AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (360.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Peptidomic analysis of whey protein hydrolysates and prediction of their antioxidant peptides

Jesus Morales GarcíaaChibuike C. UdenigwebJorge DuitamacAndrés Fernando González Barriosa( )
Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
Systems and Computing Engineering Department, Universidad de Los Andes, Bogotá 111711, Colombia
Show Author Information

Abstract

Enzymatic hydrolysis of proteins is a breakdown process of peptide bond in proteins, releasing some peptides with potential biological functions. Previous studies on enzymatic hydrolysis of whey proteins have not identified the complete peptide profiles after hydrolysis. In this study, we reconstructed a profile of peptides from whey hydrolysates with two enzymes and different processing conditions. We also developed an ensemble machine learning predictor to classify peptides obtained from whey hydrolysis. A total of 2572 peptides were identified over three process conditions with two enzymes in duplicate. 499 peptides were classified and chosen as potential antioxidant peptides from whey proteins. The peptides classified as antioxidants in the hydrolysates had a proportion of 13.1%–24.5% regarding all peptides identified. These results facilitate the selection of promising peptides involved in the antioxidant properties during the enzymatic hydrolysis of whey proteins, aiding the discovery of novel antioxidant peptides.

References

[1]

S. Chakrabarti, S. Guha, K. Majumder, Food-derived bioactive peptides in human health: challenges and opportunities, Nutrients 10 (2018) 1-17. https://doi.org/10.3390/nu10111738.

[2]

A.L. Capriotti, C. Cavaliere, S. Piovesana, et al., Recent trends in the analysis of bioactive peptides in milk and dairy products, Anal. Bioanal. Chem. 408 (2016) 2677-2685. https://doi.org/10.1007/s00216-016-9303-8.

[3]

A. Dullius, M.I. Goettert, C.F.V. de Souza, Whey protein hydrolysates as a source of bioactive peptides for functional foods: biotechnological facilitation of industrial scale-up, J. Funct. Foods 42 (2018) 58-74. https://doi.org/10.1016/j.jff.2017.12.063.

[4]

A.R. Madureira, C.I. Pereira, A.M.P. Gomes, et al., Bovine whey proteins-overview on their main biological properties, Food Res. 40(10) (2007) 1197-1211. https://doi.org/10.1016/j.foodres.2007.07.005.

[5]

M. Barati, F. Javanmardi, S.M.H. Mousavi Jazayeri, et al., Techniques, perspectives, and challenges of bioactive peptide generation: a comprehensive systematic review, Compr. Rev. Food Sci. Food Saf. 19 (2020) 1488-1520. https://doi.org/10.1111/1541-4337.12578.

[6]

D. Agyei, A. Tsopmo, C.C. Udenigwe, Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides, Anal. Bioanal. Chem. 410 (2018) 1-10. https://doi.org/10.1007/s00216-018-0974-1.

[7]

J.M. Lorenzo, P.E.S. Munekata, B. Gómez, et al., Bioactive peptides as natural antioxidants in food products: a review, Trends Food Sci. Technol. 79 (2018) 136-147. https://doi.org/10.1016/j.tifs.2018.07.003.

[8]

L. Zhang, R. Yang, C. Zhang, Using a classifier fusion strategy to identify anti-angiogenic peptides, Sci. Rep. 8 (2018) 1-12. https://doi.org/10.1038/s41598-018-32443-w.

[9]

R. Re, N. Pellegrini, A. Proteggente, et al., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26 (1999) 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3.

[10]

T.L. Pownall, C.C. Udenigwe, R.E. Aluko, Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions, J. Agric. Food Chem. 58 (2010) 4712-4718. https://doi.org/10.1021/jf904456r.

[11]

S. Yao, C.C. Udenigwe, Peptidomics of potato protein hydrolysates: implications of post-translational modifications in food peptide structure and behaviour, R. Soc. Open Sci. 5 (2018) 172425. https://doi.org/10.1098/rsos.172425.

