AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (412.9 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Tea polyphenol – gut microbiota interactions: hints on improving the metabolic syndrome in a multi-element and multi-target manner

Hui MaaYaozhong HuaBowei ZhangaZeping ShaobEugeni Rourab( )Shuo Wanga( )
Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

The metabolic syndrome (MS) has become one of the main problems in public health. Tea polyphenols (TPs), the main bioactive components of tea, has been claimed to have the potential to regulate metabolism and effectively prevent or mitigate the MS. However, many studies into the effects of TPs on MS have provided conflicting findings and the underlying mechanism has been elusive. The predominant TPs in unfermentedand and fermented tea are catechins and oxidized polyphenols (theaflavins and thearubigins), both of which have low bioavailability and reach the colon where most gut microbes inhabit. Gut microbiota has been demonstrated to be tightly associated with host metabolism. The interactions between TPs and gut microbiota will lead to the alterations of gut microbiota composition and the production of metabolites including short chain fatty acids, bile acids, amino acids and TPs derived metabolites, accordingly exerting their biological effects both locally and systemically. This review highlighted the contribution of metabolites and specific gut bacteria in the process of TPs intervention on the MS and further discuss how TPs impact the MS via gut microbiota from the viewpoint of gut organ/tissue axis.

References

[1]

J.L. Sonnenburg, F. Bäckhed, Diet-microbiota interactions as moderators of human metabolism, Nature 535(7610) (2016) 56-64. https://doi.org/10.1038/nature18846.

[2]

T. Guo, D. Song, L. Cheng, et al., Interactions of tea catechins with intestinal microbiota and their implication for human health, Food Sci. Biotechnol. 28(6) (2019) 1617-1625. https://doi.org/10.1007/s10068-019-00656-y.

[3]

T. Chen, C.S. Yang, Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: implications on health effects, Crit. Rev. Food Sci. Nutr. 60(16) (2019) 1-19. https://doi.org/10.1080/10408398.2019.1654430.

[4]

J. Fang, A. Sureda, A.S. Silva, et al., Trends of tea in cardiovascular health and disease: a critical review, Trends Food Sci. Tech. 88 (2019) 385-396. https://doi.org/10.1016/j.tifs.2019.04.001.

[5]

C.S. Yang, H. Wang, Z.P. Sheridan, Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea, J. Food Drug Anal. 26(1) (2018) 1-13. https://doi.org/10.1016/j.jfda.2017.10.010.

[6]

Z. Liu, M.E. Bruins, L. Ni, et al., Green and black tea phenolics-bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota, J. Agr. Food Chem. 66(32) (2018) 8469-8477. https://doi.org/10.1021/acs.jafc.8b02233.

[7]

A. Stalmach, W. Mullen, H. Steiling, et al., Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy, Mol. Nutr. Food Res. 54(3) (2010) 323-334. https://doi.org/10.1002/mnfr.200900194.

[8]

L. Chen, M.J. Lee, H. Li, et al., Absorption, distribution, elimination of tea polyphenols in rats, Drug Metab. Dispos. 25(9) (1997) 1045-1050.

[9]

N. Zmora, J. Suez, E. Elinav, You are what you eat: diet, health and the gut microbiota, Nature Rev. Gastroenterol. Hepat. 16 (2019) 35-56. https://doi.org/10.1038/s41575-018-0061-2.

[10]

A.M. Valdes, J. Walter, E. Segal, et al., Role of the gut microbiota in nutrition and health, BMJ 361 (2018) k2179. https://doi.org/10.1136/bmj.k2179.

[11]

J. Kałużna-Czaplińska, P. Gątarek, S. Chartrand, et al., Is there a relationship between intestinal microbiota, dietary compounds, and obesity? Trends Food Sci. Tech. 70 (2017) 105-113. https://doi.org/10.1016/j.tifs.2017.10.010.

[12]

T.F.S. Teixeira, M.C. Collado, C.L.L.F. Ferreira, et al., Potential mechanisms for the emerging link between obesity and increased intestinal permeability, Nutr. Res. 32(9) (2012) 637-647. https://doi.org/10.1016/j.nutres.2012.07.003.

[13]

C. Clemmensen, T.D. Müller, S.C. Woods, et al., Gut-brain cross-talk in metabolic control, Cell 168(5) (2017) 758-774. https://doi.org/10.1016/j.cell.2017.01.025.

