AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (616.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Anti-colon cancer activity of water-soluble polysaccharides extracted from Gloeostereum incarnatum via Wnt/β-catenin signaling pathway

Jiawei Hea,bAnhui YangbXuyu ZhaoaYang LiuaShuyan Liua( )Di Wangb( )
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
School of Life Sciences, Jilin University, Changchun 130012, China

Peer review under responsibility of KeAi Communications Co., Ltd

Show Author Information

Abstract

The incidence rate of colon cancer ranks the third among malignant tumors worldwide. Gloeostereum incarnatum (GI), a fungus with homology of medicine and food, has multiple pharmacological activities. It was investigated in this study that the anti-colon cancer effect of polysaccharides purified from GI (GIPS) in ApcMinC/Gpt mice (an in situ colon cancer mouse model). Eight-week administration with GIPS at doses of 30 or 90mg/kg strongly inhibited tumor growth including the reduction on numbers and the suppression of the size without influencing the animals' body weight and organ functions. According to the proteomics performing by antibody array, among 308 detected cytokines, GIPS significantly regulated 89 of them. Compared with vehicle-treated mice, GIPS effectively reduced the levels of interleukin (IL)-1β, IL-4, IL-6, IL-17, IL-22, tumor necrosis factor (TNF)-α, matrix metalloproteinase (MMP)-2, and enhanced the levels of IL-15 and IL-18 in serum and/or colon tissues, which suggested its anti-inflammation of GIPS. GIPS suppressed nuclear aggregation of β-catenin, affected the expression of WNT1 and related proteins, thereby regulated the activation of the Wnt signaling. Altogether, GIPS can inhibit the growth of colon cancer, at least partially, via inhibiting the Wnt/β-catenin signaling pathway.

References

[1]

D. Sun, W. Shen, F. Zhang, et al., α-Hederin inhibits interleukin 6-induced epithelial-to-mesenchymal transition associated with disruption of JAK2/STAT3 signaling in colon cancer cells, Biomed Pharmacother. 101 (2018) 107-114. https://doi.org/10.1016/j.biopha.2018.02.062.

[2]

N. Hasan, A. Pollack, I. Cho, Infectious causes of colorectal cancer, Infect Dis. Clin. North Am. 24 (2010) 1019-1039. https://doi.org/10.1016/j.idc.2010.07.009.

[3]

Z.M. Xiao, S.R. Shen, P. Lian, et al., Intrasplenic tumor model of nude mice in the anti-metastasis roles of NGX6 gene against colon cancer, Zhong Nan Da Xue Xue Bao Yi Xue Ban. 32 (2007) 753-7.

[4]

S. Shang, F. Hua, Z.W. Hu, The regulation of β-catenin activity and function in cancer: therapeutic opportunities, Oncotarget. 8 (2017) 33972-33989. https://doi.org/10.18632/oncotarget.15687.

[5]

B.D. White, A.J. Chien, D.W. Dawson, Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers, Gastroenterology 142 (2012) 219-232. https://doi.org/10.1053/j.gastro.2011.12.001.

[6]

C. Ni, P. Wu, X. Wu, et al., Thymosin alpha1 enhanced cytotoxicity of iNKT cells against colon cancer via upregulating CD1d expression, Cancer Lett. 356 (2015) 579-88. https://doi.org/10.1016/j.canlet.2014.10.002.

[7]

S. Agrawal, M. Woźniak, M. Łuc, et al., Insulin enhancement of the antitumor activity of chemotherapeutic agents in colorectal cancer is linked with downregulating PIK3CA and GRB2, Sci Rep. 9 (2019) 16647. https://doi.org/10.1038/s41598-019-53145-x.

[8]

H.P. Kalofonos, P. Papakostas, G. Aravantinos, et al., A randomised phase Ⅱ study comparing irinotecan (IRI) plus leucovorin (LV) and 5-fluorouracil (5FU) versus IRI-LV-5FU followed be oxaliplatin (OXA) plus LV-5FU in patients with previously untreated metastatic colorectal cancer (CRC), J. Clin. Oncol. 18 (2006) 2583. https://doi.org/10.1200/jco.2006.24.18_suppl.3583.

[9]

M.M. Liu, P. Zeng, X.T. Li, et al., Antitumor and immunomodulation activities of polysaccharide from Phellinus baumii, Int. J. Biol. Macromol. 91 (2016) 1199-1205. https://doi.org/10.1016/j.ijbiomac.2016.06.086.

