AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (543.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Antioxidant and hepatoprotective effects of Hypsizygus ulmarius polysaccharide on alcoholic liver injury in rats

Sudha Govindana( )Angu JayabalbJayasakthi ShanmugambPrasanna Ramanic,d
Department of Biochemistry, School of Biosciences, Periyar University, Salem, India
Department of Biochemistry, Kongunadu Arts and Science College, Bharathiar University, Coimbatore, India
Dhanvanthri Lab, Department of Sciences, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India

Peer review under responsibility of KeAi Communications Co., Ltd

Show Author Information

Abstract

Hypsizygus ulmarius polysaccharide (HUP) is a water-soluble polysaccharide obtained by hot water extraction, followed by precipitation and deproteinization. The characteristics of HUP, antioxidant activity and liver protection against alcohol-induced liver damage were studied. Structural characteristics indicate that the HUP is a pyran-type polysaccharide with a molecular weight of 2076Da. In antioxidant scavenging assay, HUP showed moderate DMPD radical scavenging activity, cupric ion reducing antioxidant capacity and inhibitory effect against lipid peroxidation in a dose-dependent manner. Regarding in vivo hepatoprotective activity, compared with the ethanol induction group, pre-treatment of low and high doses of HUP significantly reduced the behaviours of serum enzymes, lowered the levels of hepatic oxidative stress markers, restored the levels of biochemical constituents, enhanced the levels of liver and serum enzymatic antioxidants and non-enzymatic antioxidants, and improved the serum lipid levels of alcohol-intoxicated rats. The hepatoprotective effect of HUP was comparable to positive control silymarin. Besides, HUP pre-treatment significantly normalized the histopathological changes induced by ethanol. The results indicate that HUP could be used as a functional food and may protect the biological system from oxidative stress through its antioxidant activity, thus having a significant protective effect on acute alcoholic liver injury.

References

[1]

B. Sultana, S. Yaqoob, Z. Zafar, et al., Escalation of liver malfunctioning: a step toward herbal awareness, J. Ethnopharmacol. 216 (2018) 104-119. https://doi.org/10.1016/j.jep.2018.01.002

[2]

J.M. Wang, Y.Y. Zhang, R.X. Liu, et al., Geniposide protects against acute alcohol-induced liver injury in mice via upregulating the expression of the main antioxidant enzymes, Can. J. Physiol. Pharmacol. 93 (2015) 261-267. https://doi.org/10.1139/cjpp-2014-0536

[3]

X.J. Li, Y.M. Mu, T.T. Li, et al., Gynura procumbens reverses acute and chronic ethanol-induced liver steatosis through MAPK/SREBP-1c-dependent and independent pathways, J. Agric. Food Chem. 63 (2015) 8460-8471. https://doi.org/10.1021/acs.jafc.5b03504

[4]

H.J. Zhao, Y. Lan, H. Liu, et al., Antioxidant and hepatoprotective activities of polysaccharides from spent mushroom substrates (Laetiporus sulphureus) in acute alcohol-induced mice, Oxid. Med. Cell. Longev. (2017) 5863523. https://doi.org/10.1155/2017/5863523

[5]

S. Achliya, S.G. Wadodkar, A.K. Dorle, Evaluation of hepatoprotective effect of Amalkadi ghrita against carbon tetrachloride-induced hepatic damage in rats, J. Ethnopharmacol. 90 (2–3) (2004) 229-232. https://doi.org/10.1016/j.jep.2003.09.037

[6]

J.M. Wang, Y.Y. Zhang, Y.S. Zhang, et al., Protective effect of Lysimachia christinae against acute alcohol induced liver injury in mice, Biosci. Trends. 6 (2012) 89-97. https://doi.org/10.5582/bst.2012.v6.2.89

[7]

R.S. Nair, K. Akhilesh, E. James, Anti-tubercular drugs, predisposing factors and management of drug-induced hepatotoxicity: a concise and up-to-date review, Int. J. Res. Pharm. Sci. 11 (2020) 3096-3104. https://doi.org/10.26452/ijrps.v11i3.2418

[8]

Y. Wang, C. Tang, H. Zhang, Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice, J. Food Drug Anal. 23 (2015) 310-317. https://doi.org/10.1016/j.jfda.2014.10.002

[9]

X. Song, Q. Shen, M. Liu, et al., Antioxidant and hepatoprotective effects of intracellular mycelium polysaccharides from Pleurotus geesteranus against alcoholic liver diseases, Int. J. Biol. Macromol. 114 (2018) 979-988. https://doi.org/10.1016/j.ijbiomac.2018.04.001

