AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (440.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Perspectives on diacylglycerol-induced improvement of insulin sensitivity in type 2 diabetes

Daoming Lia,b,cYang ZhudYonghua Wanga,c( )Qiong ZoueJinzhu DuanfDongxiao Sun-WaterhousecBaoguo Suna( )
Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
School of Food Science and Engineering, Guangdong Research Center of Lipid Science and Applied Engineering Technology, South China University of Technology, Guangzhou 510640, China
Bioprocess Engineering, Wageningen University and Research, 6700 AA Wageningen, Netherlands
Guangzhou Yong-h Special Nutrition Technology Co. Ltd, Guangzhou 510000, China
Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China

Peer review under responsibility of KeAi Communications Co., Ltd.

Show Author Information

Abstract

Diacylglycerol (DAG)-based edible oils have attracted increasing research interest owing to their health-promoting properties. Recent animal and human studies showed that an increased 1,2-DAG content in the liver and skeletal muscle may cause insulin resistance. However, earlier studies using animal models or humans reported that dietary DAGs with a 1,2-DAGs to 1,3-DAGs ratio of approximately 3:7 could improve insulin sensitivity in type 2 diabetic patients. This conflict raises the question of whether there is a link between the ingested DAGs and endogenous DAGs during their metabolism. To make a contribution to this field, this review provides an overview of the metabolic pathways of ingested DAGs and biological roles of DAGs (ingested and endogenous) in the change of insulin sensitivity. Accordingly, strategies for further investigations on the metabolism of DAGs are proposed.

References

[1]

M.P. Czech, Insulin action and resistance in obesity and type 2 diabetes, Nat. Med. 23 (2017) 804-814. http://dx.doi.org/10.1038/nm.4350.

[2]

S.E. Kahn, R.L. Hull, K.M. Utzschneider, Mechanisms linking obesity to insulin resistance and type 2 diabetes, Nature 444 (2006) 840-846. http://dx.doi.org/10.1038/nature05482.

[3]

J. Li, J. Song, Y.Y. Zaytseva, et al., An obligatory role for neurotensin in high-fat-diet-induced obesity, Nature 533 (2016) 411-415. http://dx.doi.org/10.1038/nature17662.

[4]

T. Nagao, H. Watanabe, N. Goto, et al., Dietary diacylglycerol suppresses accumulation of body fat compared to triacylglycerol in men in a doubleblind controlled trial, J. Nutr. 130 (2000) 792-797. http://dx.doi.org/10.1093/ jn/130.4.792.

[5]

H. Kawashima, H. Takase, K. Yasunaga, et al., One-year ad libitum consumption of diacylglycerol oil as part of a regular diet results in modest weight loss in comparison with consumption of a triacylglycerol control oil in overweight Japanese subjects, J. Am. Diet. Assoc. 108 (2008) 57-66. http://dx.doi.org/10.1016/j.jada.2007.10.014.

[6]

K. Tomonobu, T. Hase, I. Tokimitsu, Dietary diacylglycerol in a typical meal suppresses postprandial increases in serum lipid levels compared with dietary triacylglycerol, Nutrition 22 (2006) 128-135. https://dx.doi. org/10.1016/j.nut.2005.04.016.

[7]

T.C. Xu, X. Li, X.H. Ma, et al., Effect of diacylglycerol on postprandial serum triacylglycerol concentration: a meta-analysis, Lipids 44 (2009) 161- 168, https://dx.doi.org/10.1007/s11745-008-3258-2.

[8]

S. Saito, T. Yamaguchi, K. Shoji, et al., Effect of low concentration of diacylglycerol on mildly postprandial hypertriglyceridemia, Atherosclerosis 213 (2010) 539-544. https://dx.doi.org/10.1016/ j.atherosclerosis.2010.07.062.

[9]

K. Shoji, T. Mizuno, D. Shiiba, et al., Effects of a meal rich in 1,3-diacylglycerol on postprandial cardiovascular risk factors and the glucose-dependent insulinotropic polypeptide in subjects with high fasting triacylglycerol concentrations, J. Agr. Food Chem. 60 (2012) 2490-2496. https://dx.doi.org/10.1021/jf204825p.

[10]

H. Takase, K. Shoji, T. Hase, et al., Effect of diacylglycerol on postprandial lipid metabolism in non-diabetic subjects with and without insulin resistance, Atherosclerosis 180 (2005) 197-204. https://dx.doi.org/10.1016/ j.atherosclerosis.2004.11.020.

[11]

H. Yanai, H. Yoshida, Y. Tomono, et al., Effects of diacylglycerol on glucose, lipid metabolism, and plasma serotonin levels in lean Japanese, Obesity 16 (2008) 47-51. https://dx.doi.org/10.1038/oby.2007.46.