[10]

C. Yang, Q. Feng, H. Liao, et al., Anti-diabetic nephropathy activities of polysaccharides obtained from Termitornyces albuminosus via regulation of NF-κB signaling in db/db mice, Int. J. Mol. Sci. 20 (2019) 5205. https://doi.org/10.3390/ijms20205205.

[11]

Y. Liu, A. Yang, Y. Qu, et al., Ameliorative effects of Antrodia cinnamomea polysaccharides against cyclophosphamide-induced immunosuppression related to Nrf2/HO-1 signaling in BALB/c mice, Int. J. Biol. Macromol. 116 (2018) 8-15. https://doi.org/10.1016/j.ijbiomac.2018.04.178.

[12]

X. Wang, Q. Chu, X. Jiang, et al., Sarcodon imbricatus polysaccharides improve mouse hematopoietic function after cyclophosphamide-induced damage via G-CSF mediated JAK2/STAT3 pathway, Cell Death Dis. 9 (2018) 578. https://doi.org/10.1038/s41419-018-0634-6.

[13]

P. Sun, D. Sun, X. Wang, Effects of Scutellaria barbata polysaccharide on the proliferation, apoptosis and EMT of human colon cancer HT29 Cells, Carbohydr. Polym. 167 (2017) 90-96. https://doi.org/10.1016/j.carbpol.2017.03.022.

[14]

Z. Mzoughi, G. Souid, R. Timoumi, et al., Partial characterization of the edible Spinacia oleracea polysaccharides: cytoprotective and antioxidant potentials against Cd induced toxicity in HCT116 and HEK293 cells, Int. J. Biol. Macromol. 136 (2019) 332-340. https://doi.org/10.1016/j.ijbiomac.2019.06.089.

[15]

L.C. Yang, C.C. Hsieh, T.J. Lu, et al., Structurally characterized arabinogalactan from Anoectochilus formosanus as an immuno-modulator against CT26 colon cancer in BALB/c mice, Phytomedicine 21 (2014) 647-655. https://doi.org/10.1016/j.phymed.2013.10.032.

[16]

X. Wang, J. Peng, L. Sun, et al., Genome sequencing illustrates the genetic basis of the pharmacological properties of Gloeostereum incarnatum, Genes (Basel) 10 (2019) 188. https://doi.org/10.3390/genes10030188.

[17]

R. Asai, S. Mitsuhashi, K. Shigetomi, et al., Absolute configurations of (-)-hirsutanol A and (-)-hirsutanol C produced by Gloeostereum incarnatum, Cheminform 43 (2012) 693. https://doi.org/ 10.1038/ja.2011.73.

[18]

D. Wang, Q. Li, Y. Qu, et al., The investigation of immunomodulatory activities of Gloeostereum incaratum polysaccharides in cyclophosphamideinduced immunosuppression mice, Exp. Ther. Med. 15 (2018) 3633-3638. https://doi.org/10.3892/etm.2018.5810.

[19]

I. Naumov, A. Zilberberg, R. Rosin-Arbesfeld, et al., Abstract 1338: knockdown of CD24 prevents colorectal polyp formation in APCmin/CD24 double knockout transgenic mice, Cancer Research 72 (2012) 1338-1338. https://doi.org/10.1158/1538-7445.AM2012-1338.

[20]

J.K. Ye, M.H. Kim, J.S. Choi, et al., Free radical scavenging, antiinflammatory and melannin synthesis inhibitory activities of Gloeostereum incarnatum, J. Mushroom 12 (2014) 107-116. https://doi.org/10.14480/JM.2014.12.2.107.

[21]

Li X., X. Liu, Y. Zhang, et al, Protective effect of Gloeostereum incarnatum on ulcerative colitis via modulation of Nrf2/NF-κB signaling in C57BL/6 mice. Mol Med Rep. 22 (2020) 3418-3428. https://doi.org/10.3892/mmr.2020.11420.

[22]

X. Zhang, Y. Chen, G. Cai, et al., Carnosic acid induces apoptosis of hepatocellular carcinoma cells via ROS-mediated mitochondrial pathway, Chem. Biol. Interact. 277 (2017) 91-100. https://doi.org/10.1016/j.cbi.2017.09.005.

[23]

M. Djaldetti, H. Bessler, Modulators affecting the immune dialogue between human immune and colon cancer cells, World J. Gastrointest. Oncol. 6 (2014) 129-138. https://doi.org/10.4251/wjgo.v6.i5.129.

[24]

H.H. Hsu, C.J. Liu, C.Y. Shen, et al., p38α MAPK mediates 17β-estradiol inhibition of MMP-2 and -9 expression and cell migration in human lovo colon cancer cells, J. Cell Physiol. 227 (2012) 3648-3660. https://doi.org/10.1002/jcp.24072.

