AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (561.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The enriched gut commensal Faeciroseburia intestinalis contributes to the anti-metabolic disorders effects of the Ganoderma meroterpene derivative

Shanshan Qiaoa,b,1Kai Wanga,b,1Chang Liuc,d,1Nan ZhoudLi Baoa,eJun WangfShuangjiang Liuc,d( )Hongwei Liua,b( )
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Microbial Technology, Shandong University, Tsingdao 266237, Shandong, China
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
Beijing Shijitan Hospital, Capital Medicinal University, Beijing 100038, China
CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

1 Authors contributed equally to this work.Peer review under responsibility of KeAi Communications Co., Ltd.]]>

Show Author Information

Abstract

Previous study demonstrated that Ganoderma meroterpene derivative (GMD) increased the abundance of butyrate-producing bacteria in gut and subsequently delivered anti-metabolic disorder effect of host. To specify the key commensal bacteria associating with the beneficial effects, we tried to isolate and compare the microbiota from the cecal samples of GMD- and vehicle-treated ob/ob mice, and further identified butyrate-producing bacterial strains. It was found that Faeciroseburia intestinalis was enriched and 11 strains affiliated to F. intestinalis were cultivated from the gut of GMD-treated mice. In vitro assay attested butyrate production by representative strain of F. intestinalis. Oral administration with F. intestinalis further demonstrated its benefits on regulating hyperglycemia and hyperlipidemia, on decreasing plasma lipopolysaccharide (LPS) and inflammation, and on improving hepatic injuries. Treatment with F. intestinalis effectively enhanced the level of gut butyrate, which subsequently ameliorated the intestinal barrier function and activated epithelial PPAR-γ signaling pathway to regulate microbiome homeostasis in gut. Our study demonstrated that the causal relationship between the butyrate-producing bacteria and the GMD's therapeutic effects and confirmed the important function of the butyrate-producing F. intestinalis in maintaining host metabolism homeostasis.

References

[1]

S.V. Lynch, O. Pedersen, The human intestinal microbiome in health and disease, N. Engl. J. Med. 375(24) (2016) 2369-2379. http://dx.doi.org/10.1056/NEJMra1600266.

[2]

J. Qin, R.Q. Li, J. Raes, et al., A human gut microbial gene catalogue established by metagenomic sequencing, Nature 464(7285) (2010) 59-70. http://dx.doi.org/10.1038/nature08821.

[3]

L. Jean-Christophe, G. Dubourg, M. Matthieu, et al., Culturing the human microbiota and culturomics, Nat. Rev. Microbiol. 16 (2018) 540-550. http://dx.doi.org/10.1038/s41579-018-0041-0.

[4]

D.R. Donohoe, N. Garge, X.X. Zhang, et al., The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon, Cell Metab. 13(5) (2011) 517-526. http://dx.doi.org/10.1016/j.cmet.2011.02.018.

[5]

C. Voltolini, S. Battersby, S. L. Etherington, et al., A novel anti-inflammatory role for the short-chain fatty acids in human labor, Endocrinology 153(1) (2012) 395-403. http://dx.doi.org/10.1210/en.2011-1457.

[6]

N. Singh, A. Gurav, S. Sivaprakasam, et al., Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis, Immunity 40 (2014) 128-139. http://dx.doi.org/10.1016/j.immuni.2013.12.007.

[7]

L. Macia, J. Tan, A.T. Vieira, et al., Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome, Nat. Commun. 6 (2015) 6734. http://dx.doi.org/10.1038/ncomms7734.

[8]

M.X. Byndloss, E.E. Olsan, F. Rivera-Chávez, et al., Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion, Science 357(6351) (2017) 570-575. http://dx.doi.org/10.1126/science.aam9949.

[9]

S.M. McNabney, T.M. Henagan, Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance, Nutrients 9(12) (2017) E1348. http://dx.doi.org/10.3390/nu9121348.

[10]

K. Kasahara, K.A. Krautkramer, E. Org, et al., Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model, Nat. Microbe. 3(12) (2018) 1461-1471. http://dx.doi.org/10.1038/s41564-018-0272-x.

[11]

A. Hayashi, T. Sato, N. Kamada, et al., A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice, Cell Host Microbe. 13(6) (2013) 711-722. http://dx.doi.org/10.1016/j.chom.2013.05.013.

[12]

H. Shang, S. Jia, Y.Q. Chen, Clostridium butyricum CGMCC0313.1 modulates lipid profile, insulin resistance and colon homeostasis in obese mice, PLoS One 11(4) (2016) e0154373. http://dx.doi.org/10.1371/journal.pone.0154373.

[13]

K. Wang, L. Bao, N. Zhou, et al., Structural modification of natural product Ganomycin Ⅰ leading to discovery of a α-glucosidase and HMG-CoA reductase dual inhibitor improving obesity and metabolic dysfunction in vivo, J. Med. Chem. 61(8) (2018) 3609-3625. http://dx.doi.org/10.1021/acs.jmedchem.8b00107.