[12]

J.S. Zheng, L. Wang, M. Lin, et al., BMI status influences the response of insulin sensitivity to diacylglycerol oil in Chinese type 2 diabetic patients, Asia. Pac. J. Clin. Nutr. 24 (2015) 65-72. https://dx.doi.org/10.6133/ apjcn.2015.24.1.01.

[13]

S. Saito, A. Hernandez-Ono, H.N. Ginsberg, Dietary 1,3-diacylglycerol protects against diet-induced obesity and insulin resistance, Metabolism 56 (2007) 1566-1575. https://dx.doi.org/10.1016/j.metabol.2007.06.024.

[14]

T.K. Tang, B.K. Beh, N.B.M. Alitheen, et al., Suppression of visceral adipose tissue by palm kernel and soy-canola diacylglycerol in C57BL/6N mice, Eur. J. Lipid Sci. Tech. 115 (2013) 1266-1273. https://dx.doi. org/10.1002/ejlt.201300111.

[15]

D. Li, T. Xu, H. Takase, et al., Diacylglycerol-induced improvement of whole-body insulin sensitivity in type 2 diabetes mellitus: a long-term randomized, double-blind controlled study, Clin. Nutr. 27 (2008) 203-211. https://dx.doi.org/10.1016/j.clnu.2008.01.009.

[16]

R.J. Perry, L. Peng, G.W. Cline, et al., Mechanisms by which a very-lowcalorie diet reverses hyperglycemia in a rat model of type 2 diabetes, Cell Metab. 27 (2018) 210-217. https://dx.doi.org/10.1016/j.cmet.2017.10.004.

[17]

M.C. Petersen, A.K. Madiraju, B.M. Gassaway, et al,. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance, J. Clin. Invest. 126 (2016) 4361-4371. https://dx.doi.org/10.1172/JCI86013.

[18]

K.W. Ter Horst, P.W. Gilijamse, R.I. Versteeg, et al., Hepatic diacylglycerolassociated protein kinase cepsilon translocation links hepatic steatosis to hepatic insulin resistance in humans, Cell Rep. 19 (2017) 1997-2004. https://dx.doi.org/10.1016/j.celrep.2017.05.035.

[19]

S.I. Itani, N.B. Ruderman, F. Schmieder, et al., Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha, Diabetes 51 (2002) 2005-2011. https://dx.doi.org/10.2337/diabetes.51.7.2005.

[20]

V.T. Samuel, K.F. Petersen, G.I. Shulman, Lipid-induced insulin resistance: unravelling the mechanism, Lancet 375 (2010) 2267-2277. https://dx.doi.org/10.1016/S0140-6736(10)60408-4.

[21]

G.I. Shulman, Cellular mechanisms of insulin resistance in humans, Am. J. Cardiol. 84 (1999) 3J-10J. https://dx.doi.org/10.1016/S0002-9149(99)00350-1.

[22]

H. Tilg, A.R. Moschen, Adipocytokines: mediators linking adipose tissue, inflammation and immunity, Nat. Rev. Immunol. 6 (2006) 772-783. https://dx.doi.org/10.1038/nri1937.

[23]

D.M. Erion, G.I. Shulman, Diacylglycerol-mediated insulin resistance, Nat. Med. 16 (2010) 400-402. https://dx.doi.org/10.1038/nm0410-400.

[24]

J. Turinsky, D.M. O'Sullivan, B.P. Bayly, 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo, J. Biol. Chem. 265 (1990) 16880-16885. https://dx.doi.org/10.1111/j.1432-1033.1990.tb19336.x.

[25]

F.R. Jornayvaz, A.L. Birkenfeld, M.J. Jurczak, et al., Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2, P. Natl. Acad. Sci. U.S.A. 108 (2011) 5748-5752. https://dx.doi.org/10.1073/pnas.1103451108.

[26]

T. Jelenik, K. Kaul, G. Sequaris, et al., Mechanisms of insulin resistance in primary and secondary nonalcoholic fatty liver, Diabetes 66 (2017) 2241- 2253. https://dx.doi.org/10.2337/db16-1147.

[27]

K. Lyu, Y. Zhang, D.Y. Zhang, et al., A membrane-bound diacylglycerol species induces PKCє-mediated hepatic insulin resistance, Cell Metab. 32 (2020) 654-664. https://dx.doi.org/10.1016/j.cmet.2020.08.001.

[28]

N. Kumashiro, D.M. Erion, D.Y. Zhang, et al., Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease, P. Natl. Acad. Sci. U.S.A. 108 (2011) 16381-16385. https://dx.doi.org/10.1073/pnas.1113359108.

[29]

L.T. Boni, R.R. Rando, The nature of protein kinase C activation by physically defined phospholipid vesicles and diacylglycerols, J. Biol. Chem. 260 (1985) 10819-10825. https://dx.doi.org/10.1016/0165-022X(85)90070-3.