[25]

M. Meng, M. Guo, P. Wang, et al., Chemopreventive effect of the polysaccharides from Grifola frondosa in colitis-associated colorectal cancer by modulating the Wnt/β-catenin/GSK-3β signaling pathway in C57BL/6 mice, J. Funct. Foods 63 (2019) 103578. https://doi.org/https://doi.org/10.1016/j.jff.2019.103578.

[26]

H. Dou, R. Shen, J. Tao, et al., Curcumin suppresses the colon cancer proliferation by inhibiting Wnt/β-catenin pathways via miR-130a, Front Pharmacol. 8 (2017) 877. https://doi.org/10.3389/fphar.2017.00877.

[27]

X. Xie, J. Yin, Z. Zhou, et al., Young age increases the risk for lymph node metastasis in patients with early colon cancer, BMC Cancer 19 (2019) 803. https://doi.org/10.1186/s12885-019-5995-4.

[28]

M. Aakif, P. Balfe, O. Elfaedy, et al., Study on colorectal cancer presentation, treatment and follow-up, Int. J. Colorectal. Dis. 31 (2016) 1361-1363. https://doi.org/10.1007/s00384-015-2479-0.

[29]

X. Meng, H. Liang, L. Luo, Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities, Carbohydr. Res. 424 (2016) 30-41. https://doi.org/10.1016/j.carres.2016.02.008.

[30]

S.Q. Huang, J.W. Li, Z. Wang, et al., Optimization of alkaline extraction of polysaccharides from Ganoderma lucidum and their effect on immune function in mice, Molecules 15 (2010) 3694-3708. https://doi.org/10.3390/molecules15053694.

[31]

J.K. Yan, J.J. Pei, H.L. Ma, et al., Advances in antitumor polysaccharides from phellinus sensu lato: production, isolation, structure, antitumor activity, and mechanisms, Crit. Rev. Food Sci. Nutr. 57 (2017) 1256-1269. https://doi.org/10.1080/10408398.2014.984802.

[32]

B. Meng, Y. Zhang, Z. Wang, et al., Hepatoprotective effects of Morchella esculenta against alcohol-induced acute liver injury in the C57BL/6 mouse related to Nrf-2 and NF-κB signaling, Oxid. Med. Cell. Longev. 2019 (2019) 6029876. https://doi.org/10.1155/2019/6029876.

[33]

A. Mantovani, P. Allavena, A. Sica, et al., Cancer-related inflammation, Nature 454 (2008) 436-444. https://doi.org/10.1038/nature07205.

[34]

S. Meeker, A. Seamons, L. Maggio-Price, et al., Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J. Gastroenterol. 22 (2016) 933-948. https://doi.org/10.3748/wjg.v22.i3.933.

[35]

Z. Culig, M. Puhr, Interleukin-6: a multifunctional targetable cytokine in human prostate cancer, Mol. Cell Endocrinol. 360 (2012) 52-58. https://doi.org/10.1016/j.mce.2011.05.033.

[36]

M.J. Waldner, M.F. Neurath, Master regulator of intestinal disease: IL-6 in chronic inflammation and cancer development, Semin. Immunol. 26 (2014) 75-79. https://doi.org/10.1016/j.smim.2013.12.003.

[37]

R. Holmer, G.H. Wätzig, S. Tiwari, et al., Interleukin-6 trans-signaling increases the expression of carcinoembryonic antigen-related cell adhesion molecules 5 and 6 in colorectal cancer cells, BMC Cancer 15 (2015) 975. https://doi.org/10.1186/s12885-015-1950-1.

[38]

J. Olsen, L.T. Kirkeby, J. Olsen, et al., High interleukin-6 mRNA expression is a predictor of relapse in colon cancer, Anticancer Res. 35 (2015) 2235-2240.

[39]

P.C. Chen, C.C. Chen, Y.B. Ker, et al., Anti-metastatic effects of antrodan with and without cisplatin on lewis lung carcinomas in a mouse xenograft model, Int. J. Mol. Sci. 19 (2018)1565. https://doi.org/10.3390/ijms19061565.

[40]

D.B. Vendramini-Costa, J.E. Carvalho, Molecular link mechanisms between inflammation and cancer, Curr. Pharm. Des. 18 (2012) 3831-3852. https://doi.org/10.2174/138161212802083707.

[41]

D. Sun, Y. Lin, J. Hong, et al., Th22 cells control colon tumorigenesis through STAT3 and Polycomb Repression complex 2 signaling, Oncoimmunology 5 (2016) e1082704. https://doi.org/10.1080/216240 2x.2015.1082704.