[14]

C. Liu, N. Zhou, M.X. Du, et al., The mouse gut microbial biobank expands the coverage of cultured bacteria, Nat. Commun. 11(1) (2020) 79. http://dx.doi.org/10.1038/s41467-019-13836-5.

[15]

S.H. Duncan, G.L. Hold, A. Barcenilla, et al., Roseburia intestinalis sp nov., a novel saccharolytic, butyrate-producing bacterium from human faeces, Int. J. Syst. Evol. Micr. 52(5) (2002) 1615-1620. http://dx.doi.org/10.1002/cpa.20254.

[16]

P. Langfelder, S. Horvath, Fast R functions for robust correlations and hierarchical clustering, J. Stat. Softw. 46(11) (2012) 1-17. http://dx.doi.org/10.18637/jss.v046.i11.

[17]

C.Y. Jiang, L. Dong, J. Zhao, et al., High-throughput single-cell cultivation on microfluidic streak plates, Appl. Environ. Microb. 82(7) (2016) 2210-2218. http://dx.doi.org/10.1128/AEM.03588-15.

[18]

S.H. Duncan, R.I. Aminov, K.P. Scott, et al., Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces, Int. J. Syst. Evol. Micr. 56(10) (2006) 2437-2441. http://dx.doi.org/10.1099/ijs.0.64098-0.

[19]

H.P. Browne, S.C. Forster, B.O. Anonye, et al., Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation, Nature 533(7604) (2016) 543-546. http://dx.doi.org/10.1038/nature17645.

[20]

E. Allen-Vercoe, M. Daigneault, A. White, et al., Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976, Anaerobe 18(5) (2012) 523-529. http://dx.doi.org/10.1016/j.anaerobe.2012.09.002.

[21]

A.R. Moschen, R.R. Gerner, J. Wang, et al., Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations, Cell Host Microbe. 19(4) (2016) 455-469. http://dx.doi.org/10.1016/j.chom.2016.03.007.

[22]

J.U. Scher, A. Sczesnak, R.S. Longman, et al., Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis, Elife 2 (2013) e01202. http://dx.doi.org/10.7554/eLife.01202.

[23]

P.D. Cani, Gut microbiota-at the intersection of everything? Nat. Rev. Gastro. Hepat. 14(6) (2017) 321-322. http://dx.doi.org/10.1038/nrgastro.2017.54.

[24]

V. Marx, Microbiology: the return of culture, Nat. Methods 14 (2017) 37-40. http://dx.doi.org/10.1038/nmeth.4107.

[25]

B. Berdy, A.L. Spoering, L.L. Ling, et al., In situ cultivation of previously uncultivable microorganisms using the ichip, Nat. Protoc. 12(10) (2017) 2232-2242. http://dx.doi.org/10.1038/nprot.2017.074.

[26]

G.J. Meehan, R.G. Beiko, A Phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria, Genome. Biol. Evol. 6(3) (2014) 703-713. http://dx.doi.org/10.1093/gbe/evu050.

[27]

A. Allison, C. Karine, S. Harry, Gut microbiota-derived metabolites as central regulators in metabolic disorders, Gut 70(6) (2020) 1-9. http://dx.doi.org/10.1136/gutjnl-2020-323071.

[28]

K. Wang, X. Liang, Y. Pang, et al., The role of gut microbiota in host lipid metabolism: an eye on causation and connection, Small Methods (2019) 1900604. http://dx.doi.org/10.1002/smtd.201900604.

[29]

S.E. Pryde, S.H. Duncan, G.L. Hold, et al., The microbiology of butyrate formation in the human colon, FEMS Microbiology Letters 217(2) (2002) 133-139. http://dx.doi.org/10.1111/j.1574-6968.2002.tb11467.x.

[30]

H.M. Hamer, D. Jonkers, K. Venema, et al., Review article: the role of butyrate on colonic function, Aliment Pharm Therap. 27(2) (2008) 104-119. http://dx.doi.org/10.1111/j.1365-2036.2007.03562.x.

[31]

H. Diao, A.R. Jiao, B. Yu, et al., Stimulation of intestinal growth with distal ileal infusion of short-chain fatty acid: a reevaluation in a pig model, RSC Adv. 7(49) (2017) 30792-30806. http://dx.doi.org/10.1039/C7RA03730A.

[32]

D. Zhou, Q. Pan, F.Z. Xin, et al., Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier, World J. Gastroentero. 23(1) (2017) 60-75. http://dx.doi.org/10.3748/wjg.v23.i1.60.

[33]

Z. Gao, J. Yin, J. Zhang, et al., Butyrate improves insulin sensitivity and increases energy expenditure in mice, Diabetes 58(7) (2009) 1509-1517. http://dx.doi.org/10.2337/db08-1637.

[34]

H. Li, Z. Gao, J. Zhang, et al., Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3, Diabetes 61(4) (2012) 797-806. http://dx.doi.org/10.2337/db11-0846.