[14]

C.L. Gentile, T.L. Weir, The gut microbiota at the intersection of diet and human health, Science 362(6416) (2018) 776-780. https://doi.org/10.1126/science.aau5812.

[15]

F. Brial, A. Le Lay, M. Dumas, et al., Implication of gut microbiota metabolites in cardiovascular and metabolic diseases, Cell Mol. Life Sci. 75(21) (2018) 3977-3990. https://doi.org/10.1007/s00018-018-2901-1.

[16]

Y. Zhao, X. Zhang, Interactions of tea polyphenols with intestinal microbiota and their implication for anti-obesity, J. Sci. Food Agr. 100(3) (2020) 897-903. https://doi.org/10.1002/jsfa.10049.

[17]

G.C. Tenore, P. Campiglia, D. Giannetti, et al., Simulated gastrointestinal digestion, intestinal permeation and plasma protein interaction of white, green, and black tea polyphenols, Food Chem. 169 (2015) 320-326. https://doi.org/10.1016/j.foodchem.2014.08.006.

[18]

H. Sun, Y. Chen, M. Cheng, et al., The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro, J. Food Sci. Tech. 55(1) (2018) 399-407. https://doi.org/10.1007/s13197-017-2951-7.

[19]

J. Wang, L. Tang, H. Zhou, et al., Long-term treatment with green tea polyphenols modifies the gut microbiome of female sprague-dawley rats, J. Nutr. Biochem. 56 (2018) 55-64. https://doi.org/10.1016/j.jnutbio.2018.01.005.

[20]

Y. Zheng, X. Zeng, T. Chen, et al., Chemical profile, antioxidative, and gut microbiota modulatory properties of ganpu tea: a derivative of Pu-erh tea, Nutrients 12(1) (2020) 224. https://doi.org/10.3390/nu12010224.

[21]

Z. Liu, W. De Bruijn, M.E. Bruins, et al., Reciprocal interactions between epigallocatechin-3-gallate (EGCG) and human gut microbiota in vitro, J. Agric. Food Chem. 68(36) (2020) 9804-9815. https://doi.org/10.1021/acs.jafc.0c03587.

[22]

J.S. Jin, M. Touyama, T. Hisada, et al., Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species, Microbiol Immunol. 56(11) (2012) 729-739. https://doi.org/10.1111/j.1348-0421.2012.00502.x.

[23]

X. Yuan, Y. Long, Z. Ji, et al., Green tea liquid consumption alters the human intestinal and oral microbiome, Mol. Nutr. Food Res. 62(12) (2018) 1800178. https://doi.org/10.1002/mnfr.201800178.

[24]

P.L.H.R. Janssens, J. Penders, R. Hursel, et al., Long-term green tea supplementation does not change the human gut microbiota, PLoS One 11(4) (2016) e153134. https://doi.org/10.1371/journal.pone.0153134.

[25]

Y. Zhou, N. Zhang, A.Y. Arikawa, et al., Inhibitory effects of green tea polyphenols on microbial metabolism of aromatic amino acids in humans revealed by metabolomic analysis, Metabolites 9(5) (2019) 96. https://doi.org/10.3390/metabo9050096.

[26]

H. Chen, S. Sang, Biotransformation of tea polyphenols by gut microbiota, J Funct. Foods 7 (2014) 26-42. https://doi.org/10.1016/j.jff.2014.01.013.

[27]

D. Del Rio, L. Calani, C. Cordero, et al., Bioavailability and catabolism of green tea flavan-3-ols in humans, Nutrition 26(11-12) (2010) 1110-1116. https://doi.org/10.1016/j.nut.2009.09.021.

[28]

L. Calani, D. Del Rio, M. Luisa Callegari, et al., Updated bioavailability and 48 h excretion profile of flavan-3-ols from green tea in humans, Int. J. Food Sci. Nutr. 63(5) (2011) 513-521. https://doi.org/10.3109/09637486.2011.640311.

[29]

P. Mena, L. Bresciani, N. Brindani, et al., Phenyl-gamma-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity, Nat. Prod. Rep. 36 (2019) 714-752. https://doi.org/10.1039/c8np00062j.

[30]

B. Chen, J. Zhou, Q. Meng, et al., Comparative analysis of fecal phenolic content between normal and obese rats after oral administration of tea polyphenols, Food Funct. 9 (9) (2018) 4858-4864, https://doi.org/10.1039/c8fo00609a.