[12]

P. Minkiewicz, A. Iwaniak, M. Darewicz, BIOPEP-UWM database of bioactive peptides: current opportunities, Int. J. Mol. Sci. 20 (2019) 5978. https://doi.org/10.3390/ijms20235978.

[13]

I. Dubchak, I. Muchnik, S.R. Holbrook, et al., Prediction of protein folding class using global description of amino acid sequence, Proc. Natl. Acad. Sci. U.S.A. 92 (1995) 8700-8704. https://doi.org/10.1073/pnas.92.19.8700.

[14]

L. Zhang, C. Zhang, R. Gao, et al., Sequence based prediction of antioxidant proteins using a classifier selection strategy, PLoS One 11 (2016) 1-21. https://doi.org/10.1371/journal.pone.0163274.

[15]

S.P. Shi, J.D. Qiu, X.Y. Sun, et al., PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features, Mol. Biosyst. 8 (2012) 1520-1527. https://doi.org/10.1039/c2mb05502c.

[16]

F. Pedregosa, G. Varoquaux, A. Gramfort, et al., Scikit-learn: machine learning in python, J. Mach. Learn. Res. 12 (2011) 2825-2830. https://doi.org/10.1145/2786984.2786995.

[17]

A. Dryáková, A. Pihlanto, P. Marnila, et al., Antioxidant properties of whey protein hydrolysates as measured by three methods, Eur. Food Res. Technol. 230 (2010) 865-874. https://doi.org/10.1007/s00217-010-1231-9.

[18]

S. Athira, B. Mann, P. Saini, et al., Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey, J. Sci. Food Agric. 95 (2014) 2908-2915. https://doi.org/10.1002/jsfa.7032.

[19]

M. Bhattacharya, J. Salcedo, R.C. Robinson, et al., Peptidomic and glycomic profiling of commercial dairy products: identification, quantification and potential bioactivities, Npj Sci. Food 3 (2019). https://doi.org/10.1038/s41538-019-0037-9.

[20]

K.C. Chou, Some remarks on protein at tribute predict ion and pseudo amino acid composition, J. Theor. Biol. 273 (2011) 236-247. https://doi.org/10.1016/j.jtbi.2010.12.024.

[21]

P. Baldi, S. Brunak, Y. Chauvin, et al., Assessing the accuracy of prediction algorithms for classification: an overview, Bioinformatics 16 (2000) 412-424. https://doi.org/10.1093/bioinformatics/16.5.412.

[22]

S.L. Lo, R. Chiong, D. Cornforth, Using support vector machine ensembles for target audience classification on Twitter, PLoS One 10 (2015) 1-20. https://doi.org/10.1371/journal.pone.0122855.

[23]

B. Mann, A. Kumari, R. Kumar, et al., Antioxidant activity of whey protein hydrolysates in milk beverage system, J. Food Sci. Technol. 52 (2015) 3235-3241. https://doi.org/10.1007/s13197-014-1361-3.

[24]

A.B. Nongonierma, R.J. FitzGeralda, Learnings from quantitative structure activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: a review, RSC Adv. 6 (2016) 75400-75413. https://doi.org/10.1039/C6RA12738J.

[25]

C. Mooney, N.J. Haslam, G. Pollastri, et al., Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity, PLoS One 7 (2012) e45012. https://doi.org/10.1371/journal.pone.0045012.

Food Science and Human Wellness
Pages 349-355
Cite this article:
García JM, Udenigwe CC, Duitama J, et al. Peptidomic analysis of whey protein hydrolysates and prediction of their antioxidant peptides. Food Science and Human Wellness, 2022, 11(2): 349-355. https://doi.org/10.1016/j.fshw.2021.11.011

575

Views

46

Downloads

8

Crossref

6

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 15 July 2020
Revised: 29 September 2020
Accepted: 18 October 2020
Published: 25 November 2021
© 2022 Beijing Academy of Food Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return