen, J. Kim, R.B. Guevarra, et al., Laminarin favorably modulates gut microbiota in mice fed a high-fat diet, Food Funct. 7 (2016) 4193. https://doi.org/10.1039/c6fo00929h.

[43]

F. Jia, S. Yang, Y. Ma, et al., Extraction optimization and constipation-relieving activity of dietary fiber from Auricularia polytricha, Food Biosci. 33 (2020) 100506. https://doi.org/10.1016/j.fbio.2019.100506.

[44]

M. Friedman, Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans, Foods 5 (2016) 80. https://doi.org/10.3390/foods5040080.

[45]

V.R. Velagapudi, R. Hezaveh, C.S. Reigstad, et al., The gut microbiota modulates host energy and lipid metabolism in mice, J. Lipid Res. 51 (2010) 1101-1112. https://doi.org/10.1194/jlr.M002774.

[46]

M. Li, X. Shu, H. Xu, et al., Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds, J. Transl. Med. 14 (2016) 237. https://doi.org/10.1186/s12967-016-0987-5.

[47]

G. Solano-Aguilar, S. Jang, S. Lakshman, et al., The effect of dietary mushroom Agaricus bisporus on intestinal microbiota composition and host immunological function, Nutrients 10 (2018) 1721. https://doi.org/10.3390/nu10111721.

[48]

J.L. Hu, S.P. Nie, Q.P. Wu, et al., Polysaccharide from seeds of Plantago asiatica L. affects lipid metabolism and colon microbiota of mouse, J. Agric. Food Chem. 62 (2014) 229. https://doi.org/10.1021/jf4040942.

[49]

R. Caesar, F.F. Backhed, Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism, J. Intern. Med. 268 (2010) 320-328. https://doi.org/10.1111/j.1365-2796.2010.02270.x.

[50]

G. Mourembou, J. Rathored, J.B. Lekana-Douki, et al., Description of gabonibacter massiliensis gen. nov., sp. nov., a new member of the family porphyromonadaceae isolated from the human gut microbiota, Curr. Microbiol. 73 (2016) 867-877. https://doi.org/10.1007/s00284-016-1137-2.

[51]

S. Zhou, Y. Wang, J. Jacoby, et al., Effects of medium- and long-chain triacylglycerols on lipid metabolism and gut microbiota composition in C57BL/6J mice, J. Agric. Food Chem. 65 (2017) 6599-6607. https://doi.org/10.1021/acs.jafc.7b01803.

[52]

L. Li, W.L. Guo, W. Zhang, et al., Grifola frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet fed rats, Food Funct. 10 (2019) 2560-2572. https://doi.org/10.1039/c9fo00075e.

[53]

C. Belzer, W.M. de Vos, Microbes inside-from diversity to function: the case of Akkermansia, The ISME Journal 6 (2012) 1449-1458. https://doi.org/10.1038/ismej.2012.6.

[54]

P.D. Cani, B. Rodrigo, K. Claude, et al., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice, Diabetes 57 (2008) 1470-1481. https://doi.org/10.2337/db07-1403.

[55]

G. Chen, M. Xie, P. Wan, et al., Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea, Food Chem. 244 (2017) 331. https://doi.org/10.1016/j.foodchem.2017.10.074.

[56]

A. Koh, V.F. De, P. Kovatchevadatchary, et al., From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites, Cell 165 (2016) 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041.

Food Science and Human Wellness
Pages 431-441
Cite this article:
Fang D, Wang D, Ma G, et al. Auricularia polytricha noodles prevent hyperlipemia and modulate gut microbiota in high-fat diet fed mice. Food Science and Human Wellness, 2021, 10(4): 431-441. https://doi.org/10.1016/j.fshw.2021.04.005

569

Views

74

Downloads

22

Crossref

19

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 05 October 2020
Revised: 29 October 2020
Accepted: 03 November 2020
Published: 04 June 2021
© 2021 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return