[31]

N. Shibata, J. Kunisawa, H. Kiyono, Dietary and microbial metabolites in the regulation of host immunity, Front Microbiol. 8 (2017). https://doi.org/10.3389/fmicb.2017.02171.

[32]

S. Fujisaka, J. Avila-Pacheco, M. Soto, et al., Diet, genetics, and the gut microbiome drive dynamic changes in plasma metabolites, Cell Rep. 22(11) (2018) 3072-3086. https://doi.org/10.1016/j.celrep.2018.02.060.

[33]

X. Li, K. Watanabe, I. Kimura, Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases, Front Immunol. 8 (2017). https://doi.org/10.3389/fimmu.2017.01882.

[34]

Z. Liu, Z. Chen, H. Guo, et al., The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice, Food Funct. 7 (12) (2016) 4869. https://doi.org/10.1039/c6fo01439a.

[35]

S.M. Henning, J. Yang, M. Hsu, et al., Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice, Eur. J. Nutr. 57(8) (2018) 2759-2769. https://doi.org/10.1007/s00394-017-1542-8.

[36]

X. Zhang, Q. Wu, Y. Zhao, et al., Consumption of post-fermented Jing-Wei Fuzhuan brick tea alleviates liver dysfunction and intestinal microbiota dysbiosis in high fructose diet-fed mice, Rsc. Adv. 9(30) (2019) 17501-17513. https://doi.org/10.1039/C9RA02473E.

[37]

L. Wang, B. Zeng, X. Zhang, et al., The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice, Food Funct. 7(12) (2016) 4956. https://doi.org/10.1039/c6fo01150k.

[38]

H. Ma, B. Zhang, Y. Hu, et al., Correlation analysis of intestinal redox state with the gut microbiota reveals the positive intervention of tea polyphenols on hyperlipidemia in high fat diet fed mice, J. Agr. Food Chem. 67(26) (2019) 7325-7335. https://doi.org/10.1021/acs.jafc.9b02211.

[39]

X. Lu, J. Liu, N. Zhang, et al., Ripened Pu-erh tea extract protects mice from obesity by modulating gut microbiota composition, J. Agric. Food Chem. 67(25) (2019) 6978-6994. https://doi.org/10.1021/acs.jafc.8b04909.

[40]

D. Liu, J. Huang, Y. Luo, et al., Fuzhuan brick tea attenuates high-fat diet-induced obesity and associated metabolic disorders by shaping gut microbiota, J. Agric. Food Chem. 67(49) (2019) 13589-13604. https://doi.org/10.1021/acs.jafc.9b05833.

[41]

J. Zhu, R. Cai, Y. Tan, et al., Preventive consumption of green tea modifies the gut microbiota and provides persistent protection from high-fat diet-induced obesity, J. Funct. Foods. 64 (2020) 103621. https://doi.org/10.1016/j.jff.2019.103621.

[42]

J. Liu, W. Hao, Z. He, et al., Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet, Food Funct. 10(5) (2019) 2847-2860. https://doi.org/10.1039/C8FO02051E.

[43]

X. Gao, Q. Xie, P. Kong, et al., Polyphenol- and caffeine-rich postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice, Infect Immun. 86(1) (2017). https://doi.org/10.1128/IAI.00601-17.

[44]

J. Reunanen, V. Kainulainen, L. Huuskonen, et al., Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer, Appl. Environ. Microbiol. 81(11) (2015) 3655-3662. https://doi.org/10.1128/AEM.04050-14.

[45]

A. Everard, C. Belzer, L. Geurts, et al., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proc. Natl. Acad. Sci. U. S. A. 110(22) (2013) 9066-9071. https://doi.org/10.1073/pnas.1219451110.

[46]

L. Zhang, Q. Qin, M. Liu, et al., Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats, Pathog. Dis. 76(4) (2018). https://doi.org/10.1093/femspd/fty028.

[47]

E. Munukka, A. Rintala, R. Toivonen, et al., Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice, Isme J. 11(7) (2017) 1667-1679. https://doi.org/10.1038/ismej.2017.24.

[48]

T. Chen, A.B. Liu, S. Sun, et al., Green tea polyphenols modify the gut microbiome in db/db mice as co-abundance groups correlating with the blood glucose lowering effect, Mol. Nutr. Food Res. (2019) 1801064. https://doi.org/10.1002/mnfr.201801064.