[30]

R.R. Rando, N. Young, The stereospecific activation of protein kinase C, Biochem. Bioph. Res. Co. 122 (1984) 818-823. https://dx.doi.org/10.1016/ S0006-291X(84)80107-2.

[31]

J. Szendroedi, T. Yoshimura, E. Phielix, et al., Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans, P. Natl. Acad. Sci. U.S.A. 111 (2014) 9597-9602. https://dx.doi.org/10.1073/ pnas.1409229111.

[32]

X. Qu, J.P. Seale, R. Donnelly, Tissue and isoform-selective activation of protein kinase C in insulin-resistant obese Zucker rats-effects of feeding, J. Endocrinol. 162 (1999) 207-214. https://dx.doi.org/10.1002/hep.1840060621.

[33]

B.C. Bergman, D.M. Hunerdosse, A. Kerege, et al., Localisation and composition of skeletal muscle diacylglycerol predicts insulin resistance in humans, Diabetologia 55 (2012) 1140-1150. https://dx.doi.org/10.1007/ s00125-011-2419-7.

[34]

M.C. Petersen, G.I. Shulman, Roles of diacylglycerols and ceramides in hepatic insulin resistance, Trends Pharmacol. Sci. 38 (2017) 649-665. https://dx.doi.org/10.1016/j.tips.2017.04.004.

[35]

T.O. Eichmann, A. Lass, DAG tales: the multiple faces of diacylglycerolstereochemistry, metabolism, and signaling, Cell Mol. Life Sci. 72 (2015) 3931-3952. https://dx.doi.org/10.1007/s00018-015-1982-3.

[36]

M.C. Petersen, G.I. Shulman, Mechanisms of insulin action and insulin resistance, Physiol. Rev. 98 (2018) 2133-2223. https://dx.doi.org/10.1152/ physrev.00063.2017.

[37]

E. Montell, M. Turini, M. Marotta, et al., DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells, Am. J. Physiol. Endocrinol. Metab. 280 (2001) E229-E237. https://dx.doi.org/10.1016/S0167-0115(00)00187-7.

[38]

J. Szendroedi, T. Yoshimura, E. Phielix, et al., Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans, P. Natl. Acad. Sci. U.S.A. 111 (2014) 9597-9602. https://dx.doi.org/10.1073/ pnas.1409229111.

[39]

A.M. Lundsgaard, K.A. Sjoberg, L.D. Hoeg, et al., Opposite regulation of insulin sensitivity by dietary lipid versus carbohydrate excess, Diabetes 66 (2017) 2583-2595. https://dx.doi.org/10.2337/db17-0046.

[40]

B. Nowotny, L. Zahiragic, D. Krog, et al., Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans, Diabetes 62 (2013) 2240-2248. https://dx.doi.org/10.2337/db12-1179.

[41]

A. Franko, D. Merkel, M. Kovarova, et al., Dissociation of fatty liver and insulin resistance in I148M PNPLA3 carriers: differences in diacylglycerol (DAG) FA18:1 lipid species as a possible explanation, Nutrients 10 (2018) 1314. https://dx.doi.org/10.3390/nu10091314.

[42]

L. Perreault, S.A. Newsom, A. Strauss, et al., Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle, JCI Insight 3 (2018). https://dx.doi.org/10.1172/jci.insight.96805.

[43]

K.T. Tonks, A.C. Coster, M.J. Christopher, et al., Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans, Obesity 24 (2016) 908-916. https://dx.doi.org/10.1002/oby.21448.

[44]

E. Shmueli, K.G. Alberti, C.O. Record, Diacylglycerol/protein kinase C signalling: a mechanism for insulin resistance? J. Intern. Med. 234 (1993) 397-400. https://dx.doi.org/10.1111/j.1365-2796.1993.tb00761.x.

[45]

S.U. Jayasinghe, A.T. Tankeu, F. Amati, Reassessing the role of diacylglycerols in insulin resistance, Trends Endocrin. Met. 30 (2019) 618-635. https://dx.doi.org/10.1016/j.tem.2019.06.005.

[46]

R.C.R. Meex, M.J. Watt, Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance, Nat. Rev. Endocrinol. 13 (2017) 509-520. https://dx.doi.org/10.1038/nrendo.2017.56.

[47]

R.J. Perry, J.G. Camporez, R. Kursawe, et al., Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes, Cell 160 (2015) 745-758. https://dx.doi.org/10.1016/j.cell.2015.01.012.

[48]

V. Bezaire, A. Mairal, R. Anesia, et al., Chronic TNFalpha and cAMP pre-treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis, FEBS Lett. 583 (2009) 3045-3049. https://dx.doi.org/10.1016/j.febslet.2009.08.019.