[35]

F.H. Karlsson, F. Fåk, I. Nookaew, et al., Symptomatic atherosclerosis is associated with an altered gut metagenome, Nat. Commun. 3 (2012) 1245. http://dx.doi.org/10.1038/ncomms2266.

[36]

J. Qin, Y. Li, Z. Cai, et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature 490(7418) (2012) 55-60. http://dx.doi.org/10.1038/nature11450.

[37]

F.H. Karlsson, V. Tremaroli, I. Nookaew, et al., Gut metagenome in European women with normal, impaired and diabetic glucose control, Nature 498(7452) (2013) 99-103. http://dx.doi.org/10.1038/nature12198.

[38]

J. Liu, J. Sun, F. Wang, et al., Neuroprotective effects of Clostridium butyricum against vascular dementia in mice via metabolic butyrate, BioMed Res. Int. 2015 (2015) 1-12. http://dx.doi.org/10.1155/2015/412946.

[39]

S.S. Qiao, L. Bao, K. Wang, et al., Activation of a specific gut bacteroides-folate-liver axis benefits for the alleviation of nonalcoholic hepatic steatosis, Cell Rep. 32(6) (2020) 108005. http://dx.doi.org/10.1016/j.celrep.2020.108005.

[40]

J. Sun, Z. Ling, F. Wang, et al., Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis, Neurosci. Lett. 613 (2015) 30-35. http://dx.doi.org/10.1016/j.neulet.2015.12.047.

[41]

S.S. Sun, K. Wang, K. Ma, et al., An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota, Chin. J. Nat. Medicines. 17(1) (2019) 3-14. http://dx.doi.org/10.1016/S1875-5364(19)30003-2.

[42]

M. Doulberis, G. Kotronis, D. Gialamprinou, et al., Non-alcoholic fatty liver disease: an update with special focus on the role of gut microbiota, Metabolism 71 (2017) 182-197. http://dx.doi.org/10.1016/j.metabol.2017.03.013.

[43]

J. Aron-Wisnewsky, B. Gaborit, A. Dutour, et al., Gut microbiota and non-alcoholic fatty liver disease: new insights, Clin. Microbiol. Infec. 19(4) (2013) 338-348. http://dx.doi.org/10.1111/1469-0691.12140.

[44]

P.J. Turnbaugh, R.E. Ley, M.A. Mahowald, et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature 444(7122) (2006) 1027-1031. http://dx.doi.org/10.1038/nature05414.

[45]

J.R. Marchesi, D.H. Adams, F. Fava, et al., The gut microbiota and host health: a new clinical frontier, Gut 65(2) (2016) 330. http://dx.doi.org/10.1136/gutjnl-2015-309990.

[46]

S. Rabot, M. Membrez, A. Bruneau, et al., Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistant have altered cholesterol metabolism, FASEB J. 24(12) (2010) 4948-4959. http://dx.doi.org/10.1096/fj.10.164921.

[47]

S.S. Sun, K. Wang, L. Sun, et al., Therapeutic manipulation of gut microbiota by polysaccharides of Wolfiporia cocos reveals the contribution of the gut fungi-induced PGE 2 to alcoholic hepatic steatosis, Gut Microbes. 12(1) (2020) 1830693. http://dx.doi.org/10.1080/19490976.2020.1830693.

[48]

P.D. Cani, R. Bibiloni, C. Knauf, et al., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice, Diabetes 57(6) (2008) 1470-1481. http://dx.doi.org/10.2337/db07-1403.

[49]

Y. Litvak, M.X. Byndloss, R.M. Tsolis, et al., Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction, Curr. Opin. Microbiol. 39 (2017) 1-6. http://dx.doi.org/10.1016/j.mib.2017.07.003.

[50]

A. Mukherjee, C. Lordan, R.P. Ross, et al., Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health, Gut Microbes 12(1) (2020) 1802866. https://doi.org/10.1080/19490976.2020.1802866.

[51]

P. Louis, P. Young, G. Holtrop, et al., Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene, Environ. Microbiol. 12(2) (2010) 304-314. http://dx.doi.org/10.1111/j.1462-2920.2009.02066.x.

[52]

N.K. Surana, D.L. Kasper, Moving beyond microbiome-wide associations to causal microbe identification, Nature 552(7684) (2017) 244-247. http://dx.doi.org/10.1038/nature25019.

Food Science and Human Wellness
Pages 85-96
Cite this article:
Qiao S, Wang K, Liu C, et al. The enriched gut commensal Faeciroseburia intestinalis contributes to the anti-metabolic disorders effects of the Ganoderma meroterpene derivative. Food Science and Human Wellness, 2022, 11(1): 85-96. https://doi.org/10.1016/j.fshw.2021.07.010

625

Views

91

Downloads

4

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 18 January 2021
Revised: 01 February 2021
Accepted: 01 February 2021
Published: 11 September 2021
© 2021 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return