[49]

J. Zhou, L. Tang, C.L. Shen, et al., Green tea polyphenols modify gut-microbiota dependent metabolisms of energy, bile constituents and micronutrients in female Sprague-Dawley rats, J. Nutr. Biochem. 61 (2018) 68-81. https://doi.org/10.1016/j.jnutbio.2018.07.018.

[50]

Y. Xia, D. Tan, R. Akbary, et al., Aqueous raw and ripe Pu-erh tea extracts alleviate obesity and alter cecal microbiota composition and function in diet-induced obese rats, Appl. Microbiol. Biot. 103(4) (2019) 1823-1835. https://doi.org/10.1007/s00253-018-09581-2.

[51]

J. Zhou, L. Tang, C.L. Shen, et al., Green tea polyphenols boost gut-microbiota-dependent mitochondrial TCA and urea cycles in Sprague-Dawley rats, J. Nutr. Biochem. 81 (2020) 108395. https://doi.org/10.1016/j.jnutbio.2020.108395.

[52]

J. Xu, H.B. Chen, S.L. Li, Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota, Med. Res. Rev. 37(5) (2017) 1140-1185. https://doi.org/10.1002/med.21431.

[53]

D. Rothenberg, C. Zhou, L. Zhang, A review on the weight-loss effects of oxidized tea polyphenols, Molecules 23(5) (2018) 1176. https://doi.org/10.3390/molecules23051176.

[54]

Q. Li, H. Chen, M. Zhang, et al., Altered short chain fatty acid profiles induced by dietary fiber intervention regulate AMPK levels and intestinal homeostasis, Food Funct. 10(11) (2019) 7174-7187. https://doi.org/10.1039/c9fo01465a.

[55]

L. Striegel, B. Kang, S.J. Pilkenton, et al., Effect of black tea and black tea pomace polyphenols on α-glucosidase and α-amylase inhibition, relevant to type 2 diabetes prevention, Front. Nutr. 2 (2015). https://doi.org/10.3389/fnut.2015.00003.

[56]

X. Yang, F. Kong, Evaluation of the in vitro α-glucosidase inhibitory activity of green tea polyphenols and different tea types, J. Sci. Food Agr. 96(3) (2016) 777-782. https://doi.org/10.1002/jsfa.7147.

[57]

Q. Ding, B. Zhang, W. Zheng, et al., Liupao tea extract alleviates diabetes mellitus and modulates gut microbiota in rats induced by streptozotocin and high-fat, high-sugar diet, Biomed. Pharmacother. 118 (2019) 109262. https://doi.org/10.1016/j.biopha.2019.109262.

[58]

Y. Gao, Y. Xu, J. Yin, Black tea benefits short-chain fatty acid producers but inhibits genus Lactobacillus in the gut of healthy Sprague-Dawley rats, J. Sci. Food Agric. 100 (2020) 5466-5475. https://doi.org/10.1002/jsfa.10598.

[59]

T. Unno, N. Osakabe, Green tea extract and black tea extract differentially influence cecal levels of short-chain fatty acids in rats, Food Sci. Nutr. 6(4) (2018) 728-735. https://doi.org/10.1002/fsn3.607.

[60]

W. Jia, G. Xie, W. Jia, Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis, Nat. Rev. Gastroenterol. Hepatol. 1 (2) (2018) 111-128. https://doi.org/10.1038/nrgastro.2017.119.

[61]

A. Molinaro, A. Wahlstrom, H.U. Marschall, Role of bile acids in metabolic control, Trends Endocrinol. Metab. 29(1) (2018) 31-41. https://doi.org/10.1016/j.tem.2017.11.002.

[62]

S. Fang, J.M. Suh, S.M. Reilly, et al., Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance, Nat. Med. 21(2) (2015) 159-165. https://doi.org/10.1038/nm.3760.

[63]

J. Huang, S. Feng, A. Liu, et al., Green tea polyphenol EGCG alleviates metabolic abnormality and fatty liver by decreasing bile acid and lipid absorption in mice, Mol. Nutr. Food Res. 62(4) (2018) 1700696. https://doi.org/10.1002/mnfr.201700696.

[64]

L. Sheng, P.K. Jena, H. Liu, et al., Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila, FASEB J. 32(12) (2018) 201800370R. https://doi.org/10.1096/fj.201800370R.