[42]

A.B. Di Stefano, F. Iovino, Y. Lombardo, et al., Survivin is regulated by interleukin-4 in colon cancer stem cells, J. Cell Physiol. 225 (2010) 555-561. https://doi.org/10.1002/jcp.22238.

[43]

S. Kumar, K. Raina, C. Agarwal, et al., Abstract 4877: silibinin strongly modulates the cytokine interleukin-4/6 survival signals in colon cancer stem cells, Oncotarget. 5 (2014) 4972-89. https://doi.org/10.18632/oncotarget.2068.

[44]

Z. Chen, J. Cao, P. Yang, et al., Effect of interleukin 17 on invasion of human colon cancer cells, Zhonghua Wei Chang Wai Ke Za Zhi. 19 (2016) 695-701.

[45]

L. Yang, H. Liu, L. Zhang, et al., Effect of IL-17 in the development of colon cancer in mice, Oncol. Lett. 12 (2016) 4929-4936. https://doi.org/10.3892/ol.2016.5329.

[46]

C. Ma, W. Lin, Z. Liu, et al., NDR1 protein kinase promotes IL-17- and TNF-α-mediated inflammation by competitively binding TRAF3, EMBO Rep. 18 (2017) 586-602. https://doi.org/10.15252/embr.201642140.

[47]

T. Li, L. Zhang, X. Huo, Inhibitory effects of aesculetin on the proliferation of colon cancer cells by the Wnt/β-catenin signaling pathway, Oncol. Lett. 15 (2018) 7118-7122. https://doi.org/10.3892/ol.2018.8244.

[48]

X. Wang, X. Wang, Long non-coding RNA colon cancer-associated transcript 2 may promote esophageal cancer growth and metastasis by regulating the Wnt signaling pathway, Oncol. Lett. 18 (2019) 1745-1754. https://doi.org/10.3892/ol.2019.10488.

[49]

E. Becer, D.Y. Hanoğlu, H. Kabadayı, et al., The effect of Colchicum pusillum in human colon cancer cells via Wnt/β-catenin pathway, Gene 686 (2019) 213-219. https://doi.org/10.1016/j.gene.2018.11.047.

[50]

S.C. Regmi, S.Y. Park, S.J. Kim, et al., The anti-tumor activity of succinyl macrolactin A is mediated through the β-catenin destruction complex via the suppression of tankyrase and PI3K/Akt, PLoS One 10 (2015) e0141753. https://doi.org/10.1371/journal.pone.0141753.

[51]

S. Dupasquier, P. Blache, L. Picque Lasorsa, et al., Modulating PKCα activity to target Wnt/β-catenin signaling in colon cancer, Cancers (Basel) 11 (2019) 693. https://doi.org/10.3390/cancers11050693.

[52]

F. Neri, D. Dettori, D. Incarnato, et al., TET1 is a tumour suppressor that inhibits colon cancer growth by derepressing inhibitors of the WNT pathway, Oncogene 34 (2015) 4168-4176. https://doi.org/10.1038/onc.2014.356.

[53]

Z.Y. Feng, X.H. Xu, D.Z. Cen, et al., miR-590-3p promotes colon cancer cell proliferation via Wnt/β-catenin signaling pathway by inhibiting WIF1 and DKK1, Eur. Rev. Med. Pharmacol. Sci. 21 (2017) 4844-4852.

[54]

H.Hua, M.Li, T.Luo, et al., Matrix metalloproteinases in tumorigenesis: an evolving paradigm, Cell Mol.Life Sci.68 (2011) 3853-3868.https://doi.org/10.1007/s00018-011-0763-x.

[55]

M.Xue, Y.Ge, J.Zhang, et al., Fucoidan inhibited 4T1 mouse breast cancer cell growth in vivo and in vitro via downregulation of Wnt/β-catenin signaling, Nutr.Cancer 65 (2013) 460-468.https://doi.org/10.1080/01635581.2013.757628.

Food Science and Human Wellness
Pages 460-470
Cite this article:
He J, Yang A, Zhao X, et al. Anti-colon cancer activity of water-soluble polysaccharides extracted from Gloeostereum incarnatum via Wnt/β-catenin signaling pathway. Food Science and Human Wellness, 2021, 10(4): 460-470. https://doi.org/10.1016/j.fshw.2021.04.008

327

Views

30

Downloads

11

Crossref

9

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 14 April 2020
Revised: 23 May 2020
Accepted: 27 May 2020
Published: 04 June 2021
© 2021 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return