[49]

J. Laurencikiene, V. van Harmelen, E. Arvidsson Nordstrom, et al., NFkappaB is important for TNF-alpha-induced lipolysis in human adipocytes, J. Lipid Res. 48 (2007) 1069-1077. https://dx.doi.org/10.1194/jlr.M600471- JLR200.

[50]

V.T. Samuel, G.I. Shulman, The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux, J. Clin. Invest. 126 (2016) 12-22. https://dx.doi.org/10.1172/JCI77812.

[51]

K.F. Petersen, S. Dufour, D.B. Savage, et al., The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome, P. Natl. Acad. Sci. U.S.A. 104 (2007) 12587-12594. https://dx.doi.org/10.1073/ pnas.0705408104.

[52]

H. Yanai, Y. Tomono, K. Ito, et al., Diacylglycerol oil for the metabolic syndrome, Nutr. J. 6 (2007) 43. https://dx.doi.org/10.1186/1475-2891-6-43.

[53]

K. Yasunaga, S. Saito, Y.L. Zhang, et al., Effects of triacylglycerol and diacylglycerol oils on blood clearance, tissue uptake, and hepatic apolipoprotein B secretion in mice, J. Lipid Res. 48 (2007) 1108-1121. https://dx.doi.org/10.1194/jlr.M600524-JLR200.

[54]

M. Hu, F. Phan, O. Bourron, et al., Steatosis and NASH in type 2 diabetes, Biochimie 143 (2017) 37-41. https://dx.doi.org/10.1016/j.biochi.2017.10.019.

[55]

B.L.A. Prabhavathi Devi, K.N. Gangadhar, R.B.N. Prasad, et al., Nutritionally enriched 1,3-diacylglycerol-rich oil: low calorie fat with hypolipidemic effects in rats, Food Chem. 248 (2018) 210-216. https://dx.doi.org/10.1016/j.foodchem.2017.12.066.

[56]

S. Meguro, N. Osaki, N. Matsuo, et al., Effect of diacylglycerol on the development of impaired glucose tolerance in sucrose-fed rats, Lipids 41 (2006) 347-355. https://dx.doi.org/10.1007/s11745-006-5105-7.

[57]

B. Leibiger, T. Moede, M. Paschen, et al., PI3K-C2alpha knockdown results in rerouting of insulin signaling and pancreatic beta cell proliferation, Cell Rep. 13 (2015) 15-22. https://dx.doi.org/10.1016/j.celrep.2015.08.058.

[58]

K. Yamamoto, H. Asakawa, K. Tokunaga, et al., Long-term ingestion of dietary diacylglycerol lowers serum triacylglycerol in type Ⅱ diabetic patients with hypertriglyceridemia, J. Nutr. 131 (2001) 3204-3207. https://dx.doi.org/10.1046/j.1365-277X.2001.00318.x.

[59]

T.C. Xu, M. Jia, X. Li, et al., Intake of diacylglycerols and the fasting insulin and glucose concentrations: a meta-analysis of 5 randomized controlled studies, J. Am. Coll. Nutr. 37 (2018) 598-604. https://dx.doi.org/10.1080/073 15724.2018.1452168.

[60]

T. Yanagita, I. Ikeda, Y.M. Wang, et al., Comparison of the lymphatic transport of radiolabeled 1,3-dioleoylglycerol and trioleoylglycerol in rats, Lipids 39 (2004) 827-832. https://dx.doi.org/10.1007/s11745-004-1303-6.

[61]

A. McCullough, S. Previs, T. Kasumov, Stable isotope-based flux studies in nonalcoholic fatty liver disease, Pharmacol. Therapeut. 181 (2018) 22-33. https://dx.doi.org/10.1016/j.pharmthera.2017.07.008.

[62]

C. Preuss, T. Jelenik, K. Bodis, et al., A new targeted lipidomics approach reveals lipid droplets in liver, muscle and heart as a repository for diacylglycerol and ceramide species in non-alcoholic fatty liver, Cells 8 (2019) 277. https://dx.doi.org/10.3390/cells8030277.

[63]

K. Yang, X. Han, Lipidomics: techniques, applications, and outcomes related to biomedical sciences, Trends Biochem. Sci. 41 (2016) 954-969. https://dx.doi.org/10.1016/j.tibs.2016.08.010.

Food Science and Human Wellness
Pages 230-237
Cite this article:
Li D, Zhu Y, Wang Y, et al. Perspectives on diacylglycerol-induced improvement of insulin sensitivity in type 2 diabetes. Food Science and Human Wellness, 2022, 11(2): 230-237. https://doi.org/10.1016/j.fshw.2021.11.004

853

Views

57

Downloads

8

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 31 August 2020
Revised: 16 October 2020
Accepted: 25 October 2020
Published: 25 November 2021
© 2022 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return