[65]

C. Ushiroda, Y. Naito, T. Takagi, et al., Green tea polyphenol (epigallocatechin 3 gallate) improves gut dysbiosis and serum bile acids dysregulation in high fat diet fed mice, J. Clin. Biochem. Nutr. 65(1) (2019) 34-46. https://doi.org/10.3164/jcbn.18.

[66]

F. Huang, X. Zheng, X. Ma, et al., Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism, Nat. Commun. 10(1) (2019) 1-17. https://doi.org/10.1038/s41467-019-12896-x.

[67]

F.T. Amorim, J.S. Blanchard, Bacterial branched-chain amino acid biosynthesis: structures, mechanisms, and drugability, Biochemistry 56(44) (2017) 5849-5865. https://doi.org/10.1021/acs.biochem.7b00849.

[68]

S.M. Solon-Biet, V.C. Cogger, T. Pulpitel, et al., Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control, Nat. Metab. 1(5) (2019) 532-545. https://doi.org/10.1038/s42255-019-0059-2.

[69]

M. Ruiz-Canela, M. Guasch-Ferre, E. Toledo, et al., Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial, Diabetologia 61(7) (2018) 1560-1571. https://doi.org/10.1007/s00125-018-4611-5.

[70]

E.P. Neis, C.H. Dejong, S.S. Rensen, The role of microbial amino acid metabolism in host metabolism, Nutrients 7(4) (2015) 2930-2946. https://doi.org/10.3390/nu7042930.

[71]

M. Siddik, A.C. Shin, Recent progress on branched-chain amino acids in obesity, diabetes, and beyond, Endocrinol. Metab. (Seoul) 34(3) (2019) 234-246. https://doi.org/10.3803/EnM.2019.34.3.234.

[72]

Y. Liu, Y. Hou, G. Wang, et al., Gut microbial metabolites of aromatic amino acids as signals in host-microbe interplay, Trends Endocrinol. Metab. 31(11) (2020) 818-834. https://doi.org/10.1016/j.tem.2020.02.012.

[73]

Y. Li, X. Gao, Y. Lou, Interactions of tea polyphenols with intestinal microbiota and their implication for cellular signal conditioning mechanism, J. Food Biochem. 43(8) (2019) e12953. https://doi.org/10.1111/jfbc.12953.

[74]

M. Monagas, M. Urpi-Sarda, F. Sánchez-Patán, et al., Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites, Food Funct. 1(3) (2010) 233-253. https://doi.org/10.1039/c0fo00132e.

[75]

L. Sidossis, S. Kajimura, Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis, J. Clin. Invest. 125(2) (2015) 478-486. https://doi.org/10.1172/JCI78362.

[76]

L. Mele, S. Carobbio, N. Brindani, et al., Phenyl-γ-valerolactones, flavan-3-ol colonic metabolites, protect brown adipocytes from oxidative stress without affecting their differentiation or function, Mol. Nutr. Food Res. 61(9) (2017) 1700074. https://doi.org/10.1002/mnfr.201700074.

[77]

S. Zhang, Y. Zhao, C. Ohland, et al., Microbiota facilitates the formation of the aminated metabolite of green tea polyphenol (-)-epigallocatechin-3-gallate which trap deleterious reactive endogenous metabolites, Free Radic. Biol. Med. 131 (2019) 332-344. https://doi.org/10.1016/j.freeradbiomed.2018.12.023.

[78]

H. Tilg, N. Zmora, T.E. Adolph, et al., The intestinal microbiota fuelling metabolic inflammation, Nat. Rev. Immunol. 20 (2020) 40-54. https://doi.org/10.1038/s41577-019-0198-4.

[79]

Y. Cui, Q. Wang, R. Chang, et al., Intestinal barrier function-non-alcoholic fatty liver disease interactions and possible role of gut microbiota, J. Agric. Food Chem. 67(10) (2019) 2754-2762. https://doi.org/10.1021/acs.jafc.9b00080.

[80]

Y. Li, S.U. Rahman, Y. Huang, et al., Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity, J. Nutr. Biochem. 78 (2020) 108324. https://doi.org/10.1016/j.jnutbio.2019.108324.