[10]

K.L. Wang, Z.M. Lu, X. Mao, et al., Structural characterization and anti-alcoholic liver injury activity of a polysaccharide from Coriolus versicolor mycelia, Int. J. Biol. Macromol. 137 (2019) 1102-1111. https://doi.org/10.1016/j.ijbiomac.2019.06.242

[11]

Y. Xu, X. Zhang, X.H. Yan, et al., Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum, Int. J. Biol. Macromol. 135 (2019) 706-716. https://doi.org/10.1016/j.ijbiomac.2019.05.166

[12]

J. Cheng, J. Song, H. Wei, et al., Structural characterization and hypoglycemic activity of an intracellular polysaccharide from Sanghuangporus sanghuang mycelia, Int. J. Biol. Macromol. 164 (2020) 3305-3314. https://doi.org/10.1016/j.ijbiomac.2020.08.202

[13]

S. Yu, J. Yu, X. Dong, Structural characteristics and anti-tumor/-oxidant activity in vitro of an acidic polysaccharide from Gynostemma pentaphyllum, Int. J. Biol. Macromol. 161 (2020) 721-728. https://doi.org/10.1016/j.ijbiomac.2020.05.274

[14]

T. Zheng, D. Gu, X. Wang, et al., Purification, characterization and immunomodulatory activity of polysaccharides from Leccinum crocipodium (Letellier. ) Watliag, Int. J. Biol. Macromol. 148 (2020) 647-656. https://doi.org/10.1016/j.ijbiomac.2020.01.155

[15]

M.K. Lemieszek, F.M. Nunes, C. Cardoso, et al., Neuroprotective properties of Cantharellus cibarius polysaccharide fractions in different in vitro models of neurodegeneration, Carbohydr. Polym. 197 (2018) 598-607. https://doi.org/10.1016/j.carbpol.2018.06.038

[16]

G. Sudha, J. Elizabeth Elcy Rani, C. Jabapramila, et al., Antioxidant and anti-aging activities of polysaccharides from Calocybe indica var. APK2, Exp. Toxicol. Pathol. 68 (6) (2016) 329-334. https://doi.org/10.1016/j.etp.2016.04.001

[17]

L. Wang, J.Y. Oh, T.U. Jayawardena, et al., Anti-inflammatory and anti-melanogenesis activities of sulphated polysaccharides isolated from Hizikia fusiforme: short communication, Int. J. Biol. Macromol. 142 (2020) 545-550. https://doi.org/10.1016/j.ijbiomac.2019.09.128

[18]

Q. Zheng, B.L. He, J.Y. Wang, et al., Structural analysis and antioxidant activity of extracellular polysaccharides extracted from culinary-medicinal white jelly mushroom Tremella fuciformis (Tremellomycetes) conidium cells, Int. J. Med. Mushrooms. 22 (5) (2020) 489-500. https://doi.org/10.1615/IntJMedMushrooms.2020034764

[19]

H. Zhao, H. Li, Q. Lai, et al., Antioxidant and hepatoprotective activities of modified polysaccharides from Coprinus comatus in mice with alcohol-induced liver injury, Int. J. Biol. Macromol. 127 (2019) 476-485. https://doi.org/10.1016/j.ijbiomac.2019.01.067

[20]

X.L. Song, Z.H. Liu, J.J. Zhang, et al., Antioxidative and hepatoprotective effects of enzymatic and acidic-hydrolysis of Pleurotus geesteranus mycelium polysaccharides on alcoholic liver diseases, Carbohydr. Polym. 201 (2018) 75-86. https://doi.org/10.1016/j.carbpol.2018.08.058

[21]

X. Liu, R. Hou, J. Yan, et al., Purification and characterization of Inonotus hispidus exopolysaccharide and its protective effect on acute alcoholic liver injury in mice, Int. J. Biol. Macromol. 129 (2019) 41-49. https://doi.org/10.1016/j.ijbiomac.2019.02.011

[22]

P. Greeshma, K.S. Ravikumar, M.N. Neethu, et al., Antioxidant, anti-inflammatory, and antitumor activities of cultured mycelia and fruiting bodies of the elm oyster mushroom, Hypsizygus ulmarius (Agaricomycetes), Int, J. Med. Mushrooms 18 (3) (2016) 235-244. https://doi.org/10.1134/S1607672918030146

[23]

M.G. Sevag, D.B. Lackman, J. Smolens, The isolation of the components of streptococcal nucleoproteins in serologically active form, J. Biol. Chem. 124 (1938) 425-436

[24]

M. Dubois, K.A. Gilles, J.K. Hamilton, et al., Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (3) (1956) 350-356. https://doi.org/10.1021/ac60111a017

[25]

M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

[26]

N.K. Karamanos, A. Hjerpe, T. Tsegenidis, et al., Determination of iduronic acid and glucuronic acid in glycosaminoglycans after stoichiometric reduction and depolymerization using high-performance liquid chromatography and ultraviolet detection, Anal. Biochem. 172 (1988) 410-419. https://doi.org/10.1016/0003-2697(88)90463-0

[27]

H. Saito, T. Yamagata, S. Suzuki, Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates, J. Biol. Chem. 243 (1968) 1536-1542. https://doi.org/10.1016/S0021-9258(18)93575-1

[28]

V. Fogliano, V. Verde, G. Randazzo, et al., Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines, J. Agric. Food Chem. 47 (1999) 1035-1040. https://doi.org/10.1021/jf980496s

[29]

S. Karman, E. Tutem, B.K.S. Khan, et al., Comparison of total antioxidant capacity and phenolic composition of some apple juices with combined HPLC-CUPRAC assay, Food Chem. 120 (2010) 1201-1209. https://doi.org/10.1002/jsfa.5810

[30]

G.C. Yen, C.L. Hsieh, Antioxidant activity of extracts from Du-zhong (Eucommia ulmoides) toward various lipid peroxidation in vitro, J. Agric. Food Chem. 46 (1998) 3952-3957. https://doi.org/10.1021/jf9800458

[31]
OECD, Acute oral toxicity method, OECD guideline for testing of chemicals, Test No. 423, Organization for Economic Cooperation and Development, Paris, France, (1987).
[32]

X. Feng, K. Li, F. Tan, et al., Assessment of hepatoprotective potential of Radix Fici Hirtae on alcohol induced liver injury in Kunming mice, Biochem. Biophys. Rep. 16 (2018) 69-73. https://doi.org/10.1016/j.bbrep.2018.10.003

[33]

Y. Liu, D.D. Zheng, L. Su, et al., Protective effect of polysaccharide from Agaricus bisporus in Tibet area of China against tetrachloride-induced acute liver injury in mice, Int. J. Biol. Macromol. 118 (2018) 1488-1493. https://doi.org/10.1016/j.ijbiomac.2018.06.179

[34]

S. Reitman, S.A. Frankel, A colorimetric method for the determination of serum glutamic oxaloacetic and pyruvic transaminases, Am. J. Clin. Pathol. 28 (1957) 56-63. https://doi.org/10.1093/ajcp/28.1.56

[35]

E.J. King, A.R. Armstrong, A convenient method for determining serum and bile phosphatase activity, Can. Med. Assoc. J. 31 (1934) 376-381

[36]
J. King, The dehydrogenases or oxidoreductases. Lactate dehydrogenase, Van Nostrand Dutch Company Ltd., London (1965) 83-93
[37]

I.F.F. Benzie, J.J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay, Anal. Biochem. 239 (1996) 70-76. https://doi.org/10.1006/abio.1996.0292

[38]

K.K. Das, S.M. Das, S. Dasgupta, The influence of ascorbic acid on nickel induced hepatic lipid peroxidation in rats, J. Basic Clin. Physiol. Pharmacol. 12 (2001) 187-195. https://doi.org/10.1515/jbcpp.2001.12.3.187

[39]

A.K. Sinha, Colorimetric assay of catalase, Anal. Biochem. 47 (1972) 389-394. https://doi.org/10.1016/0003-2697(72)90132-7

[40]

G.C. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys. 82 (1959) 70-77. https://doi.org/10.1016/0003-9861(59)90090-6

[41]
E. Beutler, Glutathione in red blood cell metabolism. A manual of biochemical methods, Grune and Stratton, New York (1984) 112-114
[42]

W.H. Habig, M.J. Pabst, W.B. Jakoby, Glutathione-S-transferase: the first enzymatic step in mercapturic acid formation, J. Biol. Chem. 249 (1973) 7130-7139. https://doi.org/10.1016/S0021-9258(19)42083-8

[43]

O.H. Lowry, N.J. Rosebrough, A.L. Farr, et al., Protein measurement with Folin-phenol reagent, J. Biol. Chem. 193 (1951) 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6

[44]

M.S. Moron, J.W. Defierre, B. Mannervik, Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver, Biochim Biophys. Acta 582 (1979) 67-68. https://doi.org/10.1016/0304-4165(79)90289-7

[45]

S.T. Omaye, T.D. Turnball, H.E. Sauberlich, Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids, Methods Enzymol. 62 (1979) 1-11. https://doi.org/10.1016/0076-6879(79)62181-x

[46]

R.L. Levine, D. Garland, C.N. Oliver, Determination of carbonyl content in oxidatively modified proteins, Methods Enzymol. 186 (1990) 464-468. https://doi.org/10.1016/0076-6879(90)86141-h

[47]

W.G. Niehaus, D. Samuelsson, Formation of malondialdehyde from phospholipids arachidonate during microsomal lipid peroxidation, Eur. J. Biochem. 6 (1968) 126-130. https://doi.org/10.1111/j.1432-1033.1968.tb00428.x

[48]

Z.Y. Jiang, J.V. Hunt, S.P. Wolff, Ferrous iron oxidation in the presence of xylenol orange for detection of lipid hydroperoxides in low-density lipoprotein, Anal. Biochem. 202 (1992) 384-389. https://doi.org/10.1016/0003-2697(92)90122-n

[49]

J.M. Yan, L. Zhu, Y. Qu, et al., Analyses of active antioxidant polysaccharides from four edible mushrooms, Int. J. Biol. Macromol. 123 (2019) 945-956. https://doi.org/10.1016/j.ijbiomac.2018.11.079

[50]

G. Beltrame, J. Trygg, J. Rahkila, et al., Structural investigation of cell wall polysaccharides extracted from wild Finnish mushroom Craterellus tubaeformis (Funnel Chanterelle), Food Chem. 301 (2019) 125255. https://doi.org/10.1016/j.foodchem.2019.125255

[51]

M. Kozarski, A. Klaus, M. Niksic, et al., Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus, Food Chem. 129 (4) (2011) 1667-1675. https://doi.org/10.1016/j.foodchem.2011.06.029

[52]

H. Liu, Y. Fan, W. Wang, et al., Polysaccharides from Lycium barbarum leaves: isolation, characterization and splenocyte proliferation activity, Int. J. Biol. Macromol. 51 (2012) 417-422. https://doi.org/10.1016/j.ijbiomac.2012.05.025

[53]

Y.J. Fan, X.J. He, S.D. Zhou, et al., Composition analysis and antioxidant activity of polysaccharide from Dendrobium denneanum, Int. J. Mol. Sci. 45 (2009) 169-173. https://doi.org/10.1016/j.ijbiomac.2009.04.019

[54]

D. Gan, L.P. Ma, C.X. Jiang, et al., Production, preliminary characterization and antitumor activity in vitro of polysaccharides from the mycelium of Pholiota dinghuensis Bi, Carbohyd. Polym. 84 (2011) 997-1003. https://doi.org/10.1016/j.carbpol.2010.12.058

[55]

J. Fan, Z. Wu, T. Zhao, et al., Characterization, antioxidant and hepatoprotective activities of polysaccharides from Ilex latifolia Thunb, Carbohydr. Polym. 101 (2014) 990-997. https://doi.org/10.1016/j.carbpol.2013.10.037

[56]

M. Meng, D. Cheng, L. Han, et al., Isolation, purification, structural analysis and immunostimulatory activity of water-soluble polysaccharides from Grifola Frondosa fruiting body, Carbohyd. Polym. 157 (2017) 1134-1143. https://doi.org/10.1016/j.carbpol.2016.10.082

[57]

J.E. Hilaly, Z.H. Israili, B. Lyouss, Acute and chronic toxicological studies of Ajugaiva in experimental animals, J. Ethnopharmacol. 91 (2004) 43-50. https://doi.org/10.1016/j.jep.2003.11.009

[58]

Z.M. Lu, W.Y. Tao, H.Y. Xu, et al., Further studies on the hepatoprotective effect of Antrodia camphoratain submerged culture on ethanol-induced acute liver injury in rats, Nat. Prod. Res. 25 (2011) 684-695. https://doi.org/10.1080/14786410802525487

[59]

G.A. Clawson, Mechanisms of carbon tetrachloride hepatotoxicity, Pathol. Immunopathol. Res. 8 (1989) 104-112. https://doi.org/10.1159/000157141

[60]

R.B. Friedman, R.E. Anderson, S.M. Entine, et al., Effects of diseases on clinical laboratory tests, Clin. Chem. 26 (1980) 471-476

[61]

X.S. Deng, R.A. Deitrich, Formation of ethyl nitrite in vivo after ethanol administration, Alcohol. 34 (2007) 217-223. https://doi.org/10.1016/j.alcohol.2004.09.005

[62]

R.J. Reiter, D. Tan, C. Osuna, et al., Actions of melatonin in the reduction of oxidative stress, J. Biomed. Sci. 7 (2000) 444-458. https://doi.org/10.1007/BF02253360

[63]

S.R. Naik, V.S. Panda, Antioxidant and hepatoprotective effects of Ginkgo biloba phytosomes in carbon tetrachloride induced liver injury in rodents, Liver Int. 27 (2007) 393-399. https://doi.org/10.1111/j.1478-3231.2007.01463.x

[64]

T.D. Boyer, D.A. Vessey, C. Holcomb, Studies of the relationship between the catalytic activity and binding of nonsubstrate ligands by the glutathione-S-transferases, J. Biochem. 217 (1984) 179-185. https://doi.org/10.1042/bj2170179

[65]

M.B. Kadiska, B.C. Gladen, D.D. Baird, Biomarkers of oxidative stress study: are plasma antioxidants markers of CCl4 poisoning?, J. Free Radic. Biol. Med. 28 (2000) 838-845. https://doi.org/10.1016/s0891-5849(00)00198-2

[66]

K.K. Das, S.M. Das, S. Dasgupta, The influence of ascorbic acid on nickel induced hepatic lipid peroxidation in rats, J. Basic Clin. Physiol. Pharmacol. 12 (2001) 187-195

[67]

Y. Liu, L. Cao, J. Du, et al., Protective effects of Lycium barbarum polysaccharides against carbon tetrachloride-induced hepatotoxicity in precision-cut liver slices in vitro and in vivo in common carp (Cyprinus carpio L.), Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 169 (2015) 65-72. https://doi.org/10.1016/j.cbpc.2014.12.005

[68]

J.N. Hu, X.Y. Xu, W. Li, et al., Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis, J. Ginseng Res. 43 (1) (2019) 10-19. https://doi.org/10.1016/j.jgr.2017.07.003

[69]

B.S. Berlett, E.R. Stadman, Protein oxidation in aging, disease and oxidative stress, J. Biol. Chem. 272 (2001) 20313-20316. https://doi.org/10.1074/jbc.272.33.20313

[70]

S.M. Sabesin, L.B. Kuiken, J.B. Ragland, Lipoprotein and lecithin: cholesterol acyltransferase changes in galactosamine-induced rat liver injury, Science 190 (1975) 1302-1304. https://doi.org/10.1126/science.812181

[71]

Y. Wang, G. Millonig, J. Nair, et al., Ethanol-induced cytochrome P4502E1729 causes carcinogenic etheno-DNA lesions in alcoholic liver disease, Hepatol. 50 (2009) 453-461. https://doi.org/10.1002/hep.22978

[72]

H. Julistiono, J. Briand, Microsomal ethanol-oxidizing system in Euglena gracilis. Similarities between Euglena and mammalian cell systems, Comp. Biochem. Physiol. B 102 (1992) 747-755. https://doi.org/10.1016/0305-0491(92)90074-2

[73]

J.F. Huang, Y.X. Ou, T.W.D. Yew, et al., Hepatoprotective effects of polysaccharide isolated from Agaricus bisporus industrial wastewater against CCl4-induced hepatic injury in mice, Int. J. Biol. Macromol. 82 (2016) 678-686. https://doi.org/10.1016/j.ijbiomac.2015.10.014

[74]

S. Gunasekaran, S. Govindan, P. Ramani, Sulfated modification, characterization and bioactivities of an acidic polysaccharide fraction from an edible mushroom Pleurotus eous (Berk.) Sacc., Heliyon. 7 (1) (2021) 10.1016/j.heliyon.2021.e05964. https://doi.org/10.1016/j.heliyon.2021.e05964

[75]

J. Sun, B. Zhou, C. Tang, et al., Characterization, antioxidant activity and hepatoprotective effect of purple sweet potato polysaccharides, Int. J. Biol. Macromol. 115 (2018) 69-76. https://doi.org/10.1016/j.ijbiomac.2018.04.033

Food Science and Human Wellness
Pages 523-535
Cite this article:
Govindan S, Jayabal A, Shanmugam J, et al. Antioxidant and hepatoprotective effects of Hypsizygus ulmarius polysaccharide on alcoholic liver injury in rats. Food Science and Human Wellness, 2021, 10(4): 523-535. https://doi.org/10.1016/j.fshw.2021.04.015

605

Views

48

Downloads

42

Crossref

42

Web of Science

45

Scopus

2

CSCD

Altmetrics

Received: 15 October 2020
Revised: 15 January 2021
Accepted: 17 January 2021
Published: 04 June 2021
© 2021 Beijing Academy of Food Sciences. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return