[81]

J.K. Hodges, J. Zhu, Z. Yu, et al., Intestinal-level anti-inflammatory bioactivities of catechin-rich green tea: rationale, design, and methods of a double-blind, randomized, placebo-controlled crossover trial in metabolic syndrome andhealthy adults, Contem. Clin. Trials Commun. 17 (2020) 100495. https://doi.org/10.1016/j.conctc.2019.100495.

[82]

E.M. Teichman, K.J. O'Riordan, C. Gahan, et al., When rhythms meet the blues: circadian interactions with the microbiota-gut-brain axis, Cell Metab. 31(3) (2020) 448-471. https://doi.org/10.1016/j.cmet.2020.02.008.

[83]

C. Torres-Fuentes, H. Schellekens, T.G. Dinan, et al., The microbiota-gut-brain axis in obesity, Lancet Gastroenterol. Hepatol. 2(10) (2017) 747-756. https://doi.org/10.1016/S2468-1253(17)30147-4.

[84]

Y. Mi, G. Qi, R. Fan, et al., EGCG ameliorates high-fat- and high-fructose-induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS, FASEB J. 31(11) (2017) 4998-5011. https://doi.org/10.1096/fj.201700400RR.

[85]

R. Yan, C.T. Ho, X. Zhang, Interaction between tea polyphenols and intestinal microbiota in host metabolic diseases from the perspective of the gut-brain axis, Mol. Nutr. Food Res. 64(14) (2020) e2000187. https://doi.org/10.1002/mnfr.202000187.

[86]

Y. Mi, G. Qi, Y. Gao, et al., (-)-Epigallocatechin-3-gallate ameliorates insulin resistance and mitochondrial dysfunction in HepG2 cells: involvement of Bmal1, Mol. Nutr. Food Res. 61(12) (2017) 1700440. https://doi.org/10.1002/mnfr.201700440.

[87]

T. Guo, C. Ho, X. Zhang, et al., Oolong tea polyphenols ameliorate circadian rhythm of intestinal microbiome and liver clock genes in mouse model, J. Agr. Food Chem. 67(43) (2019) 11969-11976. https://doi.org/10.1021/acs.jafc.9b04869.

[88]

B. Liu, J. Zhang, P. Sun, et al., Raw bowl tea (Tuocha) polyphenol prevention of nonalcoholic fatty liver disease by regulating intestinal function in mice, Biomolecules 9(9) (2019) 435. https://doi.org/10.3390/biom9090435.

[89]

P. Dey, B.D. Olmstead, G.Y. Sasaki, et al., Epigallocatechin gallate but not catechin prevents nonalcoholic steatohepatitis in mice similar to green tea extract while differentially affecting the gut microbiota, J. Nutr. Biochem. 84 (2020) 108455. https://doi.org/10.1016/j.jnutbio.2020.108455.

[90]

S.M. Reilly, A.R. Saltiel, Adapting to obesity with adipose tissue inflammation, Nat. Rev. Endocrinol. 13(11) (2017) 633-643. https://doi.org/10.1038/nrendo.2017.90.

[91]

P. Dey, G.Y. Sasaki, P. Wei, et al., Green tea extract prevents obesity in male mice by alleviating gut dysbiosis in association with improved intestinal barrier function that limits endotoxin translocation and adipose inflammation, J. Nutri. Biochem. 67 (2019) 78-89. https://doi.org/10.1016/j.jnutbio.2019.01.017.

[92]

Y. Mi, G. Qi, R. Fan, et al., EGCG ameliorates diet-induced metabolic syndrome associating with the circadian clock, Biochim. Biophys. Acta Mol. Basis Dis. 1863(6) (2017) 1575-1589. https://doi.org/10.1016/j.bbadis.2017.04.009.

[93]

D. Song, C.S. Yang, X. Zhang, et al., The relationship between host circadian rhythms and intestinal microbiota: a new cue to improve health by tea polyphenols, Crit. Rev. Food Sci Nutr. 61(1) (2020) 1-10. https://doi.org/10.1080/10408398.2020.1719473.

[94]

D. Seo, H.W. Jeong, D. Cho, et al., Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice, J. Med. Food. 18(5) (2015) 549-556. https://doi.org/10.1089/jmf.2014.3265.

[95]

M.T. Foster, C.L. Gentile, K. Cox-York, et al., Fuzhuan tea consumption imparts hepatoprotective effects and alters intestinal microbiota in high saturated fat diet-fed rats, Mol. Nutr. Food Res. 60(5) (2016) 1213-1220. https://doi.org/10.1002/mnfr.201500654.

[96]

D.B. Seo, H.W. Jeong, Y.J. Kim, et al., Fermented green tea extract exhibits hypolipidaemic effects through the inhibition of pancreatic lipase and promotion of energy expenditure, Br. J. Nutr. 117(2) (2017) 177-186. https://doi.org/10.1017/S0007114516004621.

[97]

G. Chen, M. Xie, Z. Dai, et al., Kudingcha and fuzhuan brick tea prevent obesity and modulate gut microbiota in high-fat diet fed mice, Mol. Nutr. Food Res. 62(6) (2018) 1700485. https://doi.org/10.1002/mnfr.201700485.

[98]

Q. Ding, W. Zheng, B. Zhang, et al., Comparison of hypoglycemic effects of ripened Pu-erh tea and raw Pu-erh tea in streptozotocin-induced diabetic rats, Rsc. Adv. 9(6) (2019) 2967-2977. https://doi.org/10.1039/C8RA09259A.

[99]

H. Zhang, J. Liu, Y. Lv, et al., Changes in intestinal microbiota of type 2 diabetes in mice in response to dietary supplementation with instant tea or matcha, Can. J. Diabetes. 44(1) (2020) 44-52. https://doi.org/10.1016/j.jcjd.2019.04.021.

[100]

Z. Liao, B. Zeng, W. Wang, et al., Impact of the consumption of tea polyphenols on early atherosclerotic lesion formation and intestinal Bifidobacteria in high-fat-fed ApoE−/− mice, Front. Nutri. 3 (2016) 42. https://doi.org/10.3389/fnut.2016.00042.

[101]

X. Guo, M. Cheng, X. Zhang, et al., Green tea polyphenols reduce obesity in high-fat diet-induced mice by modulating intestinal microbiota composition, Int. J. Food Sci. Tech. 52(8) (2017) 1723-1730. https://doi.org/10.1111/ijfs.13479.

[102]

M. Remely, F. Ferk, S. Sterneder, et al., EGCG prevents high fat diet-induced changes in gut microbiota, decreases of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice, Oxid. Med. Cell Longev. 2017 (2017) 1-17. https://doi.org/10.1155/2017/3079148.

[103]

M. Cheng, X. Zhang, Y. Miao, et al., The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3’’ Me) on intestinal microbiota of high fat diet-induced obesity mice model, Food Res. Int. 92 (2017) 9-16. https://doi.org/10.1016/j.foodres.2016.12.008.

[104]

X. Zhang, Y. Chen, J. Zhu, et al., Metagenomics analysis of gut microbiota in a high fat diet-induced obesity mouse model fed with (−)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3’’ Me), Mol. Nutr. Food Res. 62(13) (2018) 1800274. https://doi.org/10.1002/mnfr.201800274.

[105]

X. Zhang, M. Zhang, C. Ho, et al., Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model, J. Funct. Foods. 46 (2018) 268-277. https://doi.org/10.1016/j.jff.2018.05.003.

[106]

Y. Chen, X. Zhang, L. Cheng, et al., The evaluation of the quality of Feng Huang oolong teas and their modulatory effect on intestinal microbiota of high-fat diet-induced obesity mice model, Int. J. Food Sci. Nutr. 69(7) (2018) 842-856. https://doi.org/10.1080/09637486.2017.1420757.

[107]

M. Cheng, X. Zhang, J. Zhu, et al., A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols, Food Funct. 9(2) (2018) 1079. https://doi.org/10.1039/D0FO02112A.

[108]

S. Yue, D. Zhao, C. Peng, et al., Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet, Food Funct. 1(11) (2019) 763-778. https://doi.org/10.1039/c9fo01334b.

Food Science and Human Wellness
Pages 11-21
Cite this article:
Ma H, Hu Y, Zhang B, et al. Tea polyphenol – gut microbiota interactions: hints on improving the metabolic syndrome in a multi-element and multi-target manner. Food Science and Human Wellness, 2022, 11(1): 11-21. https://doi.org/10.1016/j.fshw.2021.07.002

625

Views

54

Downloads

31

Crossref

32

Web of Science

34

Scopus

2

CSCD

Altmetrics

Received: 25 September 2020
Revised: 21 October 2020
Accepted: 25 October 2020
Published: 11 September 2021
© 